55-355

Embryology

Tuesday & Thursday, 8:30-9:50 am

Instructor: Dr. M.J. Crawford, Rm 215 Biological Sciences mcrawfo@uwindsor.ca

| Syllabus | Dr. Crawford's Homepage | 355 Home page | New Dictionary |


Assignment/Exam Description

Written Assignments:   These assignments are designed to get you to use original scientific reports (not review articles) to describe and critique an unfolding paradigm.  Try to draw the “big picture” while reinforcing your interpretations using specific details from the readings. In essence, I want you to try and write a comprehensive encyclopedia entry for the DevoDictionary. You chose a gene to start with (no more than one person per gene please).  The assignment comprises of three components.

1. Bibliography
The first part requires that you:
a) choose a gene from the appended list – sign up sheet outside my office – no more than one student per gene please;
b) submit a preliminary bibliography of  5 related articles to which you will refer in your  DevoDictionary (these must be original research papers, not reviews - if they lack a Material & Methods, or Experimental Procedures section, they are a review article);           
c) append a printed copy of the first page of each article (not a downloaded Medline abstract): .p I want to be sure that you have actually acquired a copy of a few articles.

2. DevoDictionary Page
The second part requires that you create the text for a single dictionary entry for the DevoDictionary and then to edit a page by one of your colleagues.  Somebody in turn will be editing yours. For the Dictionary entry, you will need to “fill in the blanks” for the template that I provide (go to the "New Dictionary" page, and Login using your UWin ID and password.  Generally you can author text in MS Word (NO FORMATING - this gets stripped), and then cut and paste into the template provided, and under the heading provided. Choose a gene not already covered, and be sure to stake your turf by putting the gene name on a list outside my office door so that nobody else chooses the same gene or topic (maximum of one person per gene or topic).  If you see a currently posted gene description that is out of date or poorly done, you may, with my prior permission, elect to update and edit one instead.  Download or scan images (150 dpi minimum) of knockout phenotypes or  expression patterns for incorporation into your page with short descriptive legends. USE YOUR OWN WORDS PLEASE AND  CITE YOUR REFERENCES - many of the posted pages do not, and were penalized, so do not be misled.  Do not cut and paste text from the web, and do not paraphrase. I'd prefer that you do not employ quotes either - I want to read YOUR summary/synthesis in YOUR own words.  Don’t forget to provide a References Cited section and to annotate the origin of the images.  Include links to other pertinent sites, and make sure that these sites are specific, not generic. It is helpful to provide a few words of description for each link Check the list of pages already present in the dictionary (on the 55-355 website). You can also peek at an  example (go to the page Arx2 in Xenopus which I have written as an example that would hit a mid to high B grade) to get an idea for how much/little is required. Note that at the time of writing this sample page, neither the genomic structure of the gene, nor the number of mRNA isoforms was known. This information would normally be a part of mammalian, fly, and fish gene pages.  Submit it online.

3. Edit a Colleague's Page
The third phase is for you to edit the work of a colleague. The white bubbles beside paragraphs and images will permit you to add comments anonymously.  Remember to be polite and professional.  The idea is to be helpful, not offensive.  Be thorough - your comments will be graded.  Has the author made the description clear and accurate? Are the images useful, or just eye-candy?  Are the references and web links useful or generic? Were the web links presented in a descriptive manner or were they just raw links that had been cut and pasted?  Were parts of the description unclear, confusing, or muddy?  Any errors ("the fpx gene is located in the developing lens" - the gene is actually present in all cells, it might just be expressed in the lens). 
I am looking for editorial suggestions to correct grammar and spelling, to make suggestions for smooth reading, and to forward queries like “I think I understand this… is this what you mean?  You might want to clarify”, or “what does this mean?”  or  “Consider a diagram to simplify the explanation”

4. Re-Edit your Own Page and Submit for a Grade
When the editing is done, submit your comments, and you will then be granted permission to re-edit your own submission, taking into account the comments of your reviewer (or not - the comments might not be helpful).  FIRST print off a copy for me to mark up, and then submit your final work for my approval/editing. We will post these for use as a class-accessible “dictionary” for general use.

Academic Integrity:

All work and ideas from your readings which have been incorporated into the body of the text will be cited in the text and entered into a References Cited section.  Avoid long quotations and do not paraphrase - I require YOUR synthesis of ideas and information, and I wish to see that all of the facts have been properly cited.  Assignments may be assessed using Turnitin.com should I elect to check for originality. Be sure to keep a copy of your work on hand for your own records and protection. (In 18 years I haven’t had a paper go missing, but there is always a first time).

Finding References:

All of the starting references that you need can be obtained electronically from the Leddy Library. It is usually easiest to use  search engne to look for pdfs using the title of an article. All of the topics/genes listed have papers available if you are using a Uwindsor account via Leddy, or if you are searching while on campus. Alternatively, you can search the Leddy e-journals collection, and use the year, volume, page number, and author information to track the article you are interested in.  Ultimately, you will end up at a link that will permit you to download a pdf file to read or to print using your own computer.

For genes, it is helpful to Google "Genbank" and "OMIM"  (Online Mendelian Inheritance in Man) which are resources that are both kept up to date and can lead to more links to articles
From Genbank you can access other links such as Unigene that compare your gene of interest across species. Another useful site is E!Ensembl at http://www.ensembl.org . This site lets you looks at intron/exon structure, mRNA isoforms, and chromosomal location. For categorizing Homeobox genes check out: http://homeodb.zoo.ox.ac.uk

 

EXAMS

       Mid-Term Exam: The exam will be run during class time.  In past years, the format of the exam was a combination of short answer, labeled diagram,  and short essay type questions. This may change given the growth in class size.

