Frequency Measurements on the $2s\,^2S_{1/2} \rightarrow 3s\,^2S_{1/2}$ Transition of ^7Li and ^6Li

Rodolfo M. Sánchez A. GSI, Darmstadt, Germany

Laser Spectroscopy

http://www.gsi.de/forschung/ap/projects/laser/survey.html

Isotope Shift

$$\Delta v_{\mathsf{B}-\mathsf{A}} = \Delta v_{\mathsf{B}-\mathsf{A}}^{(0)} + \mathsf{K}\left[\left(\overline{\mathsf{r}}_{\mathsf{c},\mathsf{B}}\right)^2 - \left(\overline{\mathsf{r}}_{\mathsf{c},\mathsf{A}}\right)^2\right]$$

Absolute Charge Radius

$$E = \mathcal{E}_{NR}^{(0)} + \lambda \mathcal{E}_{NR}^{(1)} + \lambda^{2} \mathcal{E}_{NR}^{(2)} + + \alpha^{2} \left[\mathcal{E}_{rel}^{(0)} + \lambda \mathcal{E}_{rel}^{(1)} \right] + \alpha^{3} \left[\mathcal{E}_{QED}^{(0)} + \lambda \mathcal{E}_{QED}^{(1)} \right] + \alpha^{4} \left[\mathcal{E}_{ho}^{(0)} + \lambda \mathcal{E}_{ho}^{(1)} \right] + + \overline{r_{c}}^{2} \left[\mathcal{E}_{nuc}^{(0)} + \lambda \mathcal{E}_{nuc}^{(1)} \right] + \cdots$$

$$\label{eq:lambda} \begin{split} \lambda \equiv m/(m+M) \\ m: \mbox{ electron mass, } M: \mbox{ nuclear mass, } \end{split}$$

 α : fine structure constant

Z.-C. Yan, W. Nörtershäuser, and G.W.F. Drake. PRL 100, 243002 (2008)

Absolute Charge Radius

Laser	•
	SpHERe

	Isotope Shift $(\bar{r}, p)^2 = (\bar{r}, x)^2$	Absolute Frequency \bar{r}^2
Field Shift	$(r_{c,B})$ $(r_{c,A})$	'c ~ 10 M⊔-
	\approx 1 - 2 IVITIZ	\approx 10 MH IZ
Relevant Freq. Scale	pprox 35 GHz	pprox 815 THz
A		
Accuracy	pprox 100 kHz	pprox 100 kHz
Relative Accuracy	10^{-6}	10^{-10}

Two Photons + Resonance Ionization

Experimental Setup

Overall Transition ⁷Li

 $\nu_0 = 407\,807\,570\,\,\text{MHz}$

AC-Stark Shift

AC-Stark Shift 2D Fit

 $\nu_0 = 407\,808\,870\,\,\text{MHz}$

Transition Frequency ⁷Li

 $\langle\nu\rangle=815\,618\,181.735~\text{MHz}$

Residuals

100% laser intensity

25% laser intensity

 $\nu_0 = 407\,808\,870~\text{MHz}$

Laser Beam Profile

Simulation Line Profile

Two-Photon Transition Rate

$$W_{12} = \frac{I^2}{I_S{}^2} \frac{A_{23}^2}{4} \frac{A_{23}}{4\delta\omega^2 + A_{23}^2/4}$$

Rate Equations

$$\dot{N}_1 \ = \ W_{12} \cdot (N_2 - N_1) + A_{31}N_3$$

$$\dot{N}_2 \ = \ W_{12} \cdot (N_1 - N_2) - A_{23}N_2$$

$$\dot{N}_3 = A_{23}N_2 - A_{31}N_3 - \sigma_{\mathsf{lon}}\Phi_{\mathsf{Photon}}N_3$$

Detuning

$$\delta\nu = \Delta\nu_{\mathsf{Laser}} - \mathsf{a}_{\mathsf{AC-Stark}} \cdot \mathsf{I}$$

Simulation Line Profile

Simulation Line Profile

Simulation AC Stark Shift

Summary of Uncertainties

Statistical Uncertainty	0.071 MHz
Systematic Uncertainty Frequency Comb Calibration AC Stark Shift	0.143 MHz 0.065 MHz
Subtotal	0.157 MHz
Total	0.172 MHz

 $\nu_{2S\to 3S}(^7\text{Li}) = 815\,618\,181.485(172)\;\text{MHz}$

Results

Reference	Year	Energy (cm $^{-1}$)	Frequency (MHz)
Radziemski <i>et al.</i> Yan & Drake Bushaw <i>et al.</i> Yan & Drake TaPL :S Is ling	1995 2002 2003 2003 2004	$\begin{array}{ccccccc} 27206.0952 & \pm & 0.001 \\ 27206.0924 & \pm & 0.0039 \\ 27206.0942 & \pm & 0.0001 \\ 27206.0926 & \pm & 0.0009 \\ 27206.0940 & \pm & 0.0009 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
ToPLIS I ₂ -line Yan <i>et al.</i> ToPLIS v-Comb	2004 2008 2008	$\begin{array}{r} 27206.09404 \\ \pm \ 0.00009 \\ 27206.0930 \\ \pm \ 0.0010 \\ 27206.09408 \\ \pm \ 0.00001 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Summary

- ▶ $v_{2s \rightarrow 3s}(^7\text{Li}) = 815618181.485(172)$ MHz.
- ▶ $v_{2s \rightarrow 3s}(^{6}Li) = 815\,606\,727.632(239)$ MHz.
- These values are in agreement with previous experimental data.
- Improvement in accuracy.
- Detail description of the line profile.
- Measurement of the nuclear charge radius by pure optical means.

Thanks

Zoran Anđelković, Bruce A. Bushaw, Kamalesh Dasgupta Guido Ewald, Christopher Geppert, H.-Jürgen Kluge, Jörg Krämer, Matthias Nothhelfer, Thomas Stöhlker, Dirk Tiedemann,

Danyal F. A.Winters, Monika Žáková, and Wilfried Nörtershäuser.

Founded by

Bundesministerium für Bildung und Forschung

Nuclear Charge Radius

Absolute

$$\label{eq:rc} \begin{split} \bar{r}_c(^6\text{Li}) &= 2.589(40) \text{ fm}.\\ \text{Electron scattering,}\\ \text{I. Sick (priv. comm.)} \end{split}$$

AC Stark Shift Simulations

Beamtime, October 2004

Beamtime, October 2004

