Properties of Halo Nuclei from Precision Atomic Physics

Gordon W.F. Drake University of Windsor,

Zong-Chao Yan University of New Brunswick

Collaborators

Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student) Atef Titi (Ph.D. student) Eva Schulhof (M.Sc. student)

Financial Support: NSERC and SHARCnet

PSAS 2008 Windsor, July 23, 2008. Main Theme:

• Derive nuclear charge radii by combining atomic theory with high precision spectroscopy (especially 6 He and 11 Li halo nuclei).

What's New?

- 1. Essentially exact solutions to the quantum mechanical three- and fourbody problems.
- 2. Recent advances in calculating QED corrections especially the Bethe logarithm.
- 3. Single atom spectroscopy.

June 2008.

semin00.tex, March 2008.

Halo Nuclei ⁶He and ⁸He

Isotope	Half-life	Spin	Isospin	Core + Valence
He-6	807 ms	0 ⁺	1	α + 2n
He-8	119 ms	0+	2	α + 4n

Flow diagram for types of measurements.

Contributions to the energy and their orders of magnitude in terms of Z, $\mu/M = 1.370745624 \times 10^{-4}$, and $\alpha^2 = 0.5325136197 \times 10^{-4}$.

Contribution	Magnitude
Nonrelativistic energy	Z^2
Mass polarization	$Z^2 \mu/M$
Second-order mass polarization	$Z^2(\mu/M)^2$
Relativistic corrections	$Z^4 lpha^2$
Relativistic recoil	$Z^4 lpha^2 \mu/M$
Anomalous magnetic moment	$Z^4 lpha^3$
Hyperfine structure	$Z^3 g_I \mu_0^2$
Lamb shift	$Z^4 \alpha^3 \ln \alpha + \cdots$
Radiative recoil	$Z^4 lpha^3 (\ln lpha) \mu/M$
Finite nuclear size	$Z^4 \langle R_N/a_0 angle^2$
Nuclear polarization	$Z^3 e^2 lpha_{ m d,nuc}/(lpha a_0)$

Nonrelativistic Eigenvalues

The Hamiltonian in atomic units is

$$H = -\frac{1}{2}\nabla_1^2 - \frac{1}{2}\nabla_2^2 - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{1}{r_{12}}$$

Expand

$$\Psi(\mathbf{r}_{1},\mathbf{r}_{2}) = \sum_{i,j,k} a_{ijk} r_{1}^{i} r_{2}^{j} r_{12}^{k} e^{-\alpha r_{1}-\beta r_{2}} \mathcal{Y}_{l_{1}l_{2}L}^{M}(\mathbf{\hat{r}_{1}},\mathbf{\hat{r}_{2}})$$

(Hylleraas, 1929). Pekeris shell: $i + j + k \leq \Omega$, $\Omega = 1, 2, ...$

transp09.tex, January/05

Convergence study for the ground state of helium [1].

Ω	N	$E(\Omega)$	$R(\Omega)$
8	269	-2.903 724 377 029 560 058 400	
9	347	-2.903724377033543320480	
10	443	-2.903724377034047783838	7.90
11	549	-2.903724377034104634696	8.87
12	676	-2.903724377034116928328	4.62
13	814	-2.903724377034119224401	5.35
14	976	-2.903724377034119539797	7.28
15	1150	-2.903724377034119585888	6.84
16	1351	-2.903724377034119596137	4.50
17	1565	-2.903724377034119597856	5.96
18	1809	-2.903724377034119598206	4.90
19	2067	-2.903724377034119598286	4.44
20	2358	-2.903724377034119598305	4.02
Extrapolation	∞	-2.903724377034119598311(1)	
Korobov [2]	5200	-2.903724377034119598311158	7
Korobov extrap.	∞	-2.903724377034119598311159	4(4)
Schwartz [3]	10259	-2.903724377034119598311159	245 194 404 4400
Schwartz extrap.	∞	-2.903724377034119598311159	245 194 404 446
Goldman [4]	8066	-2.90372437703411959382	
Bürgers et al. [5]	24 497	-2.903724377034119589(5)	
Baker et al. [6]	476	-2.9037243770341184	

[1] G.W.F. Drake, M.M. Cassar, and R.A. Nistor, Phys. Rev. A 65, 054501 (2002).

[2] V.I. Korobov, Phys. Rev. A 66, 024501 (2002).

[3] C. Schwartz, http://xxx.aps.org/abs/physics/0208004

[4] S.P. Goldman, Phys. Rev. A 57, R677 (1998).

[5] A. Bürgers, D. Wintgen, J.-M. Rost, J. Phys. B: At. Mol. Opt. Phys. 28, 3163 (1995).

[6] J.D. Baker, D.E. Freund, R.N. Hill, J.D. Morgan III, Phys. Rev. A 41, 1247 (1990). transp24.tex, Nov./00

Variational Basis Set for Lithium

Solve for Ψ_0 and Ψ_1 by expanding in Hylleraas coordinates

 $r_1^{j_1} r_2^{j_2} r_3^{j_3} r_{12}^{j_{12}} r_{23}^{j_{23}} r_{31}^{j_{31}} e^{-\alpha r_1 - \beta r_2 - \gamma r_3} \mathcal{Y}_{(\ell_1 \ell_2) \ell_{12}, \ell_3}^{LM}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) \chi_1, \qquad (1)$

where $\mathcal{Y}_{(\ell_1\ell_2)\ell_{12},\ell_3}^{LM}$ is a vector-coupled product of spherical harmonics, and χ_1 is a spin function with spin angular momentum 1/2. Include all terms from (1) such that

$$j_1 + j_2 + j_3 + j_{12} + j_{23} + j_{31} \leq \Omega,$$
 (2)

and study the eigenvalues as Ω is progressively increased. The explicit mass-dependence of E is

 $E = \varepsilon_0 + \lambda \varepsilon_1 + \lambda^2 \varepsilon_2 + O(\lambda^3)$, in units of $2R_M = 2(1+\lambda)R_\infty$.

semin05.tex, January, 2005

Variational upper bounds for nonrelativistic eigenvalues.

State	N_{terms}	E_{∞} (2R $_{\infty}$)	E_M (2 R_M)
$Li(1s^22s\ ^2S)$	6413	-7.478 060 323 869	-7.478 036 728 322
	9577	-7.478 060 323 892	-7.478 036 728 344
	9576	-7.478 060 323 890°	
$Li(1s^23s\ ^2S)$	6413	-7.354 098 421 392	-7.354 075 591 755
	9577	-7.354 098 421 425	-7.354 075 591 788
$Li(1s^22p\ ^2P)$	5762	-7.410 156 532 488	-7.410 137 246 549
	9038	-7.410 156 532 593	-7.410 137 246 663
$Be^+(1s^22s\ ^2S)$	6413	-14.324 763 176 735	-14.324 735 613 884
	9577	-14.324 763 176 767	-14.324735613915
$Be^+(1s^23s\ ^2S)$	6413	-13.922 789 268 430	-13.922 763 157 509
, , , , , , , , , , , , , , , , , , ,	9577	-13.922 789 268 518	-13.922763157598
$Be^+(1s^22p\ ^2P)$	5762	-14.179 333 293 227	-14.179 323 188 964
× - /	9038	-14.179 333 293 333	-14.179 323 189 509
^a M. Puchalski	and K.	Pachucki, Phys. Rev. A	73, 022503 (2006).

Relativistic Corrections

Relativistic corrections of $O(\alpha^2)$ and anomalous magnetic moment corrections of $O(\alpha^3)$ are (in atomic units)

$$\Delta E_{\rm rel} = \langle \Psi | H_{\rm rel} | \Psi \rangle_J , \qquad (3)$$

 \mathbf{m}

where Ψ is a nonrelativistic wave function and H_{rel} is the Breit interaction defined by

$$H_{\rm rel} = B_1 + B_2 + B_4 + B_{\rm so} + B_{\rm soo} + B_{\rm ss} + \frac{m}{M} (\tilde{\Delta}_2 + \tilde{\Delta}_{\rm so}) + \gamma \left(2B_{\rm so} + \frac{4}{3}B_{\rm soo} + \frac{2}{3}B_{3e}^{(1)} + 2B_5 \right) + \gamma \frac{m}{M} \tilde{\Delta}_{\rm so} \,.$$

where $\gamma=\alpha/(2\pi)$ and

$$B_{1} = \frac{\alpha^{2}}{8}(p_{1}^{4} + p_{2}^{4})$$
$$B_{2} = -\frac{\alpha^{2}}{2}\left(\frac{1}{r_{12}}\mathbf{p}_{1} \cdot \mathbf{p}_{2} + \frac{1}{r_{12}^{3}}\mathbf{r}_{12} \cdot (\mathbf{r}_{12} \cdot \mathbf{p}_{1})\mathbf{p}_{2}\right)$$
$$B_{4} = \alpha^{2}\pi\left(\frac{Z}{2}\delta(\mathbf{r}_{1}) + \frac{Z}{2}\delta(\mathbf{r}_{2}) - \delta(\mathbf{r}_{12})\right)$$

semin07.tex, January, 2005

$$H_{\rm rel} = B_1 + B_2 + B_4 + B_{\rm so} + B_{\rm soo} + B_{\rm ss} + \frac{m}{M} (\tilde{\Delta}_2 + \tilde{\Delta}_{\rm so}) + \gamma \left(2B_{\rm so} + \frac{4}{3}B_{\rm soo} + \frac{2}{3}B_{3e}^{(1)} + 2B_5 \right) + \gamma \frac{m}{M}\tilde{\Delta}_{\rm so} \,.$$

Spin-dependent terms

$$B_{\rm so} = \frac{Z\alpha^2}{4} \left[\frac{1}{r_1^3} (\mathbf{r}_1 \times \mathbf{p}_1) \cdot \boldsymbol{\sigma}_1 + \frac{1}{r_2^3} (\mathbf{r}_2 \times \mathbf{p}_2) \cdot \boldsymbol{\sigma}_2 \right]$$
$$B_{\rm soo} = \frac{\alpha^2}{4} \left[\frac{1}{r_{12}^3} \mathbf{r}_{12} \times \mathbf{p}_2 \cdot (2\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) - \frac{1}{r_{12}^3} \mathbf{r}_{12} \times \mathbf{p}_1 \cdot (2\boldsymbol{\sigma}_2 + \boldsymbol{\sigma}_1) \right]$$
$$B_{\rm ss} = \frac{\alpha^2}{4} \left[-\frac{8}{3}\pi\delta(\mathbf{r}_{12}) + \frac{1}{r_{12}^3}\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 - \frac{3}{r_{12}^3} (\boldsymbol{\sigma}_1 \cdot \mathbf{r}_{12}) (\boldsymbol{\sigma}_2 \cdot \mathbf{r}_{12}) \right]$$

Relativistic recoil terms (A.P. Stone, 1961)

$$\tilde{\Delta}_{2} = -\frac{Z\alpha^{2}}{2} \left\{ \frac{1}{r_{1}} (\mathbf{p}_{1} + \mathbf{p}_{2}) \cdot \mathbf{p}_{1} + \frac{1}{r_{1}^{3}} br_{1} \cdot [\mathbf{r}_{1} \cdot (\mathbf{p}_{1} + \mathbf{p}_{2})] \mathbf{p}_{1} + \frac{1}{r_{2}} (\mathbf{p}_{1} + \mathbf{p}_{2}) \cdot \mathbf{p}_{2} + \frac{1}{r_{2}^{3}} br_{2} \cdot [\mathbf{r}_{2} \cdot (\mathbf{p}_{1} + \mathbf{p}_{2})] \mathbf{p}_{2} \right\}$$
$$\tilde{\Delta}_{so} = \frac{Z\alpha^{2}}{2} \left(\frac{1}{r_{1}^{3}} \mathbf{r}_{1} \times \mathbf{p}_{2} \cdot \boldsymbol{\sigma}_{1} + \frac{1}{r_{2}^{3}} \mathbf{r}_{2} \times \mathbf{p}_{1} \cdot \boldsymbol{\sigma}_{2} \right)$$

semin07.tex, January, 2005

Two-Electron QED Shift

The lowest order helium Lamb shift is given by the Kabir-Salpeter formula (in atomic units)

$$E_{L,1} = \frac{4}{3} Z \alpha^3 |\Psi_0(0)|^2 \left[\ln \alpha^{-2} - \beta (1sn\ell) + \frac{19}{30} \right]$$

where $\beta(1sn\ell)$ is the two-electron Bethe logarithm defined by

$$\beta(1sn\ell) = \frac{\mathcal{N}}{\mathcal{D}} = \frac{\sum_{i} |\langle \Psi_0 | \mathbf{p}_1 + \mathbf{p}_2 | i \rangle|^2 (E_i - E_0) \ln |E_i - E_0|}{\sum_{i} |\langle \Psi_0 | \mathbf{p}_1 + \mathbf{p}_2 | i \rangle|^2 (E_i - E_0)}$$

semin09.tex, January, 2005

The sum in the denominator can be completed by closure:

$$\mathcal{D} = \langle \Psi_0 | \mathbf{p}(H - E_0) \mathbf{p} | \Psi_0 \rangle = 2\pi Z | \Psi_0(0) |^2$$

where $\mathbf{p} = \mathbf{p}_1 + \mathbf{p}_2$.

Schwartz (1961) transformed the numerator to read

$$\mathcal{N} = \lim_{K \to \infty} \left(-K \langle \Psi_0 | \mathbf{p} \cdot \mathbf{p} | \Psi_0 \rangle + \mathcal{D} \ln(K) + \int_0^K k \, dk \langle \Psi_0 | \mathbf{p} (H - E_0 + k)^{-1} \mathbf{p} | \Psi_0 \rangle \right)$$

Expensive in computer time and slowly convergent. Recent work by

J. D. Baker, R. C. Rorrrey, M. Jerziorska, and J. D. Morgan III (unpublished), V. I. Korobov and S. V. Korobov, Phys. Rev. A **59**, 3394 (1999).

semin09.tex, January, 2005

Alternative method: demonstration for hydrogen

Define a variational basis set with multiple distance scales according to:

$$\chi_{i,j} = r^i \exp(-\alpha_j r) \cos(\theta),$$

with

$$j = 0, 1, \dots, \Omega - 1$$

 $i = 0, 1, \dots, \Omega - j - 1$

and

$$\alpha_j = \alpha_0 \times g^j, \quad g \simeq 10$$

The number of elements is $N = \Omega(\Omega + 1)/2$.