       Final Exam:  The final exam will be similar in format to that of the mid-term exam. Here is an example of the midterm, and here is an example of a final exam.

Most people finish the exams early - I am interested to see what you know, not how quickly you can write.

 

GRADING

      Grading scale as set by University of Windsor Senate follows:

A+       90-100%
A         85-89.9%
A-        80-84.9%
B+       77-79.9%
B         73-76.9%
B-        70-72.9%
C+       67-69.9%
C         63-66.9%
C-        60-62.9%
D+      57-59.9%
D         53-56.9%
D-        50-52.9%
Fail Below 50%

 

 GENES TO START WITH FOR THE BIBLIOGRAPHY AND WRITTEN ASSIGNMENT  (Sign up for one outside my office – no more than one person per gene please)


1. miR-675
Keniry, A., D. Oxley, P. Monnier, M. Kyba, L. Dandolo, G. Smits, and W. Reik. 2012. "The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r."  Nat Cell Biol 14 (7):659-65. doi: 10.1038/ncb2521.

2. Hox C13 Human
Lin Z.,  Chen Q.,  Shi L.,  Lee M.,  Giehl K.A.,  Tang Z.,  Wang H.,  Zhang J.,  Yin J.,  Wu L.,  Xiao R.,  Liu X.,  Dai L.,  Zhu X.,  Li R.,  Betz R.C.,  Zhang X., and Yang Y. 2012. Loss-of-function mutations in HOXC13 cause pure hair and nail ectodermal dysplasia. Am J Hum Genet 91: 906-911.

3. Huntingtin
Godin J.D.,  Colombo K.,  Molina-Calavita M.,  Keryer G.,  Zala D.,  Charrin B.C.,  Dietrich P.,  Volvert M.L.,  Guillemot F.,  Dragatsis I.,  Bellaiche Y.,  Saudou F.,  Nguyen L., and Humbert S. 2010. Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis. Neuron 67: 392-406.

4. LEFTY2 (Human)
Kosaki K.,  Bassi M.T.,  Kosaki R.,  Lewin M.,  Belmont J.,  Schauer G., and Casey B. 1999. Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am J Hum Genet 64: 712-721.

5. lncRNA RNCR2
Rapicavoli N.A.,  Poth E.M., and Blackshaw S. 2010. The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev Biol 10: 49.

6. HoxB1 (mouse)
Studer M.,  Lumsden A.,  Ariza-McNaughton L.,  Bradley A., and Krumlauf R. 1996. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384: 630-634.

7. HoxA2 (mouse)
Gavalas A.,  Davenne M.,  Lumsden A.,  Chambon P., and Rijli F.M. 1997. Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development 124: 3693-3702.

8. HoxA10 (Mice)
Satokata I.,  Benson G., and Maas R. 1995. Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature 374: 460-463.

9. Even-skipped (fruitfly)
McDonald J.A.,  Fujioka M.,  Odden J.P.,  Jaynes J.B., and Doe C.Q. 2003. Specification of motoneuron fate in Drosophila: integration of positive and negative transcription factor inputs by a minimal eve enhancer. J Neurobiol 57: 193-203.

10. Evx1 Mouse only
Thaeron C.,  Avaron F.,  Casane D.,  Borday V.,  Thisse B.,  Thisse C.,  Boulekbache H., and Laurenti P. 2000. Zebrafish evx1 is dynamically expressed during embryogenesis in subsets of interneurones, posterior gut and urogenital system. Mech Dev 99: 167-172.

11. Hoxb8 (mouse only))
Greer J.M., and Capecchi M.R. 2002. Hoxb8 is required for normal grooming behavior in mice. Neuron 33: 23-34.

12. Meis1 (mouse only)

Mercader N.,  Selleri L.,  Criado L.M.,  Pallares P.,  Parras C.,  Cleary M.L., and Torres M. 2009. Ectopic Meis1 expression in the mouse limb bud alters P-D patterning in a Pbx1-independent manner. Int J Dev Biol 53: 1483-1494.

13. POU1F1 (Pit1)
Nica G.,  Herzog W.,  Sonntag C., and Hammerschmidt M. 2004. Zebrafish pit1 mutants lack three pituitary cell types and develop severe dwarfism. Mol Endocrinol 18: 1196-1209.

14. Pit1 human
Fofanova, O. V., N. Takamura, E. Kinoshita, M. Yoshimoto, Y. Tsuji, V. A. Peterkova, O. V. Evgrafov, Dedov, II, N. P. Goncharov, and S. Yamashita. 1998. "Rarity of PIT1 involvement in children from Russia with combined pituitary hormone deficiency."  Am J Med Genet 77 (5):360-5.

15. Gbx1 (mouse)
Buckley D.M.,  Burroughs-Garcia J.,  Lewandoski M., and Waters S.T. 2013. Characterization of the Gbx1-/- mouse mutant: a requirement for Gbx1 in normal locomotion and sensorimotor circuit development. PLoS One 8: e56214.

16. lncRNA Evf-2
Feng J.,  Bi C.,  Clark B.S.,  Mady R.,  Shah P., and Kohtz J.D. 2006. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20: 1470-1484.

17. ncRNA Fendrr
Grote P.,  Wittler L.,  Hendrix D.,  Koch F.,  Wahrisch S.,  Beisaw A.,  Macura K.,  Blass G.,  Kellis M.,  Werber M., and Herrmann B.G. 2013. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24: 206-214.

