$N \rightarrow \Delta$ charge quadrupole form factor and proton structure effects in atomic hydrogen

> Alfons Buchmann Universität Tübingen

- 1. Introduction
- 2. Electromagnetic N $\rightarrow \Delta$ (1232) excitation
- 3. Implications for hydrogen atom hyperfine splitting
- 4. Summary

PSAS 2008, Windsor, Canada, 23 July 2008

1. Introduction

Size of proton

finite radial extension of proton charge distribution

Measurement of proton charge radius $r_p(exp) = 0.862(12) \text{ fm}$ Simon et al., Z. Naturf. 35a (1980) 1

Nucleon shape

nonspherical charge distribution of proton

$$\rho = \rho(\vec{r}) = \rho(r, \theta, \phi)$$

Extraction of N \rightarrow Δ transition quadrupole moment from data

$$Q_{N \to \Delta} (exp) = -0.0846(33) \text{ fm}^2$$

Tiator et al., EPJ A17 (2003) 357

Nucleon excitation spectrum

Properties of the nucleon

- finite spatial extension (size)
- nonspherical charge distribution (shape)
- excited states (spectrum)

size shape spectrum

How are these properties related?

2. Electromagnetic N $\rightarrow\Delta$ excitation

Elastic electron-nucleon scattering t N' e' Θ ...scattering angle Θ elastic form factors Q... four-momentum transfer $G_{C,M}^{N}(Q^{2})$ $Q^2 = -(\omega^2 - q^2)$ ω ...energy transfer $G_{C}^{N}(Q^{2})$ charge q... three-momentum transfer $G_{M}^{N}(Q^{2})$ magnetic Ν е

e... electron

 γ ... photon

N... nucleon (p,n)

Importance of elastic form factors

Fourier transforms of charge and current distributions $\rho(\mathbf{r})$

e.g.
$$G_C^p(q^2) = \rho(q) = \int d^3 r \exp(i\vec{q}\cdot\vec{r}) \rho(\vec{r})$$

inverse transform $\rho(r) = \frac{1}{(2\pi)^3} \int d^3 q \exp(-i\vec{q}\cdot\vec{r}) \rho(q)$

Inelastic electron-nucleon scattering

Transition form factors provide additional information on nucleon ground state structure

Normalization of inelastic form factors

$$\begin{split} G_{M1}^{p \to \Delta^{+}}(0) &= \mu^{p \to \Delta^{+}} & \text{transition magnetic moment} \\ G_{C2}^{p \to \Delta^{+}}(0) &= Q^{p \to \Delta^{+}} & \text{transition quadrupole moment} \end{split}$$

usual definition of multipole moments as in classical electrodynamics

Experimentally, C2/M1 ratio can be determined.

Definition of C2/M1 ratio in terms of N $\rightarrow \Delta$ transition form factors:

$$\frac{C2}{M1}(Q^{2}) = \frac{\left|\vec{q}\right| M_{N}}{6} \frac{G_{C2}^{p \to \Delta^{+}}(Q^{2})}{G_{M1}^{p \to \Delta^{+}}(Q^{2})}$$

Electro-pionproduction: $e+N \rightarrow e^{+}N+\pi$ in Delta(1232) resonance region

N and N $\rightarrow \Delta$ form factor relations

Strong interaction symmetries

Strong interactions are approximately invariant under

- SU(2) isospin,
- SU(3) flavor,
- SU(6) spin-flavor

symmetry transformations.

SU(6) spin-flavor symmetry

combines SU(3) multiplets with different spin and flavor to SU(6) spin-flavor supermultiplets.

SU(6) spin-flavor supermultiplet

flavor spin flavor spin

SU(6) mass formula

$$\begin{split} \mathbf{M} &= \mathbf{M}_0 \ \mathbf{1} + \mathbf{M}_1 \ \mathbf{Y} + \mathbf{M}_2 \left(\mathbf{T}(\mathbf{T}+\mathbf{1}) - \frac{\mathbf{Y}^2}{4} \right) + \mathbf{M}_3 \ \mathbf{J}(\mathbf{J} + \mathbf{1}) \\ \uparrow \\ & \text{SU(6) symmetry breaking term} \\ & \sim \vec{\sigma}_i \cdot \vec{\sigma}_j \end{split}$$