Diagonalize the Hamiltonian in this basis set to generate a set of pseudostates.

semin09.tex, January, 2005

The sequence of basis sets is:

 $\Omega = 1; N = 1:$ $e^{-\alpha r}$ $\Omega = 2; N = 3:$ $e^{-10\alpha r}$ $e^{-\alpha r}, re^{-\alpha r}$ $\Omega = 3; N = 6:$ $e^{-100\alpha r}$ $e^{-10\alpha r}$, $re^{-10\alpha r}$, $e^{-\alpha r}$, $re^{-\alpha r}$, $r^2e^{-\alpha r}$ $\Omega = 4: N = 10$ $e^{-1000\alpha r}$ $e^{-100\alpha r}, re^{-100\alpha r},$ $e^{-10\alpha r}, re^{-10\alpha r}, r^2 e^{-10\alpha r}$ $e^{-\alpha r}$, $re^{-\alpha r}$, $r^2e^{-\alpha r}$, $r^3e^{-\alpha r}$

Differential contributions to the Bethe logarithm for the ground state of hydrogen. Each point represents the contribution from one pseudostate.

Convergence of the Bethe logarithm for hydrogen.

Ω	N	$\beta(1s)$	Differences	Ratios
2	3	2.04133473671235643207		
3	6	2.25562501021050378880	0.21429027349814735672	
4	10	2.28660583806175080919	0.03098082785124702039	6.917
5	15	2.29046731873800820861	0.00386148067625739942	8.023
6	21	2.29092465658916831858	0.00045733785116010997	8.443
7	28	2.29097528980426278650	0.00005063321509446792	9.032
8	36	2.29098074679466355929	0.00000545699040077279	9.279
9	45	2.29098131145011677157	0.00000056465545321228	9.664
10	55	2.29098136890590489232	0.0000005745578812075	9.828
11	66	2.29098137458983244603	0.0000000568392755370	10.108
12	78	2.29098137514650642811	0.0000000055667398208	10.211
13	91	2.29098137519991895769	0.0000000005341252957	10.422
14	105	2.29098137520502205119	0.0000000000510309350	10.467
15	120	2.29098137520550236046	0.0000000000048030928	10.625
16	136	2.29098137520554763881	0.000000000004527834	10.608
17	153	2.29098137520555186303	0.000000000000422422	10.719
18	171	2.29098137520555226032	0.000000000000039729	10.633
19	190	2.29098137520555229746	0.000000000000003714	10.697
20	210	2.29098137520555230096	0.000000000000000351	10.594
Ext	trap.	2.29098137520555230133		

Partial Bethe logarithm sums for the ground state of helium, summed over pseudostates up to energy E. Each solid point represents the contribution from one pseudostate. The open circles are the corresponding partial sums for hydrogen.

Bethe logarithms for He-like atoms.

State	Z = 2	Z = 3	Z = 4	Z = 5	Z = 6
1 ¹ S	2.9838659(1)	2.982624558(1)	2.982 503 05(4)	2.982 591 383(7)	2.982716949
2 ¹ S	2.980 118 275(4)	2.976 363 09(2)	2.973 976 98(4)	2.97238816(3)	2.971 266 29(
2 ³ S	2.977 742 36(1)	2.973851679(2)	2.971735560(4)	2.970 424 952(5)	2.969 537 065
2 ¹ P	2.983 803 49(3)	2.983 186 10(2)	2.98269829(1)	2.98234018(7)	2.98207279(
2 ³ P	2.983 690 84(2)	2.98295868(7)	2.982 443 5(1)	2.9820895(1)	2.981 835 91(
3 ¹ S	2.982 870 512(3)	2.981 436 5(3)	2.980 455 81(7)	2.979778086(4)	2.979 289 8(9
3 ³ S	2.982 372 554(8)	2.980 849 595(7)	2. 979 904 876(3)	2.979282037	2.978 844 34(
3 ¹ P	2. 984 001 37(2)	2.983768943(8)	2.983 584 906(6)	2.983 449 763(6)	2.983 348 89(
3 ³ P	2.983 939 8(3)	2.983 666 36(4)	2.983 479 30(2)	2.983 350 844(8)	2.983 258 40(
4 ¹ S	2.983 596 31(1)	2.982 944 6(3)	2.982 486 3(1)	2.982166154(3)	2.981 932 94(
4 ³ S	2.983 429 12(5)	2.98274035(4)	2.982 291 37(7)	2.981 988 21(2)	2.981772015
4 ¹ P	2.984 068 766(9)	2.9839610(2)	2.983 875 8(1)	2.983 813 2(1)	2.9837666(2
4 ³ P	2.98403984(5)	2.983 913 45(9)	2.983 828 9(1)	2.9837701(2)	2.9837275(2
5 ¹ S	2.983 857 4(1)	2.98351301(2)	2.983 267 901(6)	2.983 094 85(5)	2.982 968 66(
5 ³ S	2. 983 784 02(8)	2.983 422 50(2)	2.983 180 677(6)	2.98301517(3)	2.982 896 13(
5 ¹ P	2.984 096 174(9)	2.984 038 03(5)	2.983 992 23(1)	2.983 958 67(5)	2.983 933 65(
5 ³ P	2.984 080 3(2)	2. 984 014 4(4)	2.9839689(4)	2.983 937 2(4)	2.983 914 07(

For He⁺, $\beta(1s) = 2.984\,128\,555\,765$

G.W.F. Drake and S.P. Goldman, Can. J. Phys. 77, 835 (1999).

semin12.tex, March 99

ASYMPTOTIC EXPANSIONS

Core Polarization Model (Drachman)

- neglect exchange.
- Rydberg electron moves in the field generated by the polarizable core.

Illustration of the physical basis for the asymptotic expansion method in which the Rydberg electron moves in the field generated by the polarized core.

$$\Delta V(x) = -\frac{c_4}{x^4} - \frac{c_6}{x^6} - \frac{c_7}{x^7} - \frac{c_8}{x^8} - \frac{c_9}{x^9} - \frac{c_{10}}{x^{10}} + \cdots$$

For example, $c_4 = \frac{1}{2}\alpha_1$.

Then

$$\Delta E_{nL} = -\frac{(Z-1)^2}{2n^2} + \langle \chi_0 \mid \Delta V(x) \mid \chi_0 \rangle + \langle \chi_0 \mid \Delta V(x) \mid \chi_1 \rangle$$

where $\mid \chi_1 \rangle =$ first-order perturbation correction to $\mid \chi_0 \rangle$ due to $\Delta V(x)$; i.e.

$$[h_0(x) - e_0] \mid \chi_1 \rangle + \Delta V(x) \mid \chi_0 \rangle = |\chi_0\rangle \langle |\Delta V(x) \mid \chi_0 \rangle$$

semin40.tex, January, 2005

Asymptotic expansion for the energy of the 1s10k state of helium.

Quantity	Value
$-Z^{2}/2$	-2.000 000 000 000 000 00
$-1/(2n^2)$	-0.00500000000000000
$c_4 \langle r^{-4} \rangle$	-0.000 000 007 393 341 95
$c_6 \langle r^{-6} \rangle$	0.000 000 000 004 980 47
$c_7 \langle r^{-7} \rangle$	0.000 000 000 000 278 95
$c_8 \langle r^{-8} \rangle$	-0.000 000 000 000 224 33
$c_9\langle r^{-9} angle$	-0.000 000 000 000 002 25
$c_1 0 \langle r^{-10} \rangle$	0.000 000 000 000 003 73
Second order	-0.00000000000007091
Total	-2.005 000 007 388 376 30(74)
Variational	-2.0050000073883758769(0)
Difference	-0.000 000 000 000 000 42(74)
	$\simeq 3 \mathrm{Hz}$

Two-electron Bethe logs for high angular momentum

$$\beta(1snl) = \beta(1s) + \left(\frac{Z-1}{Z}\right)^4 \frac{\beta(nl)}{n^3} + \frac{0.316205}{Z^6} \langle x^{-4} \rangle + \Delta\beta(1snl)$$

State	$n^3\Delta\beta(1snl)$	Least squares fit	Difference
3 ¹ D 3 ³ D	$\begin{array}{c} -0.00000108(4) \\ 0.00018174(5) \end{array}$		
4 ¹ D 4 ³ D	-0.0000184(3) 0.00023118(7)		
5 ¹ D 5 ³ D	$-0.00002684(9)\\ 0.00024973(12)$ ª		
4 ¹ F 4 ³ F	0.00000658(2) 0.00000763(2)	$\begin{array}{c} 0.00000660\\ 0.00000764\end{array}$	$\begin{array}{c} -0.00000002(2) \\ -0.00000001(2) \end{array}$
${5}^{1}{ m F}$ ${5}^{3}{ m F}$	$0.00000870(3)\ 0.00001042(3)$	$\begin{array}{c} 0.00000869 \\ 0.00001041 \end{array}$	$0.00000001(3) \\ 0.00000001(3)$
6 ¹ F 6 ³ F	$0.0000098(1)\ 0.0000119(3)$	$\begin{array}{c} 0.00000983\\ 0.00001198\end{array}$	$0.0000000(1) \\ -0.0000001(3)$
${5{}^{1}{ m G}}$ ${5{}^{3}{ m G}}$	$0.000000770(3)\ 0.000000771(3)$	0.000000770 0.000000771	$0.000\ 000\ 000(3) \\ 0.000\ 000\ 000(3)$
6 ¹ G 6 ³ G	0.000001043(3) 0.000001050(8)	$\begin{array}{c} 0.000001042\\ 0.000001047\end{array}$	$\begin{array}{c} 0.000000001(3)\\ 0.000000003(8)\end{array}$
6 ¹ H 6 ³ H	$\begin{array}{c} 0.000000127(2) \\ 0.000000127(2) \end{array}$	$\begin{array}{c} 0.000000127\\ 0.000000127\end{array}$	$\begin{array}{c} 0.000000000(2) \\ 0.000000000(2) \end{array}$

Residual two-electron Bethe logs $n^3 \Delta \beta(1snl)$.

^a Corresponds to an energy uncertainty of ± 14 Hz.

A least-squares fit gives

$$\Delta\beta(1snl\ ^{1}L) = 95.6(0.9)\langle x^{-6}\rangle - 841(19)\langle x^{-7}\rangle + 1394(50)\langle x^{-8}\rangle$$
$$\Delta\beta(1snl\ ^{3}L) = 95.0(0.9)\langle x^{-6}\rangle - 840(23)\langle x^{-7}\rangle + 1581(60)\langle x^{-8}\rangle$$

Comparison of Bethe Logarithms $\ln(k_0)$ in units of $\ln(Z^2 R_{\infty})$.

Atom	$1s^22s$	$1s^23s$	$1s^22p$	$1s^2$	1s
Li	2.98106(1)	2.98236(6)	2.98257(6)	2.982624	2.984 128
Be^+	2.97926(2)	2.98162(1)	2.98227(6)	2.982 503	2.984 128

Comparison of Bethe Logarithm finite mass coefficient $\Delta\beta_{MP}$.

Atom	$1s^22s$	$1s^23s$	$1s^22p$	$1s^2$	1s
Li	0.11305(5)	0.1105(3)	0.1112(5)	0.1096	0.0
Be^+	0.12558(4)	0.1171(1)	0.1217(6)	0.1169	0.0

 $\ln(k_0/Z^2 R_M) = \beta_{\infty} + (\mu/M)\Delta\beta_{\rm MP}$

where β_{∞} is the Bethe logarithm for infinite nuclear mass.

semin43.tex, March, 2008

The Electron-Electron Term

The electron-electron part is (Araki and Sucher)

$$\Delta E_{L,2} = \alpha^3 \left(\frac{14}{3} \ln \alpha + \frac{164}{15} \right) \left\langle \delta(\mathbf{r}_{ij}) \right\rangle - \frac{14}{3} \alpha^3 Q \,, \tag{6}$$

where the Q term is defined by

$$Q = (1/4\pi) \lim_{\epsilon \to 0} \langle r_{ij}^{-3}(\epsilon) + 4\pi (\gamma + \ln \epsilon) \delta(\mathbf{r}_{ij}) \rangle.$$
(7)

 γ is Euler's constant, ϵ is the radius of a sphere about $r_{ij}=0$ excluded from the integration.

Finite Nuclear Size Correction

In lowest order

$$\Delta E_{\rm nuc} = \frac{2\pi Z r_{\rm rms}^2}{3} \langle \delta(\mathbf{r}_i) \rangle \,, \tag{8}$$

where $r_{\rm rms} = R_{\rm rms}/a_{\rm Bohr}$, $R_{\rm rms}$ is the root-mean-square radius of the nuclear charge distribution, and $a_{\rm Bohr}$ is the Bohr radius.

semin08.tex, January, 2005

Contributions to the $^{\circ}He - ^{\circ}He$ isotope shift (MHz).					
Contribution	$2 {}^{3}S_{1}$	$3 {}^{3}P_{2}$	$2 {}^{3}S_{1} - 3 {}^{3}P_{2}$		
$E_{ m nr}$	52947.324(19)	17 549.785(6)	35 397.539(16)		
μ/M	2248.202(1)	-5 549.112(2)	7 797.314(2)		
$(\mu/M)^2$	-3.964	-4.847	0.883		
$lpha^2 \mu/M$	1.435	0.724	0.711		
$E_{ m nuc}^{ m a}$	-1.264	0.110	-1.374		
$lpha^3 \mu/M$, 1-e	-0.285	-0.037	-0.248		
$lpha^3 \mu/M$, 2-e	0.005	0.001	0.004		
Total	55 191.453(19)	11 996.625(4)	43 194.828(16)		
$Experiment^{\mathrm{b}}$			43 194.772(56)		
Difference			0.046(56)		

ntributions to the 6Us 4Us instance shift (MU

^aAssumed nuclear radius is $r_{\rm nuc}({}^{6}{\rm He}) = 2.04$ fm.

In general, $IS(2S - 3P) = 43\,196.202(16) + 1.008[r_{nuc}^2({}^{4}He) - r_{nuc}^2({}^{6}He)].$ Adjusted nuclear radius is $r_{\rm nuc}({}^{6}{\rm He}) = 2.054(14)$ fm.

^bZ.-T. Lu, Argonne collaboration.

S Nuclear Charge Radius of ⁸He

P. Mueller,^{1,*} I. A. Sulai,^{1,2} A. C. C. Villari,³ J. A. Alcántara-Núñez,³ R. Alves-Condé,³ K. Bailey,¹ G. W. F. Drake,⁴ M. Dubois,³ C. Eléon,³ G. Gaubert,³ R. J. Holt,¹ R. V. F. Janssens,¹ N. Lecesne,³ Z.-T. Lu,^{1,2} T. P. O'Connor,¹ M.-G. Saint-Laurent,³ J.-C. Thomas,³ and L.-B. Wang⁵
¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
²Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
³GANIL (IN2P3/CNRS-DSM/CEA), B.P. 55027 F-14076 Caen Cedex 5, France
⁴Physics Department, University of Windsor, Windsor, Ontario, Canada N9B 3P4
⁵Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 21 November 2007; published 21 December 2007)

The root-mean-square (rms) nuclear charge radius of ⁸He, the most neutron-rich of all particle-stable nuclei, has been determined for the first time to be 1.93(3) fm. In addition, the rms charge radius of ⁶He was measured to be 2.068(11) fm, in excellent agreement with a previous result. The significant reduction in charge radius from ⁶He to ⁸He is an indication of the change in the correlations of the excess neutrons and is consistent with the ⁸He neutron halo structure. The experiment was based on laser spectroscopy of individual helium atoms cooled and confined in a magneto-optical trap. Charge radii were extracted from the measured isotope shifts with the help of precision atomic theory calculations.