18. miR-126
Fish J.E.,  Santoro M.M.,  Morton S.U.,  Yu S.,  Yeh R.F.,  Wythe J.D.,  Ivey K.N.,  Bruneau B.G.,  Stainier D.Y., and Srivastava D. 2008. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15: 272-284.

19. lncRNA Kcnq1ot1

Redrup L.,  Branco M.R.,  Perdeaux E.R.,  Krueger C.,  Lewis A.,  Santos F.,  Nagano T.,  Cobb B.S.,  Fraser P., and Reik W. 2009. The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development 136: 525-530.

20. ACE - angiotensin-converting enzyme and muscle performance
Scott R.A.,  Irving R.,  Irwin L.,  Morrison E.,  Charlton V.,  Austin K.,  Tladi D.,  Deason M.,  Headley S.A.,  Kolkhorst F.W.,  Yang N.,  North K., and Pitsiladis Y.P. 2010. ACTN3 and ACE genotypes in elite Jamaican and US sprinters. Med Sci Sports Exerc 42: 107-112.

21. Brinp
Kawano H.,  Nakatani T.,  Mori T.,  Ueno S.,  Fukaya M.,  Abe A.,  Kobayashi M.,  Toda F.,  Watanabe M., and Matsuoka I. 2004. Identification and characterization of novel developmentally regulated neural-specific proteins, BRINP family. Brain Res Mol Brain Res 125: 60-75.

22. DYNAMIN 2; DNM2 (human only )
Bitoun, M., Maugenre, S., Jeannet, P.-Y., Lacene, E., Ferrer, X., Laforet, P., Martin, J.-J., Laporte, J., Lochmuller, H., Beggs, A. H., Fardeau, M., Eymard, B., Romero, N. B., Guicheney, P. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nature Genet. 37: 1207-1209, 2005.

23. DYNAMIN 2; DNM2 (human) (mouse only)
Durieux, A.-C., Vignaud, A., Prudhon, B., Viou, M. T., Beuvin, M., Vassilopoulos, S., Fraysse, B., Ferry, A., Laine, J., Romero, N. B., Guicheney, P., Bitoun, M. A centronuclear myopathy-dynamin 2 mutation impairs skeletal muscle structure and function in mice. Hum. Molec. Genet. 19: 4820-4836, 2010.

24. IDURONIDASE, ALPHA-L (human)
Aronovich, E. L., Pan, D., Whitley, C. B. Molecular genetic defect underlying alpha-L-iduronidase pseudodeficiency. Am. J. Hum. Genet. 58: 75-85, 1996.

25. HYPOCRETIN; HCRT (mouse only)
Chemelli, R. M., Willie, J. T., Sinton, C. M., Elmquist, J. K., Scammell, T., Lee, C., Richardson, J. A., Williams, S. C., Xiong, Y., Kisanuki, Y., Fitch, T. E., Nakazato, M., Hammer, R. E., Saper, C. B., Yanagisawa, M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98: 437-451, 1999.

26. HYPOCRETIN; HCRT (human only)
Thannickal, T. C., Moore, R. Y., Nienhuis, R., Ramanathan, L., Gulyani, S., Aldrich, M., Cornford, M., Siegel, J. M. Reduced number of hypocretin neurons in human narcolepsy. Neuron 27: 469-474, 2000.

27. BETA-GLUCURONIDASE; GUSB (human only)
Vervoort, R., Gitzelmann, R., Lissens, W., Liebaers, I. A mutation (IVS8+0.6kbdelTC) creating a new donor splice site activates a cryptic exon in an Alu-element in intron 8 of the human beta-glucuronidase gene. Hum. Genet. 103: 686-693, 1998.

27.B BETA-GLUCURONIDASE; GUSB (mouse only)
Tomatsu, S., Orii, K. O., Vogler, C., Grubb, J. H., Snella, E. M., Gutierrez, M. A., Dieter, T., Sukegawa, K., Orii, T., Kondo, N., Sly, W. S. Missense models [Gus(tm(E536A)Sly), Gus(tm(E536Q)Sly), and Gus(tm(L175F)Sly)] of murine mucopolysaccharidosis type VII produced by targeted mutagenesis. Proc. Nat. Acad. Sci. 99: 14982-14987, 2002.

28. Alx4 (human only)
Wuyts, W., Cleiren, E., Homfray, T., Rasore-Quartino, A., Vanhoenacker, F., Van Hul, W. The ALX4 homeobox gene is mutated in patients with ossification defects of the skull (foramina parietalia permagna, OMIM 168500). J. Med. Genet. 37: 916-920, 2000.

29. Alx4 (mouse only)
Qu, S., Tucker, S. C., Ehrlich, J. S., Levorse, J. M., Flaherty, L. A., Wisdom, R., Vogt, T. F. Mutations in mouse Aristaless-like4 cause Strong's luxoid polydactyly. Development 125: 2711-2721, 1998.

30. ACTIVIN A RECEPTOR, TYPE I; ACVR1 (human only)
Shore, E. M., Xu, M., Feldman, G. J., Fenstermacher, D. A., Cho, T.-J., Choi, I. H., Connor, J. M., Delai, P., Glaser, D. L., LeMerrer, M., Morhart, R., Rogers, J. G., Smith, R., Triffitt, J. T., Urtizberea, J. A., Zasloff, M., Brown, M. A., Kaplan, F. S. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nature Genet. 38: 525-527, 2006.

31. ACTIVIN A RECEPTOR, TYPE I; ACVR1 (mouse only)
Yu, P. B., Deng, D. Y., Lai, C. S., Hong, C. C., Cuny, G. D., Bouxsein, M. L., Hong, D. W., McManus, P. M., Katagiri, T., Sachidanandan, C., Kamiya, N., Fukuda, T., Mishina, Y., Peterson, R. T., Bloch, K. D. BMP type I receptor inhibition reduces heterotopic ossification. Nature Med. 14: 1363-1369, 2008.