Relations between octet and decuplet baryon masses

e.g.
$$M_{\Delta^+} - M_{\Delta^0} = M_p - M_n$$

Delta-Nucleon mass splitting

Multipole expansion in spin-flavor space

two-body charge density
$$\rho_{[2]}$$

$$\rho_{[2]} = -B \sum_{i \neq j}^{3} e_{i} \left[2 \underbrace{\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}}_{spin \ scalar} - \underbrace{\left(3 \sigma_{iz} \sigma_{jz} - \vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right)}_{spin \ tensor} \right]$$

most general structure of $\rho_{[2]}$ in spin-flavor space

prefactors in spin scalar (+2) and spin tensor (-1) determined by group algebra

$$\rho_{[2]} = -B \sum_{i \neq j}^{3} e_{i} \left[2 \underbrace{\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}}_{\text{spin scalar}} - \underbrace{\left(3 \, \sigma_{iz} \, \sigma_{jz} - \vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right)}_{\text{spin tensor}} \right]$$
neutron charge radius
$$r_{n}^{2} = \left\langle 56_{n} \mid \rho_{[2]} \mid 56_{n} \right\rangle = 4B$$
N $\rightarrow \Delta$ transition
quadrupole moment
$$Q_{p \rightarrow \Delta^{+}} = \left\langle 56_{\Delta^{+}} \mid \rho_{[2]} \mid 56_{p} \right\rangle = 2\sqrt{2}B$$

$$Q_{p \rightarrow \Delta^{+}} = \frac{1}{\sqrt{2}} r_{n}^{2}$$

Buchmann et al., PRC 55 (1997) 448

$N \rightarrow \Delta$ quadrupole moment

Extraction of $p \rightarrow \Delta^+(1232)$ transition quadrupole moment from electron-proton and photon-proton scattering data

experminent

$$Q_{p \to \Delta^+(1232)}(exp) = -0.108(9) \text{ fm}^2$$

Blanpied et al., PRC 64 (2001) 025203

$$Q_{p \to \Delta^+(1232)}(exp) = -0.0846(33) \text{ fm}^2$$
 Tiator et al., EPJ A17 (2003) 357

theory

$$Q_{p \to \Delta^+(1232)} = \frac{1}{\sqrt{2}} r_n^2 = -0.0821(20) \text{ fm}^2$$
 Buchmann et al., PRC 55 (1997) 448

neutron charge radius

Relations between octet and decuplet electromagnetic form factors

$$G_{M1}^{p\to\Delta^+}(Q^2) = -\sqrt{2} G_M^n(Q^2)$$

 $\mu^{{}^{p\to\Delta^+}}=-\sqrt{2} \mu^{{}^n}$

magnetic form factors Beg, Lee, Pais, 1964

$$\begin{split} G_{C2}^{p \to \Delta^{+}}(Q^{2}) &= -\frac{3\sqrt{2}}{Q^{2}} \ G_{C}^{n}(Q^{2}) \\ Q^{p \to \Delta^{+}} &= \ \frac{1}{\sqrt{2}} \ r_{n}^{2} \end{split} \text{Buchn} \end{split}$$

charge form factors Buchmann, 2000 Buchmann, Hernandez, Faessler, 1997

Definition of C2/M1 ratio

$$\frac{C2}{M1}(Q^2) = \frac{\left|\vec{q}\right| M_N}{6} \frac{G_{C2}^{p \to \Delta^+}(Q^2)}{G_{M1}^{p \to \Delta^+}(Q^2)}$$

Insert form factor relations

$$\frac{C2}{M1}(Q^2) = \frac{\left|\vec{q}\right|}{Q} \frac{M_N}{2Q} \frac{G_C^n(Q^2)}{G_M^n(Q^2)}$$

C2/M1 expressed via neutron elastic form factors

A. J. Buchmann, Phys. Rev. Lett. 93 (2004) 212301

from: A.J. Buchmann, Phys. Rev. Lett. 93, 212301 (2004).