DOI: 10.1103/PhysRevLett.99.252501

PACS numbers: 21.10.Ft, 21.60.-n, 27.20.+n, 31.30.Gs

Atomic Energy Levels of Helium

A helium glow discharge

Laser Spectroscopic Determination of the Nuclear Charge Radius of ⁶He

L.-B. Wang, P. Mueller, K. Bailey, J.P. Greene, D. Henderson, R.J. Holt, R.V.F. Janssens, C.L. Jiang, Z.-T. Lu, T.P. O'Connor, R.C. Pardo, K.E. Rehm, J.P. Schiffer, X.D. Tang *Argonne National Lab.* G.W.F. Drake *University of Windsor*

Motivation

- Test the Standard Nuclear Structure Model;
- Study nucleon interactions in neutron-rich matter.

Method: Atomic isotope shift

⁶He – ⁴He isotope shift at 2 ${}^{3}S_{1}$ – 3 ${}^{3}P_{2}$, 389 nm *IS (MHz)* = 43,196.202(20) + 1.008 x [$\langle r^{2} \rangle_{4He}$ - $\langle r^{2} \rangle_{6He}$] -- G.W.F. Drake, Nucl. Phys. A737c, 25 (2004)

⁶He: ⁴He + 2n Its charge radius expands due to the motion of the ⁴He core

Spectrum of 150 ⁶He atoms in one hour

Comparison between theory and experiment for the total transition frequencies of ⁷Li and ⁹Be⁺. Units are cm⁻¹.

Atom/Ion	$2 {}^{2}P_{1/2} - 2 {}^{2}S_{1/2}$	$2 {}^{2}P_{3/2} - 2 {}^{2}S_{1/2}$	$3 {}^{2}S_{1/2} - 2 {}^{2}S_{1/2}$	$2 \ ^2\mathrm{S}_{1/2}$ I.P.
⁷ Li (this work)	14 903.647 9(10)	14 903.983 2(10)	27 206.093 0(10)	43 487.158 3(10)
⁷ Li (expt.)	$14903.648130(14)^{\mathrm{a}}$	$14903.983648(14)^{\mathrm{a}}$	$27206.09420(10)^{ m b}$	$43487.15940(18)^{ m c}$
Difference	-0.0002(10)	-0.0004(10)	-0.0012(10)	-0.0011(10)
${}^9Be^+$ (this work)	31 928.738(5)	31 935.310(5)	88 231.920(6)	146 882.923(5)
${}^{9}Be^{+}$ (expt.)	31928.744^{d}	$31935.320^{ m d}$	$88231.915^{\rm d}$	$146882.86^{ m d}$
		$31935.310(47)^{ m e}$		
Difference	-0.006(5)	-0.010(5)	0.005(6)	0.063(5)
		0.000(47)		

^aSansonetti *et al.* ^bBushaw *et al.* ^cBushaw *et al.* ^dRalchenko *et al.* ^eNakamura *et al.*

semin44.tex, March, 2008

The ToPLiS Collaboration

FS SS Ť

Two-Photon Lithium Spectroscopy

Resonance Ionization of Lithium

- 2s 3s transition
- \rightarrow Narrow line

2-photon spectroscopy

 \rightarrow Doppler cancellation

Spontaneous decay

 → Decoupling of precise spectroscopy and efficient ionization

2p - 3d transition

→ Resonance enhancement for efficient ionization

Conclusions

- The finite basis set method with multiple distance scales provides an effective and efficient method of calculating Bethe logarithms, thereby enabling calculations up to order α^3 Ry for helium and lithium.
- The objective of calculating isotope shifts to better than \pm 10 kHz has been achieved for two- and three-electron atoms, thus allowing measurements of the nuclear charge radius to ± 0.002 fm.
- The results provide a significant test of theoretical models for the nucleon-nucleon potential, and hence for the properties of nuclear matter in general.

semin23.tex, March 2008

PSA5 Conference 2008

International Conference on Precision Physics of Simple Atomic Systems

2 - 26, 2008

University of Windsor. Windsor, Ontario, Canada

INTERNATIONAL PROGRAM COMMITTEE Gordon Drake, Co-Chair(Canada) Savely Karshenboim, Co-Chair (Russia & Germany) Claudio Lenz Cesar (Brazil) Theodor Hänsch (Germany) Eric Hessels (Canada) Massimo Inguscio (Italy) Ulrich Jentschura (Germany) Lucile Julien (France) Franz Kottmann (Switzerland) Chitra Rangan (Canada) Valery Shelyuto (Russia) Janine Shertzer (USA) Jochen Walz (Germany)

For more information, visit www.uwindsor.ca/psas

Contribution	$2{}^2\mathrm{P}_{1/2}$ – $2{}^2\mathrm{S}$	$2{}^2\mathrm{P}_{3/2}$ – $2{}^2\mathrm{S}$			
Theory					
μ/M	10533.508(5) ^a	10 533.508(5) ^a			
$(\mu/M)^2$	0.061	0.061			
$lpha^2\mu/M$	-1.4855(13)	-1.0904(13)			
$lpha^3\mu/M$, anom. magnetic	-0.000 17	0.000 09			
$lpha^3\mu/M$, one-electron	0.0184	0.0184			
$lpha^3\mu/M$, two-electron	0.009(2)	0.009(2)			
$r_{ m rms}^2$	$0.194 {\pm} 0.271$	0.194 ± 0.271			
$r_{ m rms}^2\mu/M$	-0.00073(11)	-0.00073(11)			
Total	10534.052(6)	10534.448(6)			
$RCI extsf{-MBPT}^ extsf{b}$	10608(300)	10607(300)			
	Experiment				
Sansonetti $et \ al.^{c}$	10532.9(6)	10533.3(5)			
Windholz $et \ al.^{d}$	10534.3(3)	10539.9(1.2)			
Scherf <i>et al.</i> ^e	10533.13(15)	10534.93(15)			
Walls $et \ al.^{f}$	10534.26(13)				
Noble <i>et al.</i> ^g	10534.039(70)				

Contributions to the ⁷Li–⁶Li isotope shifts for the $1s^22p^2P_J-1s^22s^2S$ transitions and comparison with experiment. Units are MHz.

^aThe additional uncertainty from the atomic mass determinations is ± 0.008 MHz.

^bV.A. Korol and M.G. Kozlov, Phys. Rev. A 76, 022103 (2007).

^cC. J. Sansonetti et al., Phys. Rev. A 52, 2682 (1995).

^dL. Windholz and C. Umfer, Z. Phys. D 29, 121 (1994).

^eW. Scherf, O. Khait, H. Jäger, and L. Windholz, Z. Phys. D 36, 31, (1996).

^fJ. Walls et al., Eur. Phys. J. D 22 159 (2003).

^gG.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A **74**, 012502 (2006).

Contribution	$2{}^2\mathrm{P}_{1/2}$ – $2{}^2\mathrm{S}$	$2{}^2\mathrm{P}_{3/2}$ – $2{}^2\mathrm{S}$			
Theory					
μ/M	10533.508(5) ^a	10533.508(5) ^a			
$(\mu/M)^2$	0.061	0.061			
$lpha^2\mu/M$	-1.4855(13)	-1.0904(13)			
$lpha^3\mu/M$, anom. magnetic	-0.000 17	0.000 09			
$lpha^3\mu/M$, one-electron	0.0184	0.0184			
$lpha^3\mu/M$, two-electron	0.009(2)	0.009(2)			
$r_{ m rms}^2$	$0.194 {\pm} 0.271$	0.194 ± 0.271			
$r_{ m rms}^2\mu/M$	-0.00073(11)	-0.00073(11)			
Total	10534.052(6)	10534.448(6)			
$RCI extsf{-MBPT}^ extsf{b}$	10608(300)	10607(300)			
	Experiment				
Sansonetti $et \ al.^{c}$	10532.9(6)	10533.3(5)			
Windholz $et \ al.^{d}$	10534.3(3)	10539.9(1.2)			
Scherf <i>et al.</i> ^e	10533.13(15)	10534.93(15)			
Walls $et \ al.^{f}$	10534.26(13)				
Noble <i>et al.</i> ^g	10534.039(70)				

Contributions to the ⁷Li–⁶Li isotope shifts for the $1s^22p^2P_J-1s^22s^2S$ transitions and comparison with experiment. Units are MHz.

^aThe additional uncertainty from the atomic mass determinations is ± 0.008 MHz.

^bV.A. Korol and M.G. Kozlov, Phys. Rev. A 76, 022103 (2007).

^cC. J. Sansonetti et al., Phys. Rev. A 52, 2682 (1995).

^dL. Windholz and C. Umfer, Z. Phys. D 29, 121 (1994).

^eW. Scherf, O. Khait, H. Jäger, and L. Windholz, Z. Phys. D 36, 31, (1996).

^fJ. Walls et al., Eur. Phys. J. D 22 159 (2003).

^gG.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A **74**, 012502 (2006).

Spin-independent Relativistic Corrections of $O(\alpha^4)$ a.u.

$$\Delta E_{\rm B}^{(4)} = \alpha^4 \langle H_{\rm e-n}(1) + H_{\rm e-n}(2) + H_V \rangle + \sum_I \alpha^4 \left\langle B_I \frac{1}{(E-H)'} B_I \right\rangle$$

where

$$H_{\rm e-n}(i) = \frac{p_i^6}{16} - \frac{1}{8} \left[\mathbf{p}_i, \frac{Z}{r_i} \right]^2 - \frac{5}{128} \left[p_i^2, \left[p_i^2, \frac{Z}{r_i} \right] \right] - \frac{3}{32} p_i^2 \left[\mathbf{p}_i, \left[\mathbf{p}_i, \frac{Z}{r_i} \right] \right]$$

and

 $B_I =$ Breit interaction terms.

K. Pachucki, Phys. Rev. Lett. 84, 4561 (2000).V. I. Korobov, Phys. Rev. A 66, 024501 (2002).

transp25.tex, June 03

M. H. Chen, K. T. Cheng, and W. R. Johnson, Phys. Rev. A 47, 3692 (1993).

For the $O(\alpha^4)$ contributions to the fine structure splittings in He-like ions:

$$\nu_{02}^{(4)} = (Z\alpha)^4 \left[-\frac{5}{256} Z^2 + 0.144\,772\,9Z + c_{02} + \cdots \right],$$

$$\nu_{12}^{\prime(4)} = (Z\alpha)^4 \left[-\frac{5}{384} Z^2 + 0.058\,776\,8Z + c_{12} + \cdots \right],$$

Method	c_{02}	c_{12}
Nonrelativistic (Drake)	-0.4645(20)	-0.13(10)
Relativistic CI (CCJ)	-0.51	-0.154

Expand

$$\Psi = \Psi_0 + \frac{\mu}{M}\Psi_1 + \left(\frac{\mu}{M}\right)^2 \Psi_2 + \cdots$$
$$\mathcal{E} = \mathcal{E}_0 + \frac{\mu}{M}\mathcal{E}_1 + \left(\frac{\mu}{M}\right)^2 \mathcal{E}_2 + \cdots$$

The zero-order problem is the Schrödinger equation for infinite nuclear mass

$$\left\{-\frac{1}{2}\nabla_{\rho_1}^2 - \frac{1}{2}\nabla_{\rho_2}^2 - \frac{Z}{\rho_1} - \frac{Z}{\rho_2} + \frac{1}{|\boldsymbol{\rho}_1 - \boldsymbol{\rho}_2|}\right\}\Psi_0 = \mathcal{E}_0\Psi_0$$

The "normal" isotope shift is

$$\Delta E_{\text{normal}} = -\frac{\mu}{M} \left(\frac{\mu}{m}\right) \mathcal{E}_0 \quad 2R_{\infty}$$

The first-order "specific" isotope shift is

$$\Delta E_{\text{specific}}^{(1)} = -\frac{\mu}{M} \left(\frac{\mu}{m}\right) \langle \Psi_0 | \nabla_{\rho_1} \cdot \nabla_{\rho_2} | \Psi_0 \rangle \quad 2R_{\infty}$$

The second-order "specific" isotope shift is

$$\Delta E_{\text{specific}}^{(2)} = \left(-\frac{\mu}{M}\right)^2 \left(\frac{\mu}{m}\right) \langle \Psi_0 | \nabla_{\rho_1} \cdot \nabla_{\rho_2} | \Psi_1 \rangle \quad 2R_{\infty}$$

Two contexts

I. For total transition frequencies

$$\Delta E = E_i - E_f$$

and the dominant source of uncertainty is the higher-order QED term $\alpha^4 \mathcal{E}_{ho}^{(0)} \simeq 10^{-8}$, where here and throughout the superscript denotes the power of λ .

II. For isotope shifts

terms independent of λ cancel (except for the last \bar{r}_c^2 term), and the term $\alpha^4 \lambda \mathcal{E}_{ho}^{(1)} \simeq 10^{-12}$ contributes only at the level of a few kHz. The isotope shift between isotopes A and B in the same atomic state is then

$$\begin{aligned} \Delta E(B-A) &= \\ \lambda_{-} \left[\mathcal{E}_{\rm NR}^{(1)} - \mathcal{E}_{\rm NR}^{(0)} + \lambda_{+} \left(\mathcal{E}_{\rm NR}^{(2)} - \mathcal{E}_{\rm NR}^{(1)} \right) + \alpha^{2} \left(\mathcal{E}_{\rm rel}^{(1)} - \mathcal{E}_{\rm rel}^{(0)} \right) \\ &+ \alpha^{3} \left(\mathcal{E}_{\rm QED}^{(1)} - \mathcal{E}_{\rm QED}^{(0)} \right) + \alpha^{4} \left(\mathcal{E}_{\rm ho}^{(1)} - \mathcal{E}_{\rm ho}^{(0)} \right) \right] \\ &+ \left(\bar{r}_{\rm c,B}^{2} - \bar{r}_{\rm c,A}^{2} \right) \mathcal{E}_{\rm nuc}^{(0)} \end{aligned} \tag{1}$$

where $\lambda_{\pm} = (\mu/M)_B \pm (\mu/M)_A$.

semin44.tex, March, 2008

Mass Scaling

$$m, e$$

 \mathbf{X}_1
 \mathbf{X}_2
 \mathbf{X}_1
 \mathbf{X}_2
 \mathbf{X}_1
 \mathbf{X}_2
 $\mathbf{$

$$\mathbf{R} = \frac{M\mathbf{X} + m\mathbf{x}_1 + m\mathbf{x}_2}{M + 2m}$$
$$\mathbf{r}_1 = \mathbf{X} - \mathbf{x}_1$$
$$\mathbf{r}_2 = \mathbf{X} - \mathbf{x}_2$$

and ignore centre-of-mass motion. Then

$$H = -\frac{\hbar^2}{2\mu} \nabla_{r_1}^2 - \frac{\hbar^2}{2\mu} \nabla_{r_2}^2 - \frac{\hbar^2}{M} \nabla_{r_1} \cdot \nabla_{r_2} - \frac{Ze^2}{r_1} - \frac{Ze^2}{r_2} + \frac{e^2}{|\mathbf{r_1} - \mathbf{r_2}|}$$

New Variational Techniques

I. Double the basis set

I

II. Include the screened hydrogenic function

 $\phi_{\mathsf{SH}} = \psi_{1s}(Z)\psi_{nL}(Z-1)$

explicitly in the basis set.

