CW-Lyman-α Source for Laser Cooling of Antihydrogen in a Magnetic Trap

F. Markert, M. Scheid, D. Kolbe, A. Müllers, T. Weber, V. Neises, R. Steinborn and J. Walz

Institut für Physik, Johannes Gutenberg-Universität Mainz

Goal: Cooling of Antihydrogen for CPT-Test

- CPT-test by comparing $v_{1s\text{-}2s}$ in H (2 466 061 413 187 103(46) Hz) and \overline{H}
- Antihydrogen in loffe-Trap (0.67K/T)
 - → Zeeman shift dependent on position in B-field (186kHz/T)
- ➡ Cooling of the H atoms for localization at the center of the trap
 - → Doppler limit 2.4mK

Energy level scheme of \overline{H} in a B-field

Generation of Lyman- α

Setup of the Laser System at 253.7nm

- Yb:YAG disc laser with wavelength control

- First frequency doubling stage using a 90° cut temperature phasematched LBO crystal and the Hänsch-Couillaud locking scheme
- Second frequency doubling stage using a brewster cut angle phasematched BBO crystal and the Hänsch-Couillaud locking scheme

Power Converted from 1015nm to 254nm

Stabilizing and Scanning the Disc Laser

- The disc laser's frequency is stabilized to the wavemeter's short time accuracy (3MHz)
- → Stabilization of the etalon's temperature and of the length of the laser cavity
- Scanning the laser's wavelength by simultaneously ramping the temperature of the etalon and the voltage applied to the piezo at the outcoupling mirror
- Scanning ranges of up to 8GHz in the UV are realized (14MHz/s)
- To demonstrate scanning absorption spectroscopy on mercury is set up

Spectroscopy on atomic Mercury

Setup of the Laser System at 545.5nm

Converted Power from 1091nm to 546nm

- Stable green output powers for input powers below 4.5W
- Above 4.5W significant heating of the LBO-crystal due to linear absorption
 ⇒ Change of phase matching angle with reversible degredation of the green power
 4.5
- → adjustment of the crystal's angle leads to stable (>45min) output powers of up to 4.1W shown as diamonds

Scanning the wavelength of the fiber laser:

- From 1090.89nm to 1091.19nm by changing the temperature of the lasing fiber
- For fast modulation for an additional 8.4GHz by applying a voltage to a piezo that stretches the lasing fiber

To demonstrate scanning of the green light and single frequency operation spectroscopy on lodine is set up

- Labeled parts are used only in
- (a) Absorption spectroscopy
- (b) Saturation spectroscopy

Spectroscopy on Iodine

(a) Absorption spectroscopy over the full tuning range of the fiber laser;

(b) Doppler free saturation spectroscopy on one strong lodine line

The Laser System at 407.9nm

- The laser system consists of a Verdi pumped Ti:Sapphire laser (Coherent 899) and a successive frequency doubling stage using a brewster cut LBO crystal
- 10.5W pump power deliver 1.3W infrared light which is converted to 430mW in the blue
- The Ti:Sapphire laser is frequency stabilized using a reference cavity and has a mode hop free tuning range of 30GHz

Overlapping the Fundamental Beams

- Foci are adjusted to the same spot in transversal direction using a pinhole and a photodiode

Lyman- α Generation and Detection Setup

- Fundamental beams are focussed into the Hg cell where Lyman-lpha is produced
- All four divergent beams are focussed by a MgF_2 lens
- The fundamental beams hit a small mirror and are guided from the apparatus where a photodiode is placed for detection of the 2-photon-resonance

Summary

- A cw-Lyman- α source is essential for cooling of \overline{H}
- Cold H enables ultrahigh-resolution CPT test by 1s-2s spectroscopy
- A second generation Lyman- α source is currently being set up at Mainz:
 - Only reliable solid state lasers are used for generation of the fundamental beams
 - The fundamental laser beams are ready
 - Currently the four wave mixing is implemented

 \implies Lyman- α soon

253.7nm: M. Scheid et al, Optics Letters, 32(8):955-957, 2007 **545.5nm:** F. Markert et al, Optics Express, 15(22):14476-14481, 2007