Intrinsic quadrupole form factor of nucleon

How can one interpret these results?

to learn something about the geometric shape

of the proton and $\Delta(1232)$, one has to determine their **intrinsic** quadrupole moments Q_0

Definition of intrinsic quadrupole moment

$$Q_0 = \int dr^3 \rho(\vec{r}) (3z^2 - r^2)$$

defined in body fixed frame

Intrinsic quadrupole moment of baryon B

$$Q_{\rm B} = \int dr^3 \rho_{\rm B}(\vec{r}) (3z^2 - r^2)$$

If ρ_B concentrated along z-axis, $3z^2$ - term dominates $\rightarrow Q_B > 0$ prolate If ρ_B concentrated in x-y plane, r^2 -term dominates $\rightarrow Q_B < 0$ oblate

Intrinsic (Q₀) vs. spectroscopic (Q) quadrupole moment

Nucleon model calculations of Q₀

Calculation of Q₀ in three different nucleon models

- quark model
- pion-nucleon model
- collective model

All three models lead to qualitatively the same result for Q_0 :

Neutron charge radius determines the sign und size of the **intrinsic** N und Δ quadrupole moments.

Buchmann and Henley, Phys. Rev. C63, 015202 (2001)

Intrinsic quadrupole moment Q₀ in quark model

$$Q_0(N) = -r_n^2 > 0$$

 $Q_0(\Delta) = r_n^2 < 0$

Buchmann and Henley, Phys. Rev. C63, 015202 (2001)

N(939) is prolate
Interpretation in pion-nucleon model

A. J. Buchmann and E. M. Henley, Phys. Rev. C63, 015202 (2001)

Intrinsic charge quadrupole form factor

There is now considerable evidence that the proton charge density $\rho^{p}(\vec{r})$ is not spherically symmetric

$$\rho^{\mathrm{p}}(\vec{\mathrm{r}}) = \rho^{\mathrm{p}}(\mathrm{r},\theta,\varphi)$$

Expand $\rho^{p}(\vec{r})$ into multipoles

$$\rho^{p}(\vec{r}) = \underbrace{\rho_{0}(r) Y_{0}^{0}(\hat{r})}_{\text{monopole}} + \underbrace{\rho_{2}(r) Y_{0}^{2}(\hat{r})}_{\text{quadrupole}} + \cdots$$

How can one get information on $\rho_2(r)$?

Decomposition of nucleon charge form factors

$$G_{C}^{p}(Q^{2}) = \underbrace{G_{0}^{p}(Q^{2})}_{\text{monopole}} - \frac{1}{6} Q^{2} \underbrace{G_{2}^{p}(Q^{2})}_{\text{quadrupole}}$$
(1)
$$G_{C}^{n}(Q^{2}) = G_{0}^{n}(Q^{2}) + \frac{1}{6} Q^{2} G_{2}^{n}(Q^{2})$$

ansatz for intrinsic quadrupole form factor

$$G_2^p(Q^2) = G_2^n(Q^2) = -\sqrt{2} \ G_{C2}^{p \to \Delta^+}(Q^2) = \frac{6}{Q^2} G_C^n(Q^2)$$
(2)

normalization monopole normalization quadrupole

$$G_0^p(0) = 1$$
 $G_2^p(0) = G_2^n(0) = Q_0^p = -r_n^2$

Decomposition of nucleon charge form factors

Using ansatz in Eq.(2) we get

$$G_{C}^{p}(Q^{2}) = \underbrace{G_{0}^{p}(Q^{2})}_{\text{spherical}} - \underbrace{G_{C}^{n}(Q^{2})}_{\text{deformed}} = G_{C}^{\text{IS}}(Q^{2}) - G_{C}^{n}(Q^{2}) \quad (3)$$

$$G_{C}^{n}(Q^{2}) = \frac{1}{6} \quad Q^{2} \underbrace{G_{2}^{n}(Q^{2})}_{\text{intrinsic quadrupole}} \quad (4)$$

- spherical part in $G_C^p(Q^2)$ is given by isoscalar charge form factor
- spherical part in $G_C^n(Q^2)$ is zero
- deformation part is given by neutron charge form factor

Proton elastic form factor ratio
$$\mu_p \frac{G_C^p(Q^2)}{G_M^p(Q^2)}$$

$$G_{C}^{p}(Q^{2}) = G_{C}^{IS}(Q^{2}) - G_{C}^{n}(Q^{2})$$

$$\mu_{p} \frac{G_{C}^{p}(Q^{2})}{G_{M}^{p}(Q^{2})} = 1 - 1.91 \frac{a\tau}{1+d\tau}$$

using simple
parametrizations
$$G_{C}^{IS}(Q^{2}) = G_{M}^{p}(Q^{2})/\mu_{p} = G_{M}^{n}(Q^{2})/\mu_{n} = G_{D}(Q^{2})$$
 dipole
 $G_{C}^{n}(Q^{2}) = -\frac{a\tau}{1+d\tau}G_{M}^{n}(Q^{2})$ Galster