III. Optimize the nonlinear parameters

$$\begin{aligned} \frac{\partial E}{\partial \alpha_t} &= -2\langle \Psi_{\mathsf{tr}} \mid H - E \mid r_1 \Psi(\mathbf{r}_1, \mathbf{r}_2; \alpha_t) \pm r_2 \Psi(\mathbf{r}_2, \mathbf{r}_1; \alpha_t) \rangle \\ \frac{\partial E}{\partial \beta_t} &= -2\langle \Psi_{\mathsf{tr}} \mid H - E \mid r_2 \Psi(\mathbf{r}_1, \mathbf{r}_2; \alpha_t) \pm r_1 \Psi(\mathbf{r}_2, \mathbf{r}_1; \alpha_t) \rangle \end{aligned}$$

for t = 1, 2, with $\langle \Psi_{tr} | \Psi_{tr} \rangle = 1$. $\Psi(\mathbf{r}_1, \mathbf{r}_2; \alpha_t) = \text{terms in } \Psi_{tr}$ which depend explicitly on α_t .

semin04.tex, January, 2005

QED Corrections

the QED shift for a $1s^2nL$ n 2L state of lithium then has the form

$$E_{\text{QED}} = E_{\text{L},1} + E_{\text{M},1} + E_{\text{R},1} + E_{\text{L},2}$$

where the main one-electron part is (in atomic units)

$$E_{\rm L,1} = \frac{4Z\alpha^3 \langle \delta(\mathbf{r}_i) \rangle^{(0)}}{3} \left\{ \ln(Z\alpha)^{-2} - \beta(n^2 L) + \frac{19}{30} + \cdots \right\}$$

the mass scaling and mass polarization corrections are

$$E_{\mathrm{M},1} = \frac{\mu \langle \delta(\mathbf{r}_i) \rangle^{(1)}}{M \langle \delta(\mathbf{r}_i) \rangle^{(0)}} E_{\mathrm{L},1} + \frac{4Z \alpha^3 \mu \langle \delta(\mathbf{r}_i) \rangle^{(0)}}{3M} \left[1 - \Delta \beta_{\mathrm{MP}}(n^2 L) \right]$$

and the recoil corrections (including radiative recoil) are given by

$$E_{\rm R,1} = \frac{4Z^2 \mu \alpha^3 \langle \delta(\mathbf{r}_i) \rangle^{(0)}}{3M} \left[\frac{1}{4} \ln(Z\alpha)^{-2} - 2\beta(n^2 L) - \frac{1}{12} - \frac{7}{4}a(n^2 L) \right]$$

where $\beta(n^{2}L) = \ln(k_{0}/Z^{2}R_{\infty})$ is the two-electron Bethe logarithm.

semin08.tex, January, 2005

The dominating nuclear excitations are E1 transitions by the electric dipole coupling $-\vec{d} \cdot \vec{E}$ [20]. The energy shift due to the two-photon exchange in the temporal gauge is

$$E_{\text{pol}} = ie^{2}\psi^{2}(0)\int \frac{d\omega}{2\pi} \int \frac{d^{3}k}{(2\pi)^{3}}\omega^{2} \frac{(\delta^{ik} - \frac{k^{i}k^{k}}{\omega^{2}})}{\omega^{2} - k^{2}} \frac{(\delta^{jl} - \frac{k^{j}k^{l}}{\omega^{2}})}{\omega^{2} - k^{2}}$$
$$\times \operatorname{Tr}\left[\left(\gamma^{j}\frac{1}{\not{p} - \not{k} - m}\gamma^{i} + \gamma^{i}\frac{1}{\not{p} + \not{k} - m}\gamma^{j}\right)\frac{(\gamma^{0} + I)}{4}\right]$$
$$\times \langle\phi_{N}|d^{k}\frac{1}{E_{N} - H_{N} - \omega}d^{l}|\phi_{N}\rangle, \tag{14}$$

where $\psi^2(0) = (m\alpha)^3 \langle \sum_a \delta^3(r_a) \rangle$, $p = (m, \vec{0})$, and we used plane wave approximation for the electrons, since the characteristic photon momentum k is much larger than the inverse Bohr radius. After performing k integration and replacing $\omega = iw$, one obtains

$$E_{\rm pol} = -m\alpha^4 \left\langle \sum_a \delta^3(r_a) \right\rangle (m^3 \tilde{\alpha}_{\rm pol}), \tag{15}$$

where $\tilde{\alpha}_{pol}$ is a kind of electric polarizability of the nucleus, which is given by the following double integral:

$$\tilde{\alpha}_{\rm pol} = \frac{16\alpha}{3} \int_{E_T}^{\infty} dE \frac{1}{e^2} |\langle \phi_N | \vec{d} | E \rangle|^2$$

FIG. 1 (color online). Electric dipole line strength by Nakamura *et al.* [20] adapted to the new value of E_T from Ref. [7].

$$\tilde{\alpha}_{\text{pol}} = 60.9(6.1) \text{ fm}^3 = 1.06(0.11) \times 10^{-6} m^{-3}$$
 (18)

Calculated isotope shift parameter $\Delta E_{B-A}^{(0)}$ for various transitions in Li and Be⁺. Units are MHz.

lsotopes	$2{}^{2}\mathrm{P}_{1/2}$ – $2{}^{2}\mathrm{S}_{1/2}$	$2{}^{2}\mathrm{P}_{3/2}$ – $2{}^{2}\mathrm{S}_{1/2}$	$3{}^2S_{1/2}$ – $2{}^2S_{1/2}$
⁷ Li– ⁶ Li	-10532.111(6)	-10532.506(6)	-11452.821(2)
⁷ Li– ⁸ Li	7 940.627(5)	7 940.925(5)	8634.989(2)
⁷ Li– ⁹ Li	14098.840(8)	14099.369(8)	15331.799(3)
7 Li $-^{11}$ Li a	23082.642(11)	23083.493(11)	25101.470(5)
9 Be $-{}^7$ Be	-49 225.765(19)	-49231.814(19)	-48514.03(2)
9 Be $-{}^{10}$ Be	17 310.44(6)	17 312.57(6)	17060.56(6)
${}^9Be\!-\!{}^{11}Be$	31 560.01(6)	31 563.89(6)	31104.60(6)

^aIncludes nuclear polarization corrections of 62 kHz for the $3^{2}P_{J}-2^{2}S_{1/2}$ transitions, and 39 kHz for the $3^{2}S_{1/2}-2^{2}S_{1/2}$ transition.

$$\Delta E(B-A) = \lambda_{-} \left[\mathcal{E}_{tot}^{(1)} - \mathcal{E}_{tot}^{(0)} + \lambda_{+} \left(\mathcal{E}_{tot}^{(2)} - \mathcal{E}_{tot}^{(1)} \right) \right] + C \left(\bar{r}_{c,B}^{2} - \bar{r}_{c,A}^{2} \right)$$
$$= \Delta E_{(B-A)}^{(0)} + C \left(\bar{r}_{c,B}^{2} - \bar{r}_{c,A}^{2} \right)$$

and for Be⁺: $C(2^{2}P - 2^{2}S) = 16.912 \text{ MHz/fm}^{2}$ $C(3^{2}S - 2^{2}S) = 10.376 \text{ MHz/fm}^{2}$ Contributions to the ${}^{7}\text{Li}-{}^{6}\text{Li}$ isotope shift for the $1s^{2}3s \, {}^{2}\text{S}-1s^{2}2s \, {}^{2}\text{S}$ transition. Units are MHz.

Contribution	$3^{2}S-2^{2}S$
μ/M	11 454.6557 ^a
$(\mu/M)^2$	-1.7940
$lpha^2 \mu/M$	0.0156(3)
$lpha^3\mu/M$, one-electron	-0.067(2)
$lpha^3\mu/M$, two-electron	0.010(2)
$r_{ m rms}^2$	$1.238{\pm}0.39$
$r_{ m rms}^2\mu/M$	-0.0007(1)
Total	$11454.058(2)\pm0.39$
$King^{\mathrm{b}}$	11 446.1
Vadla $et \ al.^{ m c}$ (experiment)	11 434(20)
Bushaw $et al.^d$ (experiment)	11 453.734(30)

^aThe additional uncertainty from the atomic mass determinations is ±0.008 MHz.
^bF. W. King, Phys. Rev. A 40, 1735 (1989); 43, 3285 (1991).
^cC. Vadla, A. Obrebski, and K. Niemax, Opt. Commun. 63, 288 (1987).
^dB. A. Bushaw, W. Nörtershäuser, G. Ewalt, A. Dax, and G. W. F. Drake, Phys. Rev. Lett. 91, 043004 (2003).

semin18.tex, March, 2008

Atom/ion transition	$\mathcal{E}_{ ext{tot}}^{(0)}$	$\mathcal{E}_{ ext{tot}}^{(1)}$	$\mathcal{E}_{ ext{tot}}^{(2)}$
$Li(2^{2}P_{1/2} - 2^{2}S_{1/2})$	0.067 915 6344(29)	-0.122 990 87(7)	-0.004 236(3)
$Li(2^{2}P_{3/2} - 2^{2}S_{1/2})$	0.067 917 1624(29)	-0.122 995 47(7)	-0.004 236(3)
$Li(3^{2}S_{1/2} - 2^{2}S_{1/2})$	0.123 970 5407(35)	-0.13376436(3)	0.1236596(6)
$Li(2^{2}S_{1/2})$ I.P.	0.198 158 5744(26)	-0.211 012 55(3)	0.235 2863(6)
$Be^+(2{}^2P_{1/2}-2{}^2S_{1/2})$	0.145 504 341(25)	-0.43204823(7)	-0.09475(14)
$Be^+(2^2P_{3/2}-2^2S_{1/2})$	0.145 534 287(25)	-0.43210132(7)	-0.09475(14)
$Be^+(3^2S_{1/2}-2^2S_{1/2})$	0.402040134(26)	-0.42586169(7)	0.339 98300(2)
$Be^+(2^2S_{1/2})$ I.P.	0.669 290 555(24)	-0.701 626 33(7)	0.72196394(1)

Total coefficients for various transitions in Li and Be⁺. Units are a.u.

$$\Delta E(B-A) = \lambda_{-} \left[\mathcal{E}_{\text{tot}}^{(1)} - \mathcal{E}_{\text{tot}}^{(0)} + \lambda_{+} \left(\mathcal{E}_{\text{tot}}^{(2)} - \mathcal{E}_{\text{tot}}^{(1)} \right) \right] + \left(\bar{r}_{\text{c},B}^{2} - \bar{r}_{\text{c},A}^{2} \right) \mathcal{E}_{\text{nuc}}^{(0)}$$

where $\lambda_{\pm} = (\mu/M)_{B} \pm (\mu/M)_{A}$, and
 $\mathcal{E}_{\text{tot}}^{(k)} = \mathcal{E}_{\text{NR}}^{(k)} + \alpha^{2} \mathcal{E}_{\text{rel}}^{(k)} + \alpha^{3} \mathcal{E}_{\text{QED}}^{(k)} + \alpha^{4} \mathcal{E}_{\text{ho}}^{(k)}$ for each $k = 0, 1, 2$.

semin44.tex, March, 2008

Calculated isotope shift parameter $\Delta \nu_{B-A}^{(0)}$ for various transitions in Li and Be⁺. Units are MHz.

lsotopes	$2^{2}P_{1/2}$ - $2^{2}S_{1/2}$	$2^{2}P_{3/2}$ - $2^{2}S_{1/2}$	$3^{2}S_{1/2}$ - $2^{2}S_{1/2}$
⁷ Li– ⁶ Li	-10532.111(6)	-10 532.506(6)	-11452.821(2)
⁷ Li− ⁸ Li	7 940.627(5)	7 940.925(5)	8634.989(2)
⁷ Li– ⁹ Li	14 098.840(8)	14 099.369(8)	15331.799(3)
7 Li $-^{11}$ Li a	23 082.642(11)	23 083.493(11)	25 101.470(5)
9 Be $-{}^7$ Be	-49 225.765(19)	-49 231.814(19)	-48514.03(2)
9 Be $-{}^{10}$ Be	17310.44(6)	17 312.57(6)	17060.56(6)
9 Be– 11 Be	31 560.01(6)	31 563.89(6)	31 104.60(6)

^aIncludes nuclear polarization corrections of 62 kHz for the $3\,^2\mathrm{P}_J$ - $2\,^2\mathrm{S}_{1/2}$ transitions, and 39 kHz for the $3\,^2\mathrm{S}_{1/2}$ - $2\,^2\mathrm{S}_{1/2}$ transition. semin44.tex, March, 2008

Determination of the Nuclear Radius for Isotopes of Lithium

$$R_{\rm rms}^2({}^{A}{\rm Li}) = R_{\rm rms}^2({}^{6}{\rm Li}) + \frac{E_{\rm meas}^A - E_0^A}{C}$$
(1)

where E_{meas}^A is the measured isotope shift for ${}^A\text{Li}$ relative to ${}^6\text{Li}$, and E_0^A contains all the calculated contributions to the isotope shift with the exception of the shift due to finite nuclear size.

Values of E_0^A to determine $R_{\rm rms}^2$ from the measured isotope shift in various transitions. Units are MHz.

Isotopes	$E_0^A(2{}^2\!P_{1/2}-2{}^2\!S)$	$E_0^A(2{}^2\!P_{3/2}-2{}^2\!S)$	$E_0^A(3^2\!S-2^2\!S)$
⁷ Li− ⁶ Li	10532.19(7)	10 532.58(7)	11 453.00(6)
⁸ Li– ⁶ Li	18 472.86(12)	18 473.55(12)	20 088.10(10)
⁹ Li– ⁶ Li	24 631.11(16)	24 632.03(16)	26785.01(13)
10 Li $-^{6}$ Li	29 575.46(20)	29 576.56(20)	32 161.92(17)
11 Li $-^{6}$ Li	33615.19(24)	33616.45(24)	36 555.11(21)

 $C=-2.4565~\mathrm{MHz}/\mathrm{fm^2}$ for the $2~^2\mathrm{P}_J-2~^2\mathrm{S}_{1/2}$ I.S.