32. HOLOCYTOCHROME C SYNTHASE; HCCS (human only) Wimplinger, I., Morleo, M., Rosenberger, G., Iaconis, D., Orth, U., Meinecke, P., Lerer, I., Ballabio, A., Gal, A., Franco, B., Kutsche, K. Mutations of the mitochondrial holocytochrome c-type synthase in X-linked dominant microphthalmia with linear skin defects syndrome. Am. J. Hum. Genet. 79: 878-889, 2006.

33. HOLOCYTOCHROME C SYNTHASE; HCCS (mouse only)
Prakash, S. K., Cormier, T. A., McCall, A. E., Garcia, J. J., Sierra, R., Haupt, B., Zoghbi, H. Y., Van den Veyver, I. B. Loss of holocytochrome c-type synthetase causes the male lethality of X-linked dominant microphthalmia with linear skin defects (MLS) syndrome. Hum. Molec. Genet. 11: 3237-3248, 2002.

34. ANOCTAMIN 5; ANO5 (human only)
Tsutsumi, S., Kamata, N., Vokes, T. J., Maruoka, Y., Nakakuki, K., Enomoto, S., Omura, K., Amagasa, T., Nagayama, M., Saito-Ohara, F., Inazawa, J., Moritani, M., Yamaoka, T., Inoue, H., Itakura, M. The novel gene encoding a putative transmembrane protein is mutated in gnathodiaphyseal dysplasia (GDD). Am. J. Hum. Genet. 74: 1255-1261, 2004.

35. NEUROFIBROMIN 1; NF1 (human only)
Gervasini, C., Bentivegna, A., Venturin, M., Corrado, L., Larizza, L., Riva, P. Tandem duplication of the NF1 gene detected by high-resolution FISH in the 17q11.2 region. Hum. Genet. 110: 314-321, 2002.

36. NEUROFIBROMIN 1; NF1 (mouse only)
Kolanczyk, M., Kossler, N., Kuhnisch, J., Lavitas, L., Stricker, S., Wilkening, U., Manjubala, I., Fratzl, P., Sporle, R., Herrmann, B. G., Parada, L. F., Kornak, U., Mundlos, S. Multiple roles for neurofibromin in skeletal development and growth. Hum. Molec. Genet. 16: 874-886, 2007.

37. CHROMODOMAIN HELICASE DNA-BINDING PROTEIN 7; CHD7 (human only)
Jongmans, M. C. J., Admiraal, R. J., van der Donk, K. P., Vissers, L. E. L. M., Baas, B. F., Kapusta, L., van Hagen, J. M., Donnai, D., de Ravel, T. J., Veltman, J. A., Geurts van Kessel, A., De Vries, B. B. A., Brunner, H. G., Hoefsloot, L. H., van Ravenswaaij, C. M. A. CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J. Med. Genet. 43: 306-314, 2006.

38. CHROMODOMAIN HELICASE DNA-BINDING PROTEIN 7; CHD7 (mouse only)
Bosman, E. A., Penn, A. C., Ambrose, J. C., Kettleborough, R., Stemple, D. L., Steel, K. P. Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum. Molec. Genet. 14: 3463-3476, 2005.

39. HEART- AND NEURAL CREST DERIVATIVES-EXPRESSED 1; HAND1 (mouse only)
Firulli, A. B., McFadden, D. G., Lin, Q., Srivastava, D., Olson, E. N. Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nature Genet. 18: 266-270, 1998.

40. T-BOX 2; TBX2 (mouse only)
Harrelson, Z., Kelly, R. G., Goldin, S. N., Gibson-Brown, J. J., Bollag, R. J., Silver, L. M., Papaioannou, V. E. Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development 131: 5041-5052, 2004.

41. POLYCYSTIN 1; PKD1 (human only)
European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77: 881-894, 1994.

42. POLYCYSTIN 1; PKD1 (mouse only)
Lu, W., Peissel, B., Babakhanlou, H., Pavlova, A., Geng, L., Fan, X., Larson, C., Brent, G., Zhou, J. Perinatal lethality with kidney and pancreas defects in mice with a targeted Pkd1 mutation. Nature Genet. 17: 179-181, 1997.

43. POLYCYSTIN 2; PKD2 (human only)
Mochizuki, T., Wu, G., Hayashi, T., Xenophontos, S. L., Veldhuisen, B., Saris, J. J., Reynolds, D. M., Cai, Y., Gabow, P. A., Pierides, A., Kimberling, W. J., Breuning, M. H., Constantinou Deltas, C., Peters, D. J. M., Somlo, S. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272: 1339-1342, 1996.

44. POLYCYSTIN 2; PKD2 (mouse only)
Wu, G., Markowitz, G. S., Li, L., D'Agati, V. D., Factor, S. M., Geng, L., Tibara, S., Tuchman, J., Cai, Y., Park, J. H., van Adelsberg, J., Hou, H., Jr., Kucherlapati, R., Edelmann, W., Somlo, S. Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nature Genet. 24: 75-78, 2000.

45. Sall1 (human only)
Kohlhase, J., Wischermann, A., Reichenbach, H., Froster, U., Engel, W. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nature Genet. 18: 81-83, 1998.

46. Sall1 (fly only)
Si Dong, P. D., Todi, S. V., Eberl, D. F., Boekhoff-Falk, G. Drosophila spalt/spalt-related mutants exhibit Townes-Brocks' syndrome phenotypes. Proc. Nat. Acad. Sci. 100: 10293-10298, 2003.