Proton elastic form factor ratio

The observed decrease of
$$R = \mu_p \, \frac{G^p_C(Q^2)}{G^p_M(Q^2)}$$
 with increasing Q²

can be understood with the help of the decomposition

$$G_{C}^{p}(Q^{2}) = \underbrace{G_{C}^{IS}(Q^{2})}_{spherical} - \underbrace{G_{C}^{n}(Q^{2})}_{deformed}$$

The decrease of R comes from the intrinsic quadrupole form factor $G_2^{p}(Q^2)$.

Our theory relates the latter to the neutron charge form factor $G_C^n(Q^2)$.

3. Implications for hydrogen atom hyperfine splitting

Hydrogen ground state hyperfine splitting

Fermi formula

$$\mathbf{E}_{\mathrm{F}} = \left\langle \Psi_{\mathrm{e}} \left| \mathbf{H} \right| \Psi_{\mathrm{e}} \right\rangle_{\mathrm{F}=1} - \left\langle \Psi_{\mathrm{e}} \left| \mathbf{H} \right| \Psi_{\mathrm{e}} \right\rangle_{\mathrm{F}=0}$$

$$=\frac{8}{3} \mu_{\rm p} \cdot \mu_{\rm e} \left| \Psi_{\rm e}(\mathbf{r}_{\rm p}) \right|^2$$

 $\begin{array}{c} \text{point nucleon} \\ r_p = 0 \end{array}$

$$= \frac{8}{3} \alpha^{4} \frac{m_{e}^{2} M_{p}^{2}}{(m_{e} + M_{p})^{3}} \frac{\mu_{p}}{\mu_{N}}$$

$$= 5.8678509 \cdot 10^{-6} \text{ eV}$$

=1418.8401 MHz

QED corrections

largest correction: electron anomalous magnetic moment due to electron vertex correction $\mu_e = \mu_B \left(1 + \frac{\alpha}{2\pi} - 0.328 \left(\frac{\alpha}{2\pi}\right)^2 + \cdots\right) = 1.0011596 \ \mu_B$

this and other QED corrections leads to

$$\Delta E_{QED}^{HFS} = E_F (1 + \delta_{QED}) = 1,420,452.04 \quad \text{kHz}$$

M. Eides et al., Phys. Rep. 342 (2001) 63

Experimental value

measured up to 13 significant digits

L. Essen et al., Nature 229 (1971) 110

Difference between theory and experiment

 $D = \Delta E_{\text{theory}(\text{QED})}^{\text{HFS}} - \Delta E_{\text{exp}}^{\text{HFS}} = 46.46 \text{ kHz} = 32.75 \text{ ppm}$

add recoil contribution $\delta_{recoil} = 5.85 \text{ ppm}$

\longrightarrow D = +38.60 ppm

finite nucleon size leads to a *reduction* of the theoretical value

Proton size correction (estimate)

$$\Psi_{e}(r) = N e^{-r/a_{B}} = N (1 - r/a_{B} + ...)$$
$$\Delta E_{proton size}^{HFS} = E_{F} \left(1 - 2 \frac{r_{p}}{a_{B}} \right)$$
$$-2 \frac{r_{p}}{a_{B}} \approx -2 \frac{10^{-5} \dot{A}}{0.5 \dot{A}} = -40 \cdot 10^{-6} = -40 \text{ ppm}$$

This reduction of the theoretical result is just of the right size to achieve agreement between theory and experiment.