 $C = -1.5661 \text{ MHz/fm}^2$ for $3 \ ^2\text{S}_{1/2} - 2 \ ^2\text{S}_{1/2}$ I.S.

Comparison between theory and experiment for the fine structure splittings and ⁷Li-⁶Li splitting isotope shift (SIS). Units are MHz.

Reference	7 Li $2 \ ^{2}P_{3/2} - 2 \ ^{2}P_{1/2}$	6 Li $2~^{2}\mathrm{P}_{3/2} - 2~^{2}\mathrm{P}_{1/2}$	SIS
Present work	$10051.333{\pm}3^{\mathrm{a}}$	$10050.937{\pm}3^{\mathrm{a}}$	0.395
Brog $et al.$ ^b	10053.24(22)	10052.76(22)	0.48(31)
Scherf <i>et al.</i> ^c	10053.4(2)	10051.62(20)	1.78(28)
Walls $et~al.$ d	10052.37(11)	10053.044(91)	-0.67(14)
Orth $et~al.$ $^{\rm e}$	10053.184(58)		
Noble <i>et al.</i> ^f	10053.119(58)	10052.964(50)	0.155(76)
Das $et~al.$ ^g	10052.862(67)	10051.999(46)	-0.863(79)
Recommended value	10053.2(1)	10052.8(1)	

^aIncludes uncertainty of ± 3 MHz due to mass-independent higher-order terms not yet calculated.

^bK.C. Brog, Phys. Rev. 153, 91 (1967).

- ^cW. Scherf, O. Khait, H. Jager, and L. Windholz, Z. Phys. D 36, 31 (1996).
- ^dJ. Walls, R. Ashby, J. J. Clarke, B. Lu, and W. A. van Wijngaarden, Eur. Phys. J D **22** 159 (2003).

^eH. Orth, H. Ackermann, and E.W. Otten, Z. Phys. A 273, 221 (1975).

^fG.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A **7**4, 012502 (2006).

^gD. Das and V. Natarajan, Phys. Rev. A **75**, 052508 (2007).

semin43.tex, May, 2006

Contributions to the ${}^{9}\text{Be}^{+}-{}^{11}\text{Be}^{+}$ isotope shifts for the $1s^{2}2p \, {}^{2}\text{P}_{J}-1s^{2}2s \, {}^{2}\text{S}$ transitions. Units are MHz.

Contribution	$2{}^2\mathrm{P}_{1/2}$ – $2{}^2\mathrm{S}$	$2^{2}P_{3/2}$ – $2^{2}S$
	Theory	
μ/M	31 568.486(8)(56) ^a	31 568.486(8)(56) ^a
$(\mu/M)^2$	0.764(1)	0.764(1)
$lpha^2\mu/M$	-10.041(2)	-6.165(1)
$lpha^3\mu/M$, anom. magnetic	-0.002	0.001
$lpha^3\mu/M$, one-electron	0.773(7)	0.773(7)
$lpha^3\mu/M$, two-electron	0.030(5)	0.030(5)
$r_{ m rms}^2$	1.147 ± 2.3	1.147 ± 2.3
Total	31 561.154(57)	31 565.033(57)

The SIS is 3.879 MHz.

A Proving Ground for Nuclear Structure Theories

References

- Z.-C. Yan, M. Tambasco, and G. W. F. Drake, "Energies and oscillator strengths for lithiumlike ions", Phys. Rev. A 57, 1652 (1998).
- Z.-C. Yan and G. W. F. Drake, "Relativistic and QED energies in lithium", Phys. Rev. Lett. 81, 774 (1998).
- Z.-C. Yan and G. W. F. Drake, "Calculations of lithium isotope shifts", Phys. Rev. A, 61, 022504 (2000).
- Z.-C. Yan and G. W. F. Drake, "Lithium transition energies and isotope shifts: QED recoil corrections", Phys. Rev. A, 66, 042504 (2002).
- Z.-C. Yan and G. W. F. Drake, "Bethe logarithm and QED shift for lithium", Phys. Rev. Lett. 91, 113004 (2003).

semin08.tex, January, 2005 3

Conclusions

- Sufficiently accurate theory is in place to measure nuclear radii from high precision spectroscopy on two- and three-electron atoms.
- New QED theory is now available for for the spin-independent terms of order α^4 Ryd. These can be tested at present levels of experimental accuracy.
- A new measurement of the fine structure constant can be obtained from helium fine structure, but a substantial discrepancy between theory and experiment remains for the J = 1 → 2 interval.

semin24.tex, January 2005

Main Theme:

• Obtain essentially exact solutions up to order α^3 Ry for the entire singly excited spectrum of helium and lithium – new results for Be⁺.

What's New?

- 1. Essentially exact solutions to the quantum mechanical three- and fourbody problems.
- 2. Recent advances in calculating QED corrections especially the Bethe logarithm.
- 3. Single atom spectroscopy.

March 2008.

semin00.tex, March 2008.

Charge Radii Measurements

Methods of measuring nuclear radii (interaction radii, matter radii, charge radii)

- Nuclear scattering model dependent
- Electron scattering stable isotope only
- Muonic atom spectroscopy stable isotope only
- Atomic isotope shift

RMS point proton radii (fm) from theory and experiment

	He-3	He-4	He-6	He-8
QMC Theory	1.74(1)	1.45(1)	1.89(1)	1.86(1)
μ -He Lamb Shift		1.474(7)		
Atomic Isotope Shift	1.766(6)		?	?
p-He Scattering			1.95(10) gg 1.81(09) go	1.68(7)

G.D. Alkhazov et al., Phys. Rev. Lett. **78**, 2313 (1997); D. Shiner et al., Phys. Rev. Lett. **74**, 3553 (1995).

Proposed experiment: lithium "halo" isotopes

Summary of the nuclear spin (S), lifetime $(T_{1/2})$, atomic mass (M_A) , magnetic dipole and electric quadrupole nuclear moments $(\mu_I \text{ and } Q)$, hyperfine structure splitting (HFS, in the 2S state), rms mass radius $R_{\rm rms}^{(m)}$, and charge radius $R_{\rm rms}^{(e)}$ for the isotopes of lithium.

Quantity	⁷ Li	⁸ Li	⁹ Li	¹¹ Li
S	3/2	2	3/2	3/2
$T_{1/2}~({\sf ms})$	∞	838(6)	178.3(4)	8.59(14)
M_A (u)	7.0160040(5)	8.0224867(5)	9.0267891(21)	11.043796(29)
μ_I (nm)	3.256 4268(17)	1.653560(18)	3.4391(6)	3.6678(25)
Q (mbarn)	-40.0(3)	31.1(5)	-27.4(1.0)	-31.2(4.5)
HFS (MHz)	803.5040866(10)	382.543(7)	856(16)	920(39)
$R_{ m rms}^{(m)}$ (fm)	2.35(3)	2.38(2)	2.32(2)	3.10(17)
$R_{ m rms}^{(e)}$ (fm)	2.39(3)	2.25(1) ^a	$2.17(1)^{a}$?

^aQuantum Monte Carlo calculation by Steven C. Pieper and Robert B. Wiringa, ANL.

Experiment: Use two-photon spectroscopy to measure the isotope shift in the 2S - 3S transition for ¹¹Li to an accuracy of ± 200 kHz. Compare with high precision theory to determine the nuclear charge radius to an accuracy of ± 0.03 fm.

semin01.tex, January, 2005

Comparison Result for Li⁺

From the isotope shift in the $1s2s~^3\mathrm{S}_1-1s2p~^3\mathrm{P}_J$ transitions of Li+,

$$R_{\rm rms}(^{6}{\rm Li}) - R_{\rm rms}(^{7}{\rm Li}) = 0.15 \pm 0.01 \text{ fm}$$

From nuclear scattering data

 $R_{\rm rms}(^{6}{\rm Li}) = 2.55 \pm 0.04 \,{\rm fm}$ $R_{\rm rms}(^{7}{\rm Li}) = 2.39 \pm 0.03 \,{\rm fm}$ difference = $0.16 \pm 0.05 \,{\rm fm}$

E. Riis, A. G. Sinclair, O. Poulsen, G. W. F. Drake, W. R. C. Rowley and A. P. Levick, Phys. Rev. A 49, 207 (1994).

semin02.tex, January, 2005

Comparison between theory and experiment for the ⁷Li transition frequencies and ionization potential. Units are cm^{-1} .

Transition	Theory	Experiment	Difference
$2^{2}P_{1/2} - 2^{2}S_{1/2}$	14903.6541(10)	14 903.648130(14) ^a	-0.0060(10) *
$2 {}^{2}P_{3/2} - 2 {}^{2}S_{1/2}$	14903.9893(10)	14 903.983648(14) ^a	-0.0057(10) *
$3 {}^{2}S_{1/2} - 2 {}^{2}S_{1/2}$	27 206.0926(9)	27 206.0952(10) ^b	-0.0025(25)
, , ,		27 206.09420(10) ^c	-0.0016(9)
		27 206.09412(13) ^d	-0.0015(9)
$2~^2\mathrm{S}_{1/2}$ I.P.	43487.1583(6)	43 487.150(5) ^e	0.0083(50)
,		$43487.15934(17)^{ m f}$	-0.0010(6)

- ^aC. J. Sansonetti, B. Richou, R. Engleman, Jr., and L. J. Radziemski, Phys. Rev. A 52, 2682 (1995).
- ^bL. J. Radziemski, R. Engleman, Jr., and J. W. Brault, Phys. Rev. A 52, 4462 (1995).
- ^cB.A. Bushaw, W. Nörtershäuser, G. Ewald, A. Dax, and G.W. F. Drake, Phys. Rev. Lett., **91**, 043004 (2003).
- ^dG. Ewald, W. Nörtershäuser, A. Dax, G. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A Wojtaszek, B.A. Bushaw, G.W. F. Drake, Z.-C. Yan, and C. Zimmermann, Phys. Rev. Lett., **93**, 113002 (2004).
- ^eC. E. Moore, NSRDS-NBS Vol. 14 (U.S. Department of Commerce, Washington, DC, 1970)
- ^fB.A. Bushaw, preliminary value
- * no Bethe log calculation for $2\ ^2P$ states.

Partial contributions to the Bethe log for the $1s5g\ ^1{\rm G}$ state of He.

		Partial		
Ω	N	Bethe log	Difference	Ratio
		$5 {}^{1}\text{G} - n {}^{1}\text{F}$	(25.9%)	
4	222	4.369 008 3539		
5	353	4.370 451 7910	0.001 443 4372	
6	522	4.370 605 2673	0.000 153 4763	9.405
7	688	4.370 622 6186	0.000 017 3513	8.845
8	878	4.370 624 3521	0.000 001 7335	10.009
9	1105	4.370 624 5545	0.000 000 2023	8.568
10	1399	4.370 624 5749	0.000 000 0204	9.916
11	1716	4.370 624 5772	0.000 000 0023	8.836
Ex	trap.	4.370 624 5775	0.000 000 0003	
		$5 {}^{1}\text{G} - n {}^{1}\text{G}$	° (33.3%)	
4	169	4.370 262 9044		
5	265	4.370 397 1135	0.000 134 2091	
6	385	4.370 411 1743	0.000 014 0608	9.545
7	530	4.370 412 7458	0.000 001 5715	8.947
8	699	4.370 412 9039	0.000 000 1582	9.935
9	894	4.370 412 9227	0.000 000 0187	8.443
10	1126	4.370 412 9247	0.000 000 0020	9.353
12	1384	4.370 412 9249	0.000 000 0003	7.664
Ex	trap.	4.370 412 9250	0.0000000001	
$5 \ {}^{1}\text{G} - n \ {}^{1}\text{H}$ (40.7%)				
4	260	4.370 124 5941		
5	403	4.370 283 7562	0.000 159 1621	
6	585	4.370 299 9202	0.000 016 1640	9.847
7	806	4.370 301 7021	0.000 001 7818	9.071
8	1066	4.370 301 8745	0.000 000 1725	10.332
9	1372	4.370 301 8944	0.000 000 0199	8.669
10	1742	4.370 301 8965	0.000 000 0020	9.705
Ex	trap.	4.370 301 8967	0.000 000 0002	

Atomic Isotope Shift

Isotope Shift $\delta v = \delta v_{MS} + \delta v_{FS}$

 $IS(2^{3}S_{1} - 2^{3}P_{2}) = 34473.625(20) + 1.210(\langle r^{2} \rangle_{He4} - \langle r^{2} \rangle_{He6}) MHz$ $IS(2^{3}S_{1} - 3^{3}P_{2}) = 43196.202(20) + 1.008(\langle r^{2} \rangle_{He4} - \langle r^{2} \rangle_{He6}) MHz$ *G. Drake, Univ. of Windsor, private communication

100 kHz error in frequency $\leftarrow \rightarrow 1\%$ error in radius

Single Atom Detection

Nucleon-Nucleon Interaction at Low Energy

- Fundamental theory QCD not calculable in low-energy regime (nucleus structure)
- Modern nuclear calculation uses "effective potential" between nucleons

Isotope Shifts and Charge Radius of Halo Nuclei

Gordon W.F. Drake University of Windsor and GSI

<u>Collaborators</u>

Zong-Chao Yan (UNB) Mark Cassar (PDF) Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student) Atef Titi (Ph.D. student) Razvan Nistor (M.Sc. completed) Levent Inci (M.Sc. completed)

Financial Support: NSERC and SHARCnet Imperial College, February 27, 2006.

semin00.tex

Main Theme:

• Derive nuclear charge radii by combining atomic theory with high precision spectroscopy (especially ⁶He and ¹¹Li halo nuclei).

What's New?