47. Endothelin 1 EDN1 (human only)
Wiltshire, S., Powell, B. L., Jennens, M., McCaskie, P. A., Carter, K. W., Palmer, L. J., Thompson, P. L., McQuillan, B. M., Hung, J., Beilby, J. P. Investigating the association between K198N coding polymorphism in EDN1 and hypertension, lipoprotein levels, the metabolic syndrome and cardiovascular disease. Hum. Genet. 123: 307-313, 2008.

48. KCNH1 (mouse only)
Ufartes, R., Schneider, T., Motensen, L. S., de Juan Romero, C., Hentrich, K., Knoetgen, H., Beilinson, V., Moebius, W., Tarabykin, V., Alves, F., Pardo, L. A., Rawlins, J. N. P., Stuehmer, W. Behavioural and functional characterization of K(v)10.1 (Eag1) knockout mice. Hum. Molec. Genet. 22: 2247-2262, 2013.

49. KCNH1 (human only)
Simons, C., Rash, L. D., Crawford, J., Ma, L., Cristofori-Armstrong, B., Miller, D., Ru, K., Baillie, G. J., Alanay, Y., Jacquinet, A., Debray, F.-G., Verloes, A., and 10 others. Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy. Nature Genet. 47: 73-77, 2015.

50. ORC1 (Human only)
Bicknell, L. S., Walker, S., Klingseisen, A., Stiff, T., Leitch, A., Kerzendorfer, C., Martin, C.-A., Yeyati, P., Al Sanna, N., Bober, M., Johnson, D., Wise, C., Jackson, A. P., O'Driscoll, M., Jeggo, P. A. Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. Nature Genet. 43: 350-355, 2011.

51 Geminin (human only)
Burrage, L. C., Charng, W.-L., Eldomery, M. K., Willer, J. R., Davis, E. E., Lugtenberg, D., Zhu, W., Leduc, M. S., Akdemir, Z. C., Azamian, M., Zapata, G., Hernandez, P. P., and 18 others. De novo GMNN mutations cause autosomal-dominant primordial dwarfism associated with Meier-Gorlin syndrome. Am. J. Hum. Genet. 97: 904-913, 2015.

52. Geminin (mouse only)
Gonzalez, M. A., Tachibana, K. K., Adams, D. J., van der Weyden, L., Hemberger, M., Coleman, N., Bradley, A., Laskey, R. A. Geminin is essential to prevent endoreduplication and to form pluripotent cells during mammalian development. Genes Dev. 20: 1880-1884, 2006.

53.  Frem1 (mouse only)
Smyth, I., Du, X., Taylor, M. S., Justice, M. J., Beutler, B., Jackson, I. J. The extracellular matrix gene Frem1 is essential for the normal adhesion of the embryonic epidermis. Proc. Nat. Acad. Sci. 101: 13560-13565, 2004.

54. FREM1 (human only)
Vissers, L. E. L. M., Cox, T. C., Maga, A. M., Short, K. M., Wiradjaja, F., Janssen, I. M., Jehee, F., Bertola, D., Liu, J., Yagnik, G., Sekiguchi, K., Kiyozumi, D., and 10 others. Heterozygous mutations of FREM1 are associated with an increased risk of isolated metopic craniosynostosis in humans and mice. PLoS Genet. 7: e1002278, 2011.

55. HSPA9 (human)
Schmitz-Abe, K., Ciesielski, S. J., Schmidt, P. J., Campagna, D. R., Rahimov, F., Schilke, B. A., Cuijpers, M., Rieneck, K., Lausen, B., Linenberger, M. L., Sendamarai, A. K., Guo, C., and 16 others. Congenital sideroblastic anemia due to mutations in the mitochondrial HSP70 homologue HSPA9. Blood 126: 2734-2738, 2015.

56.  NOG (human only))
Gong, Y., Krakow, D., Marcelino, J., Wilkin, D., Chitayat, D., Babul-Hirji, R., Hudgins, L., Cremers, C. W., Cremers, F. P. M., Brunner, H. G., Reinker, K., Rimoin, D. L., Cohn, D. H., Goodman, F. R., Reardon, W., Patton, M., Francomano, C. A., Warman, M. L. Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nature Genet. 21: 302-304, 1999.

57.  FAMILY WITH SEQUENCE SIMILARITY 58, MEMBER A; FAM58A
Unger, S., Bohm, D., Kaiser, F. J., Kaulfuss, S., Borozdin, W., Buiting, K., Burfeind, P., Bohm, J., Barrionuevo, F., Craig, A., Borowski, K., Keppler-Noreuil, K., and 9 others. Mutations in the cyclin family member FAM58A cause an X-linked dominant disorder characterized by syndactyly, telecanthus and anogenital and renal malformations. Nature Genet. 40: 287-289, 2008.

58.  COLLAGEN, TYPE II, ALPHA-1; COL2A1 (human only)
Godfrey, M., Hollister, D. W. Type II achondrogenesis-hypochondrogenesis: identification of abnormal type II collagen. Am. J. Hum. Genet. 43: 904-913, 1988.

59. COLLAGEN, TYPE II, ALPHA-1; COL2A1 (mouse only)
Vandenberg, P., Khillan, J. S., Prockop, D. J., Helminen, H., Kontusaari, S., Ala-Kokko, L. Expression of a partially deleted gene of a human type II procollagen (COL2A1) in transgenic mice produces a chondrodysplasia. Proc. Nat. Acad. Sci. 88: 7640-7644, 1991.