Nucleon structure corrections

$$\Delta E_{\text{theory}}^{\text{HFS}} = E_F (1 + \delta_{\text{QED}} + \delta_{\text{recoil}} + \delta_{\text{structure}})$$

$$\delta_{\text{structure}} = \delta_{\text{Zemach}} + \delta_{\text{pol}}$$

Two photon exchange diagrams

Zemach radius

$$r_{Z} = -\frac{4}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{2}} \left[G_{C}^{p}(Q^{2}) \frac{G_{M}^{p}(Q^{2})}{\mu_{p}} - 1 \right]$$

subtract point nucleon limit

Zemach correction to hyperfine splitting

$$\delta_{Z} = -2 r_{Z} / a_{B} (1 + \underbrace{0.0151}_{\text{radiative corr.}})$$

S. G. Karshenboim, Phys. Lett. A225 (1997) 97

Deformation contribution to Zemach radius

$$r_{Z} = -\frac{4}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{2}} \left[G_{C}^{p}(Q^{2}) \frac{G_{M}^{p}(Q^{2})}{\mu_{p}} - 1 \right]$$

$$G_{C}^{p}(Q^{2}) = \underbrace{G_{C}^{IS}(Q^{2})}_{\text{spherical}} - \underbrace{G_{C}^{n}(Q^{2})}_{\text{deformed}}$$

$$r_{Z} = -\frac{4}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{2}} \left[G_{C}^{IS}(Q^{2}) \frac{G_{M}^{p}(Q^{2})}{\mu_{p}} - G_{C}^{n}(Q^{2}) \frac{G_{M}^{p}(Q^{2})}{\mu_{p}} - 1 \right]$$
spherical deformed

Use dipole and Galster parametrizations

$$G_D(Q^2) = \left(\frac{1}{1+Q^2/\Lambda^2}\right)^2$$
 dipole

$$G_{C}^{n}(Q^{2}) = -\frac{a\tau}{1+d\tau}G_{M}^{n}(Q^{2})$$
 Galster

determine Λ_{IS} and Λ_{M} from $\,$ experimental charge and magnetic radii

$$\begin{array}{ll} \mbox{charge} & \Lambda_{IS}^2 = \frac{12}{r_{IS}^2} & r_{IS}^2 = r_C^2(p) + r_C^2(n) \\ \\ \mbox{magnetic} & \Lambda_M^2 = \frac{12}{r_M^2} & r_M^2 = r_M^2(p) = r_M^2(n) \\ \end{array}$$

Numerical results

spherical term r_Z (spherical) = 1.0627 fmdeformation term r_Z (deformed) = 0.0456 fm r_Z (total) = 1.1083 fm

Zemach contribution to hyperfine splitting

 $\delta_{Z} = -2 r_{Z} / a_{B} = -41.86 \text{ ppm} (-42.50 \text{ ppm with rad. corr.})$

implies larger polarization contribution

$$\delta_{\text{pol}} = -(38.60 - 42.50) \text{ ppm} = 3.9 \text{ ppm}$$

Polarization contribution

$$\delta_{\text{pol}} = \frac{\alpha m_e}{2 \pi m_p \mu_p / \mu_N} \left(\delta_1 + \delta_2 \right)$$

$$\delta_{1} = \frac{9}{4} \int_{0}^{\infty} \frac{dQ^{2}}{Q^{2}} \left[F_{2}^{2}(Q^{2}) + \frac{8M^{2}}{Q^{2}} \int_{0}^{x_{th}} dx \beta_{1} g_{1}(x,Q^{2}) \right]$$

$$\delta_2 = -24 \ M_p^2 \int_0^\infty \frac{dQ^2}{Q^4} \left[\int_0^{x_{th}} dx \ \beta_2 \ g_2(x, Q^2) \right]$$

 g_1 and g_2 spin-dependent nucleon structure functions

$$g_{1}(\mathbf{v}, Q^{2}) = \frac{M_{p}K}{8\pi^{2} \alpha \left(1 + \frac{Q^{2}}{v^{2}}\right)} \left[\sigma_{1/2}(\mathbf{v}, Q^{2}) - \sigma_{3/2}(\mathbf{v}, Q^{2}) + \frac{2\sqrt{Q^{2}}}{v} \sigma_{TL}(\mathbf{v}, Q^{2})\right]$$
$$g_{2}(\mathbf{v}, Q^{2}) = \frac{M_{p}K}{8\pi^{2} \alpha \left(1 + \frac{Q^{2}}{v^{2}}\right)} \left[-\sigma_{1/2}(\mathbf{v}, Q^{2}) + \sigma_{3/2}(\mathbf{v}, Q^{2}) + \frac{2v}{\sqrt{Q^{2}}} \sigma_{TL}(\mathbf{v}, Q^{2})\right]$$

$$g_{1}(\mathbf{v}, Q^{2}) \propto [A_{1/2}]^{2} - [A_{3/2}]^{2} + \frac{2\sqrt{Q^{2}}}{\mathbf{v}} [S_{1/2}^{*} \cdot A_{1/2}]$$
$$g_{2}(\mathbf{v}, Q^{2}) \propto -[A_{1/2}]^{2} + [A_{3/2}]^{2} + \frac{2\mathbf{v}}{\sqrt{Q^{2}}} [S_{1/2}^{*} \cdot A_{1/2}]$$

 $S_{1/2}(Q^2) \propto G_{C2}^{N \rightarrow \Delta}(Q^2)$

nonvanishing G_{C2} increases g_1 and hence δ_{pol} Explicit evaluation remains to be done

4. Summary

Relation between N and Δ form factors

 $N \rightarrow \Delta$ charge quadrupole form factor

neutron charge form factor

Our prediction of C2/M1 based on the neutron G_C^n/G_M^n ratio (Phys. Rev.Lett. 94, 212301 (2004))

agrees in sign and magnitude with the empirical C2/M1 ratio (see MAID 2007 analysis EPJA 34, 69 (2007)).

Intrinsic quadrupole form factor of nucleon

Decomposition of the nucleon charge form factor in a spherically symmetric and intrinsic quadrupole part.

$$G_{C}^{p}(Q^{2}) = \underbrace{G_{C}^{IS}(Q^{2})}_{spherical} - \underbrace{G_{C}^{n}(Q^{2})}_{deformed}$$

Neutron charge form factor G_Cⁿ(Q²) is a manifestation of the nucleon's intrinsic quadrupole form factor

Interpretation of observed decrease of G_C^{p}/G_M^{p} ratio

Implications for hyperfine splitting

- Hydrogen HFS is sensitive to the nonsphericity of the proton charge distribution, i.e. Its intrinsic quadrupole moment
- Zemach radius increases in absolute value due to intrinsic
- Polarization contribution increases due to $N \rightarrow \Delta$ charge quadrupole (C2) transition
- What about higher moments in the current distribution, i.e. an intrinisic magnetic octupole moment?

END Thank you for your attention.

Back up material

Constituent quark model

Electromagnetic currents

Buchmann, Hernandez, Yazaki: Phys. Lett. B 269 (1991); Nucl. Phys. A 569 (1994) 661

Continuity equation for electromagnetic current

$$\vec{\nabla} \cdot \vec{j}(\vec{x}) + i[H,\rho(\vec{x})] = 0$$

continuity equation for total current

$$\vec{\nabla} \cdot \vec{j}_{[1]}(\vec{x}) + i[T_{[1]}, \rho_{[1]}(\vec{x})] = 0$$

continuity equation for one-body current

$$\vec{\nabla} \cdot \vec{j}_{[2]}(\vec{x}) + i [V_{[2]}, \rho_{[1]}(\vec{x})] = 0$$

connection between potential and exchange currents

A.B., Leidemann, Arenhoevel, NPA 443 (1985) 726

Origin of two-body operators

elimination of quark-antiquark and gluon degrees of freedom \rightarrow two-quark operators

Spin-flavor selection rules for charge density operator

$$M = \left< 56 \right| \rho_R \left| 56 \right>$$

 $M \neq 0$ only if ρ_R transforms according to one of the representations R on the right hand side

$$\overline{56} \times 56 = 1 + 35 + 405 + 2695$$

1 1 1 1 1
0-body 1-body 2-body 3-body

Spin-flavor symmetry breaking

For example, spin-flavor symmetry breaking two-body operators can be constructed from direct products of one-body operators.

$35 \times 35 = 1 + 35 + 35 + 189 + 280 + \overline{280} + 405$

However, only the 405 dimensional representation appears in the the direct product 56×56 . Therefore, an allowed two-body operator must transform according to the 405.

Decomposition of SU(6) tensor into SU(3) and SU(2) tensors

$$405 = (1,1) + (8,1) + (27,1)$$
 scalar J=0
+ 2 (8,3) + (10,3) + (10,3) + (27,3) vector J=1
(1,5) + (8,5) + (27,5) tensor J=2

First entry: dimension of SU(3) flavor operator Second entry: dimension of SU(2) spin operator 2J+1

Charge operator transforms as flavor octet. Coulomb multipoles have even rank (odd dimension) in spin space.

Spin scalar (8,1) and spin tensor (8,5) are the only components of the SU(6) tensor **405** that can then contribute to ρ_{121} .

same value for the entire multiplet 56

$$\downarrow M = \langle 56 | \rho_{405} | 56 \rangle = \langle 56 | \rho_{405} | | 56 \rangle \cdot (CG \text{ coefficient})$$
provides relations
between matrix elements
of different components
of 405 tensor

Explains why there is a constant ratio between the spin scalar and spin tensor charge density operators and why their matrix elements on the 56 dimensional baryon ground state representation are related.

A. Buchmann, AIP conference proceedings 904 (2007) 110
Comparison with data

use two-parameter Galster formula for G_Cⁿ

$$G_{C}^{n}(Q^{2}) = -\frac{a \tau}{1+d \tau} G_{M}^{n}(Q^{2}) \qquad G_{C}^{n}(Q^{2}) = \mu_{n} G_{D}(Q^{2})$$

$$\frac{C2}{M1}(Q^2) = \frac{\left|\vec{q}\right|}{Q} \frac{M_N}{2Q} \frac{a \tau}{1+d\tau}$$

Grabmayr and Buchmann, Phys. Rev. Lett. 86 (2001) 2237

Limiting values

best fit of data (MAID 2007) with d=1.75

$$\frac{C2}{M1}(Q^2 \rightarrow \infty) = -0.10$$

Angular momentum selection rules

$$\frac{\text{Nucleon J=1/2}}{\left\langle \frac{1}{2} \right| Q^{[2]} \left| \frac{1}{2} \right\rangle} = Q_{\text{N}} \equiv 0$$

$$J_i + J_{op} \rightarrow J_f$$
$$1/2 + 2 \not \rightarrow 1/2$$

no spectroscopic quadrupole moment

Delta J=3/2
$$\left\langle \frac{3}{2} \middle| Q^{[2]} \middle| \frac{3}{2} \right\rangle = Q_{\Delta}$$

$$3/2 + 2 \rightarrow 3/2$$

spectroscopic quadrupole moment exists

Nucleon
$$\rightarrow$$
 Delta J=3/2
 $\left\langle \frac{3}{2} \middle| Q^{[2]} \middle| \frac{1}{2} \right\rangle = Q_{N \rightarrow \Delta}$

 $1/2 + 2 \rightarrow 3/2$

transition quadrupole moment exists

Nucleon model calculations of Q₀

Calculation of Q₀ in three different nucleon models

- quark model
- pion-nucleon model
- collective model

All three models lead to qualitatively the same result for Q_0 :

Neutron charge radius determines the sign und size of the intrinsic N und Δ quadrupole moments.

Δ (1232) resonance

The Delta (1232) resonance is the lowest excited state of nucleon with the same quark content as the ground state.

Gluon exchange potential between quarks

- typical size of D-state probability in nucleon and Delta $P_D(N) \approx P_D(\Delta) \approx 0.2\%$,
- too small to account for experimental E2 and C2 transition strengths
- quark-antiquark degrees of freedom cause nonspherical charge distribution

Two-body operators: exchange currents

elimination of quark-antiquark and gluon degrees of freedom → two-quark operators these dominate E2 and C2 transitions to Delta (1232)

A. J. Buchmann, E. Hernandez, A. Faessler, Phys. Rev. C55 (1997) 448

Observation by Friedrich and Walcher

all nucleon elastic form factors have a dip structure at around $Q^2 = 0.25 \text{ GeV}^2$

Dip structure at low Q²

The decomposition
$$G_{C}^{p}(Q^{2}) = \underbrace{G_{C}^{IS}(Q^{2})}_{spherical} - \underbrace{G_{C}^{n}(Q^{2})}_{deformed}$$

suggests an explanation of the

- sign
- size
- width

of the dip structure observed in $G_C^p(Q^2)$ at $Q^2 \sim 0.25 \text{ GeV}^2$

Intrinsic quadrupole form factor

The neutron charge form factor is an observable manifestation of the intrinsic quadrupole deformation of the nucleon.

$$G_{C}^{n}(Q^{2}) = \frac{1}{6} Q^{2} G_{2}^{n}(Q^{2})$$

intrinsic quadrupole form factor of the nucleon

The intrinsic quadrupole form factor also affects $G_C^{p}(Q^2)$

 \rightarrow dip structure at low Q²

 \rightarrow fall off at high Q²