- 1. Essentially exact solutions to the quantum mechanical three- and fourbody problems.
- 2. Recent advances in calculating QED corrections especially the Bethe logarithm.
- 3. Single atom spectroscopy.

semin00.tex, January 2005

Helium: Slaying the Dragon of Atomic Physics

State	Singlet	Triplet
10 S	-2.005 142 991 747 919(79)	-2.005 310 794 915 611 3(11)
10 P	-2.0049879838022179(26)	-2.005 068 805 497 706 7(30)
10 D	-2.00500207165425681(75)	-2.00500281808022884(53)
10 F	-2.00500041756466880(11)	-2.00500042168660488(26)
10 G	-2.005000112764318746(22)	-2.005000112777003317(21)
10 H	-2.005000039214394532(17)	-2.005000039214417416(17)
10 I	-2.0050000160865161947(3)	-2.0050000160865162194(3)
10 K	-2.0050000073883758769(0)	-2.0050000073883758769(0)

/ariational	energies	for	the	n =	= 10	singlet	and	triplet	states	of	helium	

$$E = -2 - \frac{1}{2n^2} + \cdots$$
$$= -2.005 \cdots$$

semin41.tex, January, 2005

Effective Model & Quantum Monte Carlo Calculation

S. Pieper and R. Wiringa. Ann. Rev. Nucl. Part. Sci. 51, 53 (2001)

Two-body potential
Argonne V18 $H = \sum_{i} K_{i} + \sum_{i < j} v_{ij}^{\gamma} + v_{ij}^{\pi} + v_{ij}^{R}$ $K_{i} = \sum_{i} K_{i} + \sum_{i < j} v_{ij}^{\gamma} + v_{ij}^{\pi} + v_{ij}^{R}$

Coupling parameters fit to NN scattering data

Problem: binding energy of most light nuclei too small

Three-body potential *Illinois-2*

$$V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^{3\pi} + V_{ijk}^{R}$$

$$\begin{vmatrix} \pi \\ \pi \\ a \end{vmatrix} = \int_{\pi}^{\pi} \int_{\pi$$

Coupling parameters fit to energy levels of light nuclei

Fligh precision measurements for lithium	High	precision	measurements	for	lithium
--	------	-----------	--------------	-----	---------

Group	Measurements
NIST (Radziemski et al. [1])	many transitions
GSI (Bushaw et al. [3])	$2^{2}S - 2^{2}P$ I.S. $2^{2}S - 3^{2}S$ I.S.
GSI (Ewald et al. [4]) TRIUMF/GSI (Sánchez et al. [5])	⁸ Li, ⁹ Li I.S. ¹¹ Li I.S.
Windsor/UNB (Yan, Drake [6])	theory

[1] L. J. Radziemski, R. Engleman, Jr., and J. W. Brault, Phys. Rev. A 52, 4462 (1995).
 [2] J. Walls, R, Ashby J.J. Clarke, B. Lu, and W.A. van Wijngaarden, Eur. Phys. J D 22 159 (2003).

[3] B. A. Bushaw, W. Nörtershäuser, G. Ewalt, A. Dax, and G. W. F. Drake, Phys. Rev. Lett. **91**, 043004 (2003).

[4] G. Ewald, W. Nördershäuser, A. Dax, S. Göte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sánchez, A. Wojtaszek, B.A. Bushaw, G.W.F. Drake, Z.-C. Yan, and C. Zimmermann, Phys. Rev. Lett. **93**, 113002 (2004) (2004).

[5] R. Sánchez et al. Phys. Rev. Lett. 96, 033022 (2006).

[6] Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 91, 113004 (2003).

transp05.tex, Feb., 2006

Comparison of values for the rms nuclear charge radius R of ³He obtained by various methods. (IS: isotope shift)

Method	R (fm)	Year	Author
e ⁻ scattering	1.87(5)	1965	Collard <i>et al.</i>
e ⁻ scattering	1.88(5)	1970	McCarthy <i>et al.</i>
e ⁻ scattering	1.844(45)	1977	McCarthy <i>et al.</i>
e ⁻ scattering	1.89(5)	1977	Szalata et al.
e ⁻ scattering	1.935(30)	1983	Dunn <i>et al</i> .
e ⁻ scattering	1.877(30)	1984	Retzlaff et al.
e ⁻ scattering	1.976(15)	1985	Ottermann et al.
e^- scattering	1.959(30) ^a	1994	Amroun <i>et al.</i>
Theory	1.92	1983	Hadjimichael et al.
Theory	1.92	1986	Schiavilla et al.
Theory	1.93	1986	Chen et al.
Theory	1.95	1987	Strueve <i>et al.</i>
Theory	1.92	1988	Kim et al.
Theory	1.958(6)	1993	Wu et al.
Theory	1.954(7)	1993	Friar <i>et al.</i>
Theory	1.96(1)	2001	Piper and Wiringa
Atomic IS	1.951(10) ^b	1993	Drake
Atomic IS	1.9659(14)	1994	Shiner et al.
Atomic IS	1.985(42)	1994	Marin <i>et al.</i>
Comparison of nuclear charge radius determinations for ³He.

semin20.tex, January, 2005

Comparison of nuclear charge radius determinations for ⁶Li.

The inner error bars exclude the ± 0.03 fm uncertainty due to the reference radius $r_{\rm c}(^{7}{\rm Li}) = 2.39(3)$ fm.

semin21.tex, January, 2005

Strategy

- 1. Calculate nonrelativistic eigenvalues for helium-like and lithium-like ions to spectroscopic accuracy.
- 2. Include finite nuclear mass (mass polarization) effects up to second order by perturbation theory.
- 3. Include relativistic and QED corrections by perturbation theory.
- 4. Compare the results for transition frequencies with high precision measurements.
- 5. Use the residual discrepancy between theory and experiment to measure the nuclear charge radius of exotic "halo" isotopes of lithium such as 11 Li.

Question: Why not use hydrogenic ions where the theory is much simpler?

Answer: Line widths are narrower in the corresponding helium-like or lithium-like ion by a factor of 100 or more, and these charge states are easier to produce.

semin22.tex, January 2005

Bethe logarithms for lithium

N	$eta(2\ ^2\mathrm{S})$	Difference	Ratio
87	2.846 5271		
207	2.964 2629	0.117 7357	
459	2.978 9857	0.014 7228	8.00
937	2.9807196	0.0017339	8.49
1763	2.980 9043	0.000 1847	9.39
Extrp.	2.98093(3)		
$Li^+(1s^2 \ ^1\mathrm{S})$	2.982624555(4)		
N	$\beta(3\ ^2\mathrm{S})$	Difference	Ratio
N 87	β(3 ² S) 2.746 4739	Difference	Ratio
N 87 207	β(3 ² S) 2.746 4739 2.939 4848	Difference 0.193 0108	Ratio
N 87 207 459	$\beta(3\ ^2S)$ 2.746 4739 2.939 4848 2.975 0774	Difference 0.193 0108 0.035 5926	Ratio 5.42
N 87 207 459 937	$\begin{array}{c} \beta(3\ ^2\mathrm{S}) \\ 2.746\ 4739 \\ 2.939\ 4848 \\ 2.975\ 0774 \\ 2.981\ 2660 \end{array}$	Difference 0.193 0108 0.035 5926 0.006 1886	Ratio 5.42 5.75
N 87 207 459 937 1763	$\begin{array}{c} \beta(3\ ^2\mathrm{S}) \\ 2.746\ 4739 \\ 2.939\ 4848 \\ 2.975\ 0774 \\ 2.981\ 2660 \\ 2.982\ 2261 \end{array}$	Difference 0.193 0108 0.035 5926 0.006 1886 0.000 9601	Ratio 5.42 5.75 6.45
N 87 207 459 937 1763 Extrp.	$\beta(3 \ ^2S)$ 2.746 4739 2.939 4848 2.975 0774 2.981 2660 2.982 2261 2.982 4(2)	Difference 0.193 0108 0.035 5926 0.006 1886 0.000 9601	Ratio 5.42 5.75 6.45

Z.-C. Yan and G. W. F. Drake, "Bethe logarithm and QED shift for lithium", Phys. Rev. Lett. **91**, 113004 (2003).

Bethe logarithms for lithium – finite mass correction

\overline{N}	$\Delta\beta_M(2^2\mathrm{S})$	Difference	Ratio
87	0.123748		
207	0.119291	0.004 457	
459	0.115 390	0.003 901	1.14
937	0.114 140	0.001 250	3.12
1763	0.113845	0.000 295	4.24
Extrap	0.1135(3)		
$Li^+(1s^2 \ ^1\mathrm{S})$	0.1096		
N	$\Delta\beta_M(3\ ^2{ m S})$	Difference	Ratio
<u> </u>	$\Delta \beta_M (3 \ ^2{ m S})$ 0.098298281	Difference	Ratio
N 87 207	$\begin{array}{c} \Delta\beta_M(3\ ^2\mathrm{S}) \\ \hline 0.098298281 \\ 0.104933801 \end{array}$	Difference	Ratio
N 87 207 459	$\begin{array}{c} \Delta\beta_M(3\ ^2\mathrm{S}) \\ 0.098298281 \\ 0.104933801 \\ 0.110410361 \end{array}$	Difference	Ratio
N 87 207 459 937	$\begin{array}{c} \Delta\beta_M(3\ ^2\mathrm{S}) \\ 0.098298281 \\ 0.104933801 \\ 0.110410361 \\ 0.112767733 \end{array}$	Difference	Ratio
N 87 207 459 937 1763	$\begin{array}{c} \Delta\beta_M(3\ ^2\mathrm{S}) \\ 0.098298281 \\ 0.104933801 \\ 0.110410361 \\ 0.112767733 \\ 0.110416727 \end{array}$	Difference	Ratio
N 87 207 459 937 1763 Extrap	$\begin{array}{c} \Delta\beta_M(3\ ^2\mathrm{S}) \\ 0.098298281 \\ 0.104933801 \\ 0.110410361 \\ 0.112767733 \\ 0.110416727 \\ 0.112(1) \end{array}$	Difference	Ratio

Z.-C. Yan and G. W. F. Drake, "Bethe logarithm and QED shift for lithium", Phys. Rev. Lett. 91, 113004 (2003).

semin13.tex, January 2005

Final Results for the ⁶He Isotope Shift

Using the accurately measured transition frequency in 4 He as a reference, the transition frequency in 6 He can be accurately calculated to be

$$\nu(2 \,{}^{3}S_{1} - 2 \,{}^{3}P_{2}) = 276\,766\,663.53(2) - 1.2104\bar{r}_{^{6}He}^{2} \text{ MHz}$$
(9)

where $\bar{r}_{^{6}\mathrm{He}}$ is the rms nuclear radius of $^{6}\mathrm{He}$, in units of fm, and the $^{6}\mathrm{He}$ – $^{4}\mathrm{He}$ isotope shift is

$$\delta\nu(2\,^{3}\mathrm{S}_{1} - 2\,^{3}\mathrm{P}_{2}) = 34\,473.625(13) + 1.2104(\bar{r}_{^{4}\mathrm{He}}^{2} - \bar{r}_{^{6}\mathrm{He}}^{2}) \,\mathrm{MHz}\,.$$
(10)

$$\delta\nu(2\,^{3}S_{1} - 3\,^{3}P_{2}) = 43\,196.202(16) + 1.008(\bar{r}_{^{4}He}^{2} - \bar{r}_{^{6}He}^{2}) \text{ MHz}.$$
(11)

The uncertainty of ± 16 kHz is due entirely to the uncertainty in the measured atomic mass of ⁶He (6.018 888(1) u), and not to the atomic structure calculations themselves. From Eq. (11) it follows that a measurement of the isotope shift to an accuracy of 100 kHz is sufficient to determine the nuclear radius of ⁶He (relative to ⁴He) to an accuracy of 1%. The result provides a direct test of the theoretical value $\bar{r}_{^6\text{He}} = 2.04$ fm recently obtained by Monte Carlo techniques by

S.C. Pieper, and R.B. Wiringa. Ann. Rev. Nucl. Part. Science **51**, 53 (2001); S.C. Pieper, K. Varga, and R.B. Wiringa, Phys. Rev. C **66**, 044310 (2002).

<u>Argonne Collaboration</u> L.-B. Wang, P. Mueller, K. Bailey, G.W.F. Drake, J. Greene, D. Henderson, R.J. Holt, R.V.F. Janssens, C.L. Jiang, Z.-T. Lu, T.P. O'Conner, R.C. Pardo, K.E. Rehm, J.P. Schiffer, and X.-D. Tang.

semin17.tex, June, 2004

Lamb ('57): I. Wieder and W.E. Lamb, Jr., Phys. Rev. **107**, 125 (1957) Pipkin ('78): P. Kramer and F. Pipkin, Phys. Rev. **A18**, 212 (1978) Metcalf ('86): D.-H. Yang, P. McNicholl, and H. Metcalf, Phys. Rev. **A33**, 1725 (1986) ATTA ('04): this work **Drake ('04): private ommuncation**

Lamb ('57): I. Wieder and W.E. Lamb, Jr., Phys. Rev. **107**, 125 (1957) Pipkin ('78): P. Kramer and F. Pipkin, Phys. Rev. **A18**, 212 (1978) Metcalf ('86): D.-H. Yang, P. McNicholl, and H. Metcalf, Phys. Rev. **A33**, 1725 (1986) ATTA ('04): this work **Drake ('04): private ommuncation**

Experimental Setup - Schematic

Experimental Arrangement

PRL 93, 142501 (2004)

Determination of the Nuclear Radius for Isotopes of Lithium

$$R_{\rm rms}^2({}^{A}{\rm Li}) = R_{\rm rms}^2({}^{6}{\rm Li}) + \frac{E_{\rm meas}^A - E_0^A}{C}$$
 (12)

where E_{meas}^A is the measured isotope shift for ^ALi relative to ⁶Li, and E_0^A contains all the calculated contributions to the isotope shift with the exception of the shift due to finite nuclear size.

Values of E_0^A to determine $R_{\rm rms}^2$ from the measured isotope shift in various transitions. Units are MHz.

Isotopes	$E_0^A(2^2\!P_{1/2}-2^2\!S)$	$E_0^A(2^2\!P_{3/2}-2^2\!S)$	$E_0^A(3^2S-2^2S)$
⁷ Li– ⁶ Li	10532.19(7)	10532.58(7)	11453.00(6)
⁸ Li– ⁶ Li	18 472.86(12)	18473.55(12)	20088.10(10)
⁹ Li– ⁶ Li	24631.11(16)	24632.03(16)	26785.01(13)
10 Li– 6 Li	29 575.46(20)	29576.56(20)	32 161.92(17)
11 Li– 6 Li	33615.19(24)	33616.45(24)	36 555.11(21)

 $C = -2.4565 \text{ MHz/fm}^2$ for the $2 \ {}^2P_J - 2 \ {}^2S_{1/2}$ l.S. $C = -1.5661 \text{ MHz/fm}^2$ for $3 \ {}^2S_{1/2} - 2 \ {}^2S_{1/2}$ l.S.