60. CBP (mouse only)
Tanaka, Y., Naruse, I., Maekawa, T., Masuya, H., Shiroishi, T., Ishii, S. Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc. Nat. Acad. Sci. 94: 10215-10220, 1997.

61. DISCOIDIN DOMAIN RECEPTOR FAMILY, MEMBER 2; DDR2 (mouse only)
Labrador, J. P., Azcoitia, V., Tuckermann, J., Lin, C., Olaso, E., Manes, S., Bruckner, K., Goergen, J.-L., Lemke, G., Yancopoulos, G., Angel, P., Martinez-A, C., Klein, R. The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO J. 2: 446-452, 2001.

62. DISCOIDIN DOMAIN RECEPTOR FAMILY, MEMBER 2; DDR2 (human only)
Bargal, R., Cormier-Daire, V., Ben-Neriah, Z., Le Merrer, M., Sosna, J., Melki, J., Zangen, D. H., Smithson, S. F., Borochowitz, Z., Belostotsky, R., Raas-Rothschild, A. Mutations in DDR2 gene cause SMED with short limbs and abnormal calcifications. Am. J. Hum. Genet. 84: 80-84, 2009.

63. CRYSTALLIN, GAMMA-D; CRYGD (human only)
Santhiya, S. T., Manohar, M. S., Rawlley, D., Vijayalakshmi, P., Namperumalsamy, P., Gopinath, P. M., Loster, J., Graw, J. Novel mutations in the gamma-crystallin genes cause autosomal dominant congenital cataracts. J. Med. Genet. 39: 352-358, 2002.

64. CRYSTALLIN, GAMMA-D; CRYGD (mouse only)
Smith, R. S., Hawes, N. L., Chang, B., Roderick, T. H., Akeson, E. C., Heckenlively, J. R., Gong, X., Wang, X., Davisson, M. T. Lop12, a mutation in mouse Crygd causing lens opacity similar to human Coppock cataract. Genomics 63: 314-320, 2000.

65. GAP JUNCTION PROTEIN, ALPHA-8; GJA8
Berry, V., Mackay, D., Khaliq, S., Francis, P. J., Hameed, A., Anwar, K., Mehdi, S. Q., Newbold, R. J., Ionides, A., Shiels, A., Moore, T., Bhattacharya, S. S. Connexin 50 mutation in a family with congenital 'zonular nuclear' pulverulent cataract of Pakistani origin. Hum. Genet. 105: 168-170, 1999.

66. Talpid3 (zebrafish)
Ben, J., S. Elworthy, A. S. Ng, F. van Eeden, and P. W. Ingham. 2011. "Targeted mutation of the talpid3 gene in zebrafish reveals its conserved requirement for ciliogenesis and Hedgehog signalling across the vertebrates."  Development 138 (22):4969-78. doi: 10.1242/dev.070862.

67. DNA Primase
Yamaguchi, M., N. Fujimori-Tonou, Y. Yoshimura, T. Kishi, H. Okamoto, and I. Masai. 2008. "Mutation of DNA primase causes extensive apoptosis of retinal neurons through the activation of DNA damage checkpoint and tumor suppressor p53."  Development 135 (7):1247-57.

68. alpha tubulin (mouse)
Gartz Hanson M.,  Aiken J.,  Sietsema D.V.,  Sept D.,  Bates E.A.,  Niswander L., and Moore J.K. 2016. Novel alpha-tubulin mutation disrupts neural development and tubulin proteostasis. Dev Biol 409: 406-419.

69.  Smc5
Pryzhkova, M. V., and P. W. Jordan. 2016. "Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression."  Development 143 (9):e1 2. doi: 10.1242/dev.138776.

70. Cloche (Zebrafish)
Dhakal, S., C. B. Stevens, M. Sebbagh, O. Weiss, R. A. Frey, S. Adamson, E. A. Shelden, A. Inbal, and D. L. Stenkamp. 2015. "Abnormal retinal development in Cloche mutant zebrafish."  Dev Dyn 244 (11):1439-55. doi: 10.1002/dvdy.24322.

71.  twsg1
Billington, C. J., Jr., B. Schmidt, R. S. Marcucio, B. Hallgrimsson, R. Gopalakrishnan, and A. Petryk. 2015. "Impact of retinoic acid exposure on midfacial shape variation and manifestation of holoprosencephaly in Twsg1 mutant mice."  Dis Model Mech 8 (2):139-46. doi: 10.1242/dmm.018275.

72. Gli2 (mouse only)
Grachtchouk, M., Mo, R., Yu, S., Zhang, X., Sasaki, H., Hui, C., Dlugosz, A. A. Basal cell carcinomas in mice overexpressing Gli2 in skin. (Letter) Nature Genet. 24: 216-217, 2000.

73. Gli2 (human only)
Roessler, E., Du, Y.-Z., Mullor, J. L., Casas, E., Allen, W. P., Gillessen-Kaesbach, G., Roeder, E. R., Ming, J. E., Ruiz i Altaba, A., Muenke, M. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc. Nat. Acad. Sci. 100: 13424-13429, 2003.

74. PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE, PAFAH1B1
Uyanik, G., Morris-Rosendahl, D. J., Stiegler, J., Klapecki, J., Gross, C., Berman, Y., Martin, P., Dey, L., Spranger, S., Korenke, G. C., Schreyer, I., Hertzberg, C., and 25 others. Location and type of mutation in the LIS1 gene do not predict phenotypic severity. Neurology 69: 442-447

75. LIMB REGION 1, MOUSE, HOMOLOG OF; LMBR1 (human only – not sonic hedgehog)
Ianakiev, P., van Baren, M. J., Daly, M. J., Toledo, S. P. A., Cavalcanti, M. G., Neto, J. C., Silveira, E. L., Freire-Maia, A., Heutink, P., Kilpatrick, M. W., Tsipouras, P. Acheiropodia is caused by a genomic deletion in C7orf2, the human orthologue of the Lmbr1 gene. Am. J. Hum. Genet. 68: 38-45, 2001.

76. LIMB REGION 1, MOUSE, HOMOLOG OF; LMBR1 (mouse only – not sonic hedgehog)
Lettice, L. A., Hill, A. E., Devenney, P. S., Hill, R. E. Point mutations in a distant sonic hedgehog cis-regulator generate a variable regulatory output responsible for preaxial polydactyly. Hum. Molec. Genet. 17: 978-985, 2008

77. BBS4 GENE; BBS4 (mouse only)
Kulaga, H. M., Leitch, C. C., Eichers, E. R., Badano, J. L., Lesemann, A., Hoskins, B. E., Lupski, J. R., Beales, P. L., Reed, R. R., Katsanis, N. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nature Genet. 36: 994-998, 2004.

78. BBS4 GENE; BBS4 (human only)
Mykytyn, K., Braun, T., Carmi, R., Haider, N. B., Searsby, C. C., Shastri, M., Beck, G., Wright, A. F., Iannaccone, A., Elbedour, K., Riise, R., Baldi, A., Raas-Rothschild, A., Gorman, S. W., Duhl, D. M., Jacobson, S. G., Casavant, T., Stone, E. M., Sheffield, V. C. Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nature Genet. 28: 188-191, 2001.

79.  FIBROBLAST GROWTH FACTOR RECEPTOR 1; FGFR1 (human only)
Muenke, M., Schell, U., Hehr, A., Robin, N. H., Losken, H. W., Schinzel, A., Pulleyn, L. J., Rutland, P., Reardon, W., Malcolm, S., Winter, R. M. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nature Genet. 8: 269-274, 1994.

80. ELONGATOR ACETYLTRANSFERASE COMPLEX, SUBUNIT 4; ELP4 (human only)
Bhatia, S., Bengani, H., Fish, M., Brown, A., Divizia, M. T., de Marco, R., Damante, G., Grainger, R., van Heyningen, V., Kleinjan, D. A. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am. J. Hum. Genet. 93: 1126-1134, 2013.

81. PROMININ 1; PROM1 (Human only)
Zhang, Q., Zulfiqar, F., Xiao, X., Riazuddin, S. A., Ahmad, Z., Caruso, R., MacDonald, I., Sieving, P., Riazuddin, S., Hejtmancik, J. F. Severe retinitis pigmentosa mapped to 4p15 and associated with a novel mutation in the PROM1 gene. Hum. Genet. 122: 293-299, 2007.

82. Prominin 1 ; Prom1 (Mouse only)
Zhu, L., Gibson, P., Currle, D. S., Tong, Y., Richardson, R. J., Bayazitov, I. T., Poppleton, H., Zakharenko, S., Ellison, D. W., Gilbertson, R. J. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457: 603-607, 2009.

83. HNF1 HOMEOBOX B; HNF1B (mouse only)
Maestro, M. A., Boj, S. F., Luco, R. F., Pierreux, C. E., Cabedo, J., Servitja, J. M., German, M. S., Rousseau, G. G., Lemaigre, F. P., Ferrer, J. Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas. Hum. Molec. Genet. 12: 3307-3314, 2003.

84. HNF1 HOMEOBOX B; HNF1B (Xenopus only)
Wild, W., Pogge von Strandmann, E., Nastos, A., Senkel, S., Lingott-Frieg, A., Bulman, M., Bingham, C., Ellard, S., Hattersley, A. T., Ryffel, G. U. The mutated human gene encoding hepatocyte nuclear factor 1-beta inhibits kidney formation in developing Xenopus embryos. Proc. Nat. Acad. Sci. 97: 4695-4700, 2000.

85. HNF1 HOMEOBOX B; HNF1B (Human only)
Lindner, T. H., Njolstad, P. R., Horikawa, Y., Bostad, L., Bell, G. I., Sovik, O. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1-beta. Hum. Molec. Genet. 8: 2001-2008, 1999.

86. CHOLINERGIC RECEPTOR, MUSCARINIC, 3; CHRM3 (mouse only)
Matsui, M., Motomura, D., Karasawa, H., Fujikawa, T., Jiang, J., Komiya, Y., Takahashi, S., Taketo, M. M. Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc. Nat. Acad. Sci. 97: 9579-9584, 2000.

87. CHOLINERGIC RECEPTOR, MUSCARINIC, 3; CHRM3 (human only)
Weber, S., Thiele, H., Mir, S., Toliat, M. R., Sozeri, B., Reutter, H., Draaken, M., Ludwig, M., Altmuller, J., Frommolt, P., Stuart, H. M., Ranjzad, P., and 12 others. Muscarinic acetylcholine receptor M3 mutation causes urinary bladder disease and a prune-belly-like syndrome. Am. J. Hum. Genet. 89: 668-674, 2011.

88. SBDS GENE; SBDS (Human only)
Boocock, G. R. B., Morrison, J. A., Popovic, M., Richards, N., Ellis, L., Durie, P. R., Rommens, J. M. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nature Genet. 33: 97-101, 2003.

89. SBDS GENE; SBDS (mouse only)
Zhang, S., Shi, M., Hui, C., Rommens, J. M. Loss of the mouse ortholog of the Shwachman-Diamond syndrome gene (Sbds) results in early embryonic lethality. Molec. Cell Biol. 26: 6656-6663, 2006.

90. PANCREAS/DUODENUM HOMEOBOX PROTEIN 1; PDX1 (mouse only)
Jonnson, J., Carlsson, L., Edlund, T., Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371: 606-609, 1994.

91. PANCREAS/DUODENUM HOMEOBOX PROTEIN 1; PDX1 (human only)
Stoffers, D. A., Zinkin, N. T., Stanojevic, V., Clarke, W. L., Habener, J. F. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nature Genet. 15: 106-110, 1997

92. REGULATORY FACTOR X, 6; RFX6 (human only)
Sansbury, F. H., Kirel, B., Caswell, R., Allen, H. L., Flanagan, S. E., Hattersley, A. T., Ellard, S., Shaw-Smith, C. J. Biallelic RFX6 mutations can cause childhood as well as neonatal onset diabetes mellitus. Europ. J. Hum. Genet. 23: 1744-1748, 2015.

93. REGULATORY FACTOR X, 6; RFX6 (mouse only)
Smith, S. B., Qu, H.-Q., Taleb, N. Kishimoto, N. Y., Scheel, D. W., Lu, Y., Patch, A.-M., Grabs, R., Wang, J., Lynn, F. C., Miyatsuka, T., Mitchell, J., and 16 others. Rfx6 directs islet formation and insulin production in mice and humans. Nature 463: 775-780, 2010.

94.  FORKHEAD BOX F1; FOXF1 (human only)
Stankiewicz, P., Sen, P., Bhatt, S. S., Storer, M., Xia, Z., Bejjani, B. A., Ou, Z., Wiszniewska, J., Driscoll, D. J., Maisenbacher, M. K., Bolivar, J., Bauer, M., and 32 others. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am. J. Hum. Genet. 84: 780-791, 2009.

95. FORKHEAD BOX F1; FOXF1 (mouse  only)
Kalinichenko, V. V., Zhou, Y., Bhattacharyya, D., Kim, W., Shin, B., Bambal, K., Costa, R. H. Haploinsufficiency of the mouse forkhead box f1 gene causes defects in gall bladder development. J. Biol. Chem. 277: 12369-12374, 2002.

96. BONE MORPHOGENETIC PROTEIN RECEPTOR, TYPE IA; BMPR1A (human only)
Howe, J. R., Sayed, M. G., Ahmed, A. F., Ringold, J., Larsen-Haidle, J., Merg, A., Mitros, F. A., Vaccaro, C. A., Petersen, G. M., Giardiello, F. M., Tinley, S. T., Aaltonen, L. A., Lynch, H. T. The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J. Med. Genet. 41: 484-491, 2004.

97. BONE MORPHOGENETIC PROTEIN RECEPTOR, TYPE IA; BMPR1A (mouse only)
Yoon, B. S., Ovchinnikov, D. A., Yoshii, I., Mishina, Y., Behringer, R. R., Lyons, K. M. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc. Nat. Acad. Sci. 102: 5062-5067, 2005.

98. BONE MORPHOGENETIC PROTEIN RECEPTOR, TYPE IB; BMPR1B
Lehmann, K., Seemann, P., Stricker, S., Sammar, M., Meyer, B., Suring, K., Majewski, F., Tinschert, S., Grzeschik, K.-H., Muller, D., Knaus, P., Nurnberg, P., Mundlos, S. Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proc. Nat. Acad. Sci. 100: 12277-12282, 2003.

99. GHRELIN; GHRL (human)
Steinle, N. I., Pollin, T. I., O'Connell, J. R., Mitchell, B. D., Shuldiner, A. R. Variants in the ghrelin gene are associated with metabolic syndrome in the old order Amish. J. Clin. Endocr. Metab. 90: 6672-6677, 2005.

100. GHRELIN; GHRL (mouse only)
Wortley, K. E., Anderson, K. D., Garcia, K., Murray, J. D., Malinova, L., Liu, R., Moncrieffe, M., Thabet, K., Cox, H. J., Yancopoulos, G. D., Wiegand, S. J., Sleeman, M. W. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc. Nat. Acad. Sci. 101: 8227-8232, 2004.

101. Leptin (mouse only)
Szczypka, M. S., Rainey, M. A., Palmiter, R. D. Dopamine is required for hyperphagia in Lep(ob/ob) mice. Nature Genet. 25: 102-104, 2000.

102. Leptin (Human only)
Montague, C. T., Farooqi, I. S., Whitehead, J. P., Soos, M. A., Rau, H., Wareham, N. J., Sewter, C. P., Digby, J. E., Mohammed, S. N., Hurst, J. A., Cheetham, C. H., Earley, A. R., Barnett, A. H., Prins, J. B., O'Rahilly, S. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387: 903-908, 1997.

103. Fibrillin ; Fbn1 (Human only)
Dietz, H. C., Cutting, G. R., Pyeritz, R. E., Maslen, C. L., Sakai, L. Y., Corson, G. M., Puffenberger, E. G., Hamosh, A., Nanthakumar, E. J., Curristin, S. M., Stetten, G., Meyers, D. A., Francomano, C. A. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352: 337-339, 1991.

104. Fibrillin ; Fbn1 (mouse only)
Pereira, L., Andrikopoulos, K., Tian, J., Lee, S. Y., Keene, D. R., Ono, R., Reinhardt, D. P., Sakai, L. Y., Biery, N. J., Bunton, T., Dietz, H. C., Ramirez, F. Targetting (sic) of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nature Genet. 17: 218-222, 1997.



Top of Page
| Syllabus | Dr. Crawford's Homepage | Assignments | New Dictionary |