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Goal: Cooling of Antihydrogen for CPT-Test

- CPT-test by comparing v,..,. in H (2 466 061 413 187 103(46) Hz) and H

- Antihydrogen in loffe-
Trap (0.67K/T)

— Zeeman shift dependent
on position in B-field
(186kHz/T)

=> Cooling of the H atoms
for localization at the center

of the trap

— Doppler limit 2.4mK

Energy level scheme of H in a B-field
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Generation of Lyman-Q

Energy level scheme of Hg

Four wave mixing in mercury vapor \Energy
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Setup of the Laser System at 253.7nm

- Yb:YAG disc laser with
wavelength control

- First frequency doubling stage
using a 90° cut temperature
phasematched LBO crystal and the
Hansch-Couillaud locking scheme

- Second frequency doubling stage
using a brewster cut angle
phasematched BBO crystal and the
Hansch-Couillaud locking scheme
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Power Converted from 1015nm to 254nm
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Stabilizing and Scanning the Disc Laser

- The disc laser’s frequency is
stabilized to the wavemeter's servo | [servo le—l Wi
short time accuracy (3MHz) laser %

— Stabilization of the etalon’s
temperature and of the
length of the laser cavity

- Scanning the laser‘s wavelength PD1

by simultaneously ramping the
temperature of the etalon and
the voltage applied to the piezo
at the outcoupling mirror

- Scanning ranges of up to 8GHz
In the UV are realized (14MHz/5s)

- To demonstrate scanning absorption
spectroscopy on mercury Is set up
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Spectroscopy on atomic Mercury
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Absorption spectrum of the 1S,—3P, transition of atomic mercury.
Double slashes indicate the ranges of three individual scans.
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Line centers of the different
mercury isotopes. Letters

Indicate hyperfine components

1 of the odd isotopes.
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Setup of the Laser System at 545.5nm
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=> Enhanced stability due to
smaller cavity



Converted Power from 1091nm to 546nm

- Stable green output powers for input powers below 4.5W

- Above 4.5W significant heating of the LBO-crystal due to linear absorption
=> Change of phase matching angle with reversible degredation of the

green power 4.5
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Scanning the Fiber Laser and Spectroscopy on lodine

Scanning the wavelength of the fiber laser:

Spectroscopy on lodine
- From 1090.89nm to 1091.19nm by

changing the temperature of the lasing fiber

- For fast modulation for an additional 8.4GHz
by applying a voltage to a piezo that
stretches the lasing fiber

To demonstrate scanning of the green
light and single frequency operation
spectroscopy on lodine is set up

- Labeled parts are used only in \(a)
/ PD'N *\ C :::'

(a) Absorption spectroscopy ;" L ND"; L%
\ ! ND

(b) Saturation spectroscopy /




Spectroscopy on lodine
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The Laser System at 407.9nm

- The laser system consists of a Verdi pumped
Ti:Sapphire laser (Coherent 899) and Verdi
a successive frequency doubling stage
using a brewster cut LBO crystal SEIVO
 NPD
—1— Ti:Sa
- 10.5W pump power deliver 1.3W { \ .

Infrared light which is converted

to 430mW in the blue / \\I/////
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- The Ti:Sapphire laser is frequency V2

stabilized using a reference cavity HC
and has a mode hop free tuning \
range of 30GHz
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Overlapping the Fundamental Beams

The fundamental beams are shaped and overlapped on
dichroitic mirrors to be focussed into the Hg cell

Beam shaping

- No astigmatism soo T CDL_O N
— High intensity in the focus J v o
- Large beams on the focussing lens O HH— 2o
— High intensity in the focus @
. e / FL Hg vapor cell
- Divergence of the beams & Ol\ N
adjusted to each other T 5 SN YFS
. . ck FSQ%
— Foci at the same point CLe— e
In beam direction 7

546nm
Beam positioning

- Foci are adjusted to the same spot in transversal
direction using a pinhole and a photodiode



Lyman-Ql Generation and Detection Setup

- Fundamental beams are focussed into the Hg cell where Lyman-o. is produced

- All four divergent beams are focussed by a MgF, lens

- The fundamental beams hit a small mirror and are guided from the apparatus
where a photodiode is placed for detection of the 2-photon-resonance

- Due to dispersion in the MgF, lens, Lyman-o. has scroll
: : : pump
an earlier focus and most of it passes the mirror 0
- Lyman-a filters block fundamental TMP
stray light befqre the @ |
vacuume-ultraviolet photons N\ :
hit the solar blind photomultiplier .
' heated 2-photon-resonance
g MgF, lens
) long pass filters
f=15cm S _LSan_ &
bl | —" |1
T ) LN m Lyman-a
0olj, traé traE) filters
fundamental Lvman-a
laser beams 4

Hg vapor cell



summary

- A cw-Lyman-o. source is essential for cooling of H

- Cold H enables ultrahigh-resolution CPT test by 1s-2s spectroscopy

- A second generation Lyman-o. source is currently being set up at Mainz:

 Only reliable solid state lasers are used for generation of the
fundamental beams

* The fundamental laser beams are ready
« Currently the four wave mixing is implemented

=—> Lyman-o soon
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