Term	$3 {}^{2}S_{1/2} - 2 {}^{2}S_{1/2}$	$2 {}^2\mathrm{S}_{1/2}$ I.P.
Nonrelativistic	27 206.492 856(4)	43 488.220 2449(16)
Nonrel., μ/M	-2.29585430(16)	-3.621707668(4)
Nonrel., $(\mu/M)^2$	0.000 165 962	0.000 315 803
Relativistic, $lpha^2$	2.0890(4)	2.811 33(2)
Rel. recoil, $lpha^2 \mu/M$	-0.00004(1)	-0.000011(9)
QED(e ⁻ -nucl.), $lpha^3$	-0.1986(3)	-0.25832(3)
QED(e $^-$ –e $^-$), $lpha^3$	0.010747	0.013884
QED higher order, $\alpha^4 \cdots$	-0.0054(4)	-0.007 0(4)
Nuclear size, R^2	-0.000298(8)	-0.000389(10)
Total	27 206.092 6(9)	43 487.158 3(6)
Expt.	27 206.095 2(10) ^a	43 487.150(5) ^c
	27 206.094 20(9) ^b	43 487.159 34(17) ^d
Diff.	-0.0016(9)	-0.0010(5)

Contributions to the ⁷Li $1s^23s$ ²S $-1s^22s$ ²S transition energy and $1s^22s$ ²S ionization potential (I.P.), in units of cm⁻¹.

^aL. J. Radziemski, R. Engleman, Jr., and J. W. Brault, Phys. Rev. A 52, 4462 (1995).
^bB. A. Bushaw, W. Nörtershäuser, G. Ewalt, A. Dax, and G. W. F. Drake, Phys. Rev. Lett. 91, 043004 (2003).

^cC. E. Moore, NSRDS-NBS Vol. 14 (U.S. Department of Commerce, Washington, DC, 1970.

^dBruce Bushaw, preliminary value.

Contributions to the ⁷Li–⁶Li isotope shifts for the $1s^22p\,^2P_J$ – $1s^22s\,^2S$ transitions and comparison with experiment. Units are MHz.

Contribution	$2 {}^2\!P_{1/2}$ – $2 {}^2\!S$	$2 {}^2P_{3/2}$ – $2 {}^2S$
	Theory	
μ/M	10 533.501 92(60) ^a	$10533.50192(60)^{\mathrm{a}}$
$(\mu/M)^2$	0.057 3(20)	0.057 3(20)
$lpha^2\mu/M$	-1.397(66)	-1.004(66)
$lpha^3\mu/M$, anom. magnetic	-0.000 175 3(84)	0.0000875(84)
$lpha^3\mu/M$, one-electron	0.0045(10)	0.0045(10)
$lpha^3\mu/M$, two-electron	0.0105(20)	0.0105(20)
$r_{ m rms}^2$	1.94(61)	1.94(61)
$r_{ m rms}^2\mu/M$	-0.00073(11)	-0.00073(11)
Total	10534.12(7)±0.61	$10534.51(7){\pm}0.61$
	Experiment	
Sansonetti $et \ al.^{\mathrm{b}}$	10532.9(6)	10533.3(5)
Windholz <i>et al.</i> ^c	10534.3(3)	10539.9(1.2)
Scherf <i>et al.</i> ^d	10533.13(15)	10534.93(15)
Walls $et al.^{e}$	10534.26(13)	

^aThe additional uncertainty from the atomic mass determinations is ± 0.008 MHz.

- ^bC. J. Sansonetti, B. Richou, R. Engleman, Jr., and L. J. Radziemski, Phys. Rev. A 52, 2682 (1995).
- ^cL. Windholz and C. Umfer, Z. Phys. D 29, 121 (1994).
- ^dW. Scherf, O. Khait, H. Jäger, and L. Windholz, Z. Phys. D 36, 31, (1996).
- ^eJ. Walls, R. Ashby, J. J. Clarke, B. Lu, and W. A. van Wijngaarden, Eur. Phys. J D **22** 159 (2003).

Diagonalize H in the

$$\chi_{ijk} = r_1^i r_2^j r_{12}^k \, e^{-\alpha r_1 - \beta r_2} \, \mathcal{Y}_{l_1 l_2 L}^M(\mathbf{\hat{r}_1}, \mathbf{\hat{r}_2})$$

basis set to satisfy the variational condition

$$\delta \int \Psi \left(H - E \right) \Psi \, d\tau = 0.$$

For finite nuclear mass M,

$$H = -\frac{1}{2}\nabla_1^2 - \frac{1}{2}\nabla_2^2 - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{1}{r_{12}} - \frac{\mu}{M}\nabla_1 \cdot \nabla_2$$

in reduced mass atomic units e^2/a_μ , where $a_\mu = (m/\mu)a_0$ is the reduced mass Bohr radius, and $\mu = mM/(m+M)$ is the electron reduced mass.

transp09.tex, January/05

Rescale distances and energies according to

$$oldsymbol{
ho} = \mathbf{r}/a_{\mu}$$

 $\mathcal{E} = E/(e^2/a_{\mu})$

where $a_{\mu} = \frac{\hbar^2}{\mu e^2}$ is the reduced mass Bohr radius, and $\frac{e^2}{a_{\mu}} = 2R_{\mu} = 2\frac{\mu}{m}R_{\infty} = 2\left(1 - \frac{\mu}{M}\right)R_{\infty}$.

The Schrödinger equation is then (in mass-scaled atomic units)

$$\left\{-\frac{1}{2}\nabla_{\rho_{1}}^{2}-\frac{1}{2}\nabla_{\rho_{2}}^{2}-\frac{\mu}{M}\nabla_{\rho_{1}}\cdot\nabla_{\rho_{2}}-\frac{Z}{\rho_{1}}-\frac{Z}{\rho_{2}}+\frac{1}{|\rho_{1}-\rho_{2}|}\right\}\Psi=\mathcal{E}\Psi$$

semin03.tex, January/05

Convergence of the nonrelativistic	energies	for	the	$1s^2 2s^2 S$	${\sf and}$	$1s^2 2p^2 P$
states of lithium, in atomic units.						

Ω	No. of terms	$E(\Omega)$	$E(\Omega) - E(\Omega - 1)$	$R(\Omega)^{a}$
		$1s^2 2s {}^2S$		
2	19	-7.477 555 720 321 8		
3	51	-7.477 995 835 140 8	-0.000 440 114 819 0	
4	121	-7.478 053 567 299 9	-0.000 057 732 159 1	7.623
5	257	-7.478 059 464 463 7	-0.000 005 897 163 8	9.790
6	503	-7.478 060 228 080 1	-0.000 000 763 616 4	7.723
7	919	-7.478 060 311 092 9	-0.000 000 083 012 9	9.199
8	1590	-7.478 060 321 724 7	-0.000 000 010 631 8	7.808
9	2626	-7.478 060 323 416 8	-0.000 000 001 692 1	6.283
10	3502	-7.478 060 323 618 9	-0.000 000 000 202 1	8.371
∞		-7.478 060 323 650 3(71)		
		$1s^22n^2P$		
2	20	-7.410 088 210 427		
3	56	-7.410 146 240 952	-0.000 058 030 525	
4	139	-7.410 155 057 909	-0.000 008 816 956	6.582
5	307	-7.410 156 274 821	-0.000 001 216 912	7.245
6	623	-7.410 156 490 483	-0.000 000 215 662	5.643
7	1175	-7.410 156 524 272	-0.000 000 033 789	6.383
8	1846	-7.410 156 530 070	-0.000 000 005 798	5.828
9	2882	-7.410 156 531 534	-0.000 000 001 464	3.960
10	3463	-7.410 156 531 721	-0.000 000 000 187	7.813
∞		-7.410156531763(42)		

$${}^{\mathbf{a}}R(\Omega) = \frac{R(\Omega-1) - R(\Omega-2)}{R(\Omega) - R(\Omega-1)}$$

semin06.tex, January, 2005

The Recoil Term

The recoil term $a(n^{2}L)$ corresponds, in the hydrogenic case, to the term $\tilde{a}(nL)$ given by

$$\tilde{a}(nL) = -2\left(\ln\frac{2}{n} + \sum_{q=1}^{n} q^{-1} + 1 - \frac{1}{2n}\right)\delta_{L,0} + \frac{1 - \delta_{L,0}}{L(L+1)(2L+1)}.$$
(4)

In the multi-electron case, it corresponds to the term

$$a(n^{2}L) = \frac{2Q_{1}}{\langle \delta(\mathbf{r}_{i}) \rangle^{(0)}} + 2\ln Z - 3.$$
(5)

where Q_1 is the matrix element

$$Q_1 = (1/4\pi) \lim_{\epsilon \to 0} \langle r_i^{-3}(\epsilon) + 4\pi (\gamma_{\rm eu} + \ln \epsilon) \delta(\mathbf{r}_i) \rangle ,$$

 $\gamma_{\rm eu}$ is Euler's constant, ϵ is the radius of a sphere about $r_i = 0$ excluded from the integration, and a summation over *i* from 1 to 3 is assumed for lithium.

semin08.tex, January, 2005

INSTITUTE OF PHYSICS PUBLISHING

JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 37 (2004) 1-8

PII: S0953-4075(04)71603-X

J. Phys. B. 37, 2485 (2004)

High precision variational calculations for H⁺₂

Mark M Cassar and G W F Drake

University of Windsor, Windsor, ON N9B 3P4, Canada

E-mail: cassar1@uwindsor.ca

Received 5 November 2003, in final form 29 April 2004 Published DD MMM 2004 Online at stacks.iop.org/JPhysB/37/1 DOI: 10.1088/0953-4075/37/0/000

Abstract

A double basis set in Hylleraas coordinates is used to obtain improved variational upper bounds for the nonrelativistic energy of the 1 ¹S (v = 0, R = 0), 2 ¹S (v = 1, R = 0) and 2 ³P (v = 0, R = 1) states of H₂⁺. This method shows a remarkable convergence rate for relatively compact basis set expansions. A comparison with the most recent work is made. The accuracy of the wavefunctions is tested using the electron–proton Kato cusp condition.

2. Calculations

After isolating the centre-of-mass motion, the Hamiltonian for H_2^+ may be written (in reduced mass atomic units) as

$$H = -\frac{1}{2}\nabla_{r_1}^2 - \frac{1}{2}\nabla_{r_2}^2 - \frac{\mu}{m_e}\nabla_{r_1} \cdot \nabla_{r_2} - \frac{1}{r_1} - \frac{1}{r_2} + \frac{1}{r_{12}},$$
(3)

where μ is the reduced electron mass; the electron has been chosen to be at the origin of the coordinate system. The main task now is to solve the Schrödinger equation

$$H\Psi(\mathbf{r}_1,\mathbf{r}_2) = E\Psi(\mathbf{r}_1,\mathbf{r}_2),\tag{4}$$

for the stationary states of the Hamiltonian H.

For our modified double basis set, the trial function for S-states is given by

$$\Psi^{\rm S}(\mathbf{r}_1, \mathbf{r}_2) = \sum_{p=1}^2 \sum_{i,j=0}^{\Omega_1} \sum_{k=\Omega_{\rm low}}^{\Omega_{\rm high}} a_{ijk}^{(p)} r_1^i r_2^j r_{12}^k \exp(-\alpha^{(p)} r_1 - \beta^{(p)} r_2 - \gamma^{(p)} r_{12}) \pm (\text{exchange}),$$

(5)

High precision variational calculations for H₂⁺

where $\Omega_1 \ge i + j$, that is, Ω_1 is the maximum sum of powers of r_1 and r_2 ,

$$\begin{split} \Omega_{\text{low}} &= \mathcal{M} - \Omega_1 + (i+j), \\ \Omega_{\text{high}} &= \mathcal{M} + \Omega_1 - (i+j), \end{split}$$

and the integer $\mathcal{M} > \Omega_1$ is an adjustable parameter; and for states with L > 0,

$$\Psi^{L>0}(\mathbf{r}_1, \mathbf{r}_2) = \sum_{\text{ang}} \Psi^{\text{S}}(\mathbf{r}_1, \mathbf{r}_2) \mathcal{Y}_{l_1 l_2}^{LM}(\hat{\mathbf{r}}_1, \hat{\mathbf{r}}_2),$$
(6)

where $\mathcal{Y}_{l_1 l_2}^{LM}(\hat{\mathbf{r}}_1, \hat{\mathbf{r}}_2)$ is a vector-coupled product of spherical harmonics [16] and \sum_{ang} means that all distinct angular couplings are included according to the scheme in [17].

Normally, all distinct combinations of powers $\{i, j, k\}$ would be included in expansions (5) and (6); however, in order to avoid problems of near linear dependence for S-states, all terms with i > j are omitted only in (5). In addition, we employed a form of truncation first introduced by Kono and Hattori [18] in which terms with $i + j + |\mathcal{M} - k| - |l_1 - l_2| + |j - i| > \Omega_1$ are avoided

Ω	Ν	$E(\Omega)$	Ratio ^a
42	33	-0.597 138 979 257 696 807 296 095	
43	57	-0.597139061191160229487982	
44	90	-0.597139062954250154856869	46.47
45	134	-0.597139063120531138258260	10.60
46	190	-0.597139063123316985447178	59.69
47	260	-0.597139063123402568522508	32.55
48	345	-0.597139063123404987310249	35.38
49	447	-0.597139063123405072038078	28.55
50	567	-0.597139063123405074674920	32.13
51	707	-0.597139063123405074825966	17.46
52	868	-0.597139063123405074834205	18.33
53	1052	-0.597139063123405074834331	65.43
Extrapolation		-0.597 139 063 123 405 074 834 338(3)	19.80
b	2200	-0.597 139 063 123 405 0740	
с		-0.597 139 063 123 405 076(2)	
d	3500	-0.597 139 063 123 405 074 83	
e	1330	-0.5971390631234050741	
f		-0.5971390631234050745(4)	

Table 1. Convergence study for the ground state of H_2^+ . $\Omega (= \mathcal{M} + \Omega_1)$ is the highest power of r_{12} and *N* is the total number of terms in the basis set. Atomic units are used.

^a Ratio is the ratio of successive differences $[E(\Omega - 1) - E(\Omega - 2)]/[E(\Omega) - E(\Omega - 1)]$.

^b Korobov variational bound [10].

^c Korobov extrapolation [10].

^d Bailey and Frolov variational bound [9].

^e Yan *et al* variational bound [11].

^f Yan *et al* extrapolation [11].

Ω	Ν	$E(\Omega)$	Ratio ^a
39	20	-0.587 151 043 016 274 880 167	
40	40	-0.587155435230538473190	
41	70	-0.587155671003177129307	18.63
42	112	-0.587155678540275385079	31.28
43	168	-0.587155679208721236702	11.28
44	240	-0.587155679212575658166	173.42
45	330	-0.587155679212741279834	23.27
46	440	-0.587155679212746648696	30.85
47	572	-0.587155679212746807755	33.75
48	728	-0.587155679212746811406	43.56
49	910	-0.587155679212746812118	5.13
50	1015	-0.587155679212746812191	9.65
51	1240	-0.587155679212746812205	5.57
52	1496	-0.587155679212746812211	2.03
Extrapolation		-0.587155679212746812212(2)	6.18
b		-0.587155679212(1)	
c		-0.587 155 679 2127	
d		-0.5871556792136(5)	

Table 3. Convergence study for the 2^1 S state of H_2^+ . $\Omega (=\mathcal{M} + \Omega_1)$ is the highest power of r_{12} and N is the total number of terms in the basis set. Atomic units are used.

^a Ratio is the ratio of successive differences $[E(\Omega - 1) - E(\Omega - 2)]/[E(\Omega) - E(\Omega - 1)]$. ^b Hilico *et al* [15].

^c Moss variational bound [26].

^d Taylor et al [27].

Ω	Ν	$E(\Omega)$	Ratio ^a
40	39	-0.596 872 821 718 250 761 31	
41	82	-0.59687372819190393874	
42	149	-0.59687373811317743223	91.37
43	244	-0.59687373882233810835	13.99
44	373	-0.59687373883202963519	73.17
45	540	-0.59687373883275020025	13.45
46	751	-0.59687373883276235510	59.28
47	1010	-0.59687373883276466879	5.25
48	1323	-0.59687373883276472956	38.07
49	1694	-0.59687373883276473480	11.60
Extrapolation		-0.596 873 738 832 764 734 96(5)	32.92
b		-0.596 873 738 832 8(5)	
c		-0.596 873 738 832 8	
d		-0.596873738832764733(1)	

Table 4. Convergence study for the 2^3P state of H_2^+ . Ω (= $M + \Omega_1$) is the highest power of r_{12} and N is the total number of terms in the basis set. Atomic units are used.

^a Ratio is the ratio of successive differences $[E(\Omega - 1) - E(\Omega - 2)]/[E(\Omega) - E(\Omega - 1)]$. ^b Taylor *et al* [27].

^c Moss variational bound [26].

^d Yan *et al* extrapolation [11].

Contribution	$2 {}^2\!P_{1/2}$ – $2 {}^2\!S$	$2 {}^2\!P_{3/2}$ – $2 {}^2\!S$
	Theory	
μ/M	10 533.501 92(60) ^a	10 533.501 92(60) ^a
$(\mu/M)^2$	0.057 3(20)	0.057 3(20)
$lpha^2\mu/M$	-1.397(66)	-1.004(66)
$lpha^3\mu/M$, anom. magnetic	-0.000 175 3(84)	0.000 087 5(84)
$lpha^3\mu/M$, one-electron	0.0045(10)	0.0045(10)
$lpha^3\mu/M$, two-electron	0.0105(20)	0.0105(20)
$r_{ m rms}^2$	1.94(61)	1.94(61)
$r_{ m rms}^2\mu/M$	-0.00073(11)	-0.00073(11)
Total	10534.12(7)±0.61	$10534.51(7){\pm}0.61$
	Experiment	
Sansonetti $et \ al.^{b}$	10532.9(6)	10533.3(5)
Windholz $et \ al.^{c}$	10534.3(3)	10539.9(1.2)
Scherf <i>et al.</i> ^d	10533.13(15)	10534.93(15)
Walls $et al.^{e}$	10534.26(13)	
Noble <i>et al.</i> ^f	10534.039(70)	

Contributions to the ⁷Li–⁶Li isotope shifts for the $1s^22p^2P_J$ – $1s^22s^2S$ transitions and comparison with experiment. Units are MHz.

^aThe additional uncertainty from the atomic mass determinations is ± 0.008 MHz.

^bC. J. Sansonetti, B. Richou, R. Engleman, Jr., and L. J. Radziemski, Phys. Rev. A **52**, 2682 (1995).

^cL. Windholz and C. Umfer, Z. Phys. D 29, 121 (1994).

^dW. Scherf, O. Khait, H. Jäger, and L. Windholz, Z. Phys. D 36, 31, (1996).

^eJ. Walls, R. Ashby, J. J. Clarke, B. Lu, and W. A. van Wijngaarden, Eur. Phys. J. **D 22** 159 (2003).

^fG.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A submitted.

Contribution	$2 {}^2\!P_{1/2}$ – $2 {}^2\!S$	$2{}^2\!P_{3/2}$ – $2{}^2\!S$
	Theory	
μ/M	10 533.501 92(60) ^a	10 533.501 92(60) ^a
$(\mu/M)^2$	0.057 3(20)	0.057 3(20)
$lpha^2\mu/M$	-1.397(66)	-1.004(66)
$\alpha^3 \mu/M$, anom. magnetic	-0.000 175 3(84)	0.0000875(84)
$lpha^3\mu/M$, one-electron	0.0045(10)	0.0045(10)
$lpha^3\mu/M$, two-electron	0.0105(20)	0.0105(20)
$r_{ m rms}^2$	1.94(61)	1.94(61)
$r_{ m rms}^2\mu/M$	-0.00073(11)	-0.00073(11)
Total	10534.12(7)±0.61	10534.51(7)±0.61
	Experiment	
Sansonetti $et \ al.^{b}$	10532.9(6)	10533.3(5)
Windholz $et \ al.^{c}$	10534.3(3)	10539.9(1.2)
Scherf <i>et al.</i> ^d	10533.13(15)	10534.93(15)
Walls $et al.^{e}$	10534.26(13)	
Noble <i>et al.</i> ^f	10534.039(70)	

Contributions to the ⁷Li–⁶Li isotope shifts for the $1s^22p P_J-1s^22s S$ transitions and comparison with experiment. Units are MHz.

^aThe additional uncertainty from the atomic mass determinations is ± 0.008 MHz.

^bC. J. Sansonetti, B. Richou, R. Engleman, Jr., and L. J. Radziemski, Phys. Rev. A 52, 2682 (1995).

^cL. Windholz and C. Umfer, Z. Phys. D 29, 121 (1994).

^dW. Scherf, O. Khait, H. Jäger, and L. Windholz, Z. Phys. D 36, 31, (1996).

^eJ. Walls, R. Ashby, J. J. Clarke, B. Lu, and W. A. van Wijngaarden, Eur. Phys. J. **D 22** 159 (2003).

^fG.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A submitted.

Comparison between theory and experiment for the fine structure splittings and $^{7}\text{Li}-^{6}\text{Li}$ splitting isotope shift (SIS). Units are MHz.

Reference	7 Li $2 {}^{2}P_{3/2} - 2 {}^{2}P_{1/2}$	6 Li $2 {}^{2}\mathrm{P}_{3/2} - 2 {}^{2}\mathrm{P}_{1/2}$	SIS
Present work	10051.24(2)±3 ^a	10050.85(2)±3 ^a	0.393(6)
Brog et al. ^b	10053.24(22)	10052.76(22)	0.48(31)
Scherf <i>et al.</i> ^c	10053.4(2)	10051.62(20)	1.78(28)
Walls $et al.$ d	10052.37(11)	10053.044(91)	-0.67(14)
Orth <i>et al.</i> ^e	10053.184(58)		
Noble <i>et al.</i> ^f	10053.119(58)	10052.964(50)	0.155(76)
Recommended value	10053.2(1)	10052.8(1)	

^aIncludes uncertainty of ± 3 MHz due to mass-independent higher-order terms not yet calculated.

- ^bK.C. Brog, Phys. Rev. **153**, 91 (1967).
- ^cW. Scherf, O. Khait, H. Jager, and L. Windholz, Z. Phys. D 36, 31 (1996).
- ^dJ. Walls, R. Ashby, J. J. Clarke, B. Lu, and W. A. van Wijngaarden, Eur. Phys. J D 22 159 (2003).
- ^eH. Orth, H. Ackermann, and E.W. Otten, Z. Phys. A **273**, 221 (1975).
- ^fG.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A submitted.

semin43.tex, May, 2006

Doc5 Printed on Thursday, June 15, 2006 at 01:32:47

7Li-11Li 2- 1			
nr mu/M	25104.803934335	0.000062605	0.114928928
nr (mu/M)^2	-2.967598804	0.00006864	0.000010569
rel mu/M	0.415505222	0.121140432	
anom mu/M	0.00000000	0.00000000	
^3 Bethe log corr	-0.013934996	0.004087835	
^3 mu/M 2-e EL2	0.024632937	0.004480293	
^3 mu/M	-0.131023010	0.000857103	
^3 mu/M 1-e TOTAL	-0.144958006	0.004176724	
H.O. sum $> a^3$	-0.120325070	0.006125197	25102.131515683
totals			
mu/M	25105.099114488	0.121226300	0.114930280
(mu/M) ^2	-2.967598804	0.00006864	0.000010569
R^2	0.00000000	0.00000000	0.00000000
R^2mu/M	0.00000000		
TOTAL	25102.131515741	0.121226300	0.114930280
TOTALerr	0.167047254		

High Precision Theory and Isotope Shifts for Li and Be⁺

Gordon W.F. Drake University of Windsor, Canada Zong-Chao Yan University of New Brunswick, Canada

Collaborators

Mark Cassar (AIP) Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student) Atef Titi (Ph.D. student)

Financial Support: NSERC and SHARCnet

DAMOP, Knoxville May 2006

damon00 tex May 2006

Studies of Light Halo Nuclei from Atomic Isotope Shifts

Gordon W.F. Drake University of Windsor, Canada

<u>Collaborators</u>

Zong-Chao Yan (UNB) Mark Cassar (PDF) Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student) Atef Titi (Ph.D. student) Razvan Nistor (M.Sc. completed) Levent Inci (M.Sc. completed)

Financial Support: NSERC and SHARCnet

The Lindgren Symposium Göteborg, Sweden 2 June 2006

Isotope Shifts for the Determination of Nuclear Halo Radii

Gordon W.F. Drake University of Windsor, Canada

<u>Collaborators</u>

Zong-Chao Yan (UNB) Mark Cassar (PDF) Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student) Atef Titi (Ph.D. student) Razvan Nistor (M.Sc. completed) Levent Inci (M.Sc. completed)

Financial Support: NSERC and SHARCnet

PSAS2006 Venice, Italy 15 June 2006 Properties of Halo Nuclei from Atomic Isotope Shifts

> Gordon W.F. Drake University of Windsor, Canada

> > <u>Collaborators</u>

Zong-Chao Yan (UNB) Mark Cassar (A.I.P.) Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student) Atef Titi (Ph.D. student) Razvan Nistor (M.Sc. completed) Levent Inci (M.Sc. completed)

Financial Support: NSERC and SHARCnet

Few Body 18 Conference São Paulo, Brazil 22 August 2006

Studies of Light Halo Nuclei by the Isotope Shift Method

Gordon W.F. Drake University of Windsor, Canada

Zong-Chao Yan University of New Brunswick, Canada

<u>Collaborators</u>

Mark Cassar (A.I.P.) Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student) Atef Titi (Ph.D. student) Razvan Nistor (M.Sc. completed) Levent Inci (M.Sc. completed)

Financial Support: NSERC and SHARCnet

International Conference on Trapped Charged Particles and Fundamental Physics Tigh-Na-Mara, B.C. 5 Septemper 2006 High precision variational calculations for H₂⁺

Table 5. Optimized scale factors for the three lowest states of H_2^+ . Units are $\mu/(m_e a_0)$, where a_0 is the Bohr radius and μ is the reduced electron mass.

Ν	$\alpha^{(1)}$	$\beta^{(1)}$	$\gamma^{(1)}$	$\alpha^{(2)}$	$\beta^{(2)}$	$\gamma^{(2)}$			
1^1S									
33	1.298 28	0.407 35	18.325 44	1.15375	0.41833	19.53986			
57	1.221 68	0.500 00	19.395 75	1.173 89	0.43097	18.86371			
90	1.257 81	0.89563	18.47211	1.167 91	0.48340	19.375 37			
134	1.311 40	0.59418	20.28973	1.188 48	0.38226	19.579 10			
190	1.171 08	0.85852	20.037 17	1.108 34	0.507 81	19.78876			
260	1.25067	1.02069	19.286 25	1.166 26	0.48297	18.987 00			
345	1.552 86	1.03436	19.294 43	1.19177	0.37036	18.999 33			
447	1.543 88	1.121 52	19.184 94	1.17828	0.36896	19.313 42			
567	1.561 65	1.28979	18.935 79	1.166 69	0.392 82	19.413 27			
707	1.625 18	1.409 12	19.105 22	1.225 89	0.441 89	18.63483			
868	1.703 25	1.459 29	19.80695	1.206 54	0.429 32	19.418 52			
1052	1.71881	1.47198	19.984 99	1.192 87	0.42505	17.58771			
2 ¹ S									
20	1.446 66	0.19421	16.939 94	1.071 29	0.300 90	17.51099			
40	1.21973	0.373 60	16.52173	1.104 80	0.388 55	18.238 34			
70	1.529 42	0.360 84	16.595 21	1.158 02	0.35980	18.129 58			
112	1.465 09	0.28693	16.856 57	1.297 97	0.344 54	17.87927			
168	1.166 99	0.71899	17.654 54	1.130 68	0.59479	17.73370			
240	1.307 74	0.81104	17.18604	1.181 15	0.601 38	17.444 89			
330	1.531 86	0.93195	16.537 48	1.162 90	0.58606	17.15076			
440	1.73041	0.98584	16.496 95	1.167 66	0.56006	17.844 85			
572	1.646 24	1.027 95	18.023 19	1.109 80	0.56873	18.673 34			
728	1.572 94	1.07166	20.452 64	1.121 64	0.573 85	18.974 49			
910	1.556 15	1.060 24	20.235 23	1.133 61	0.580 02	19.17627			
1015	1.85406	1.161 50	20.277 28	1.133 00	0.581 05	19.166 02			
1240	1.844 67	1.156 62	20.254 94	1.135 19	0.58411	19.188 42			
1496	1.825 93	1.144 84	20.045 78	1.14673	0.59021	19.387 57			
2 ³ P									
39	1.320 92	0.36035	18.009 83	0.790 34	0.69275	18.09076			
82	1.254 88	0.44232	18.609 19	0.703 31	0.558 35	18.896 85			
149	1.369 38	0.51270	17.930 54	0.81281	0.65179	17.989 99			
244	1.183 53	0.698 00	18.51025	1.001 65	0.709 29	18.479 31			
373	1.28961	0.69476	18.655 88	1.056 34	0.79230	18.554 69			
540	1.325 07	0.76434	18.638 00	0.908 45	0.73566	18.96375			
751	1.536 62	0.82697	18.446 84	0.882 32	0.71698	18.71686			
1010	1.528 87	0.83118	18.532 29	0.878 36	0.71906	18.633 06			
1323	1.536 50	0.833 92	18.61951	0.874 21	0.71570	18.54572			
1694	1.53607	0.85156	18.824 04	0.86407	0.71399	18.344 18			

The 20-, 21- and 24-figure accuracies of the nonrelativistic energy eigenvalues presented above, although more than sufficient for comparison with experiment, lay a firm foundation for the calculation of higher order relativistic and QED corrections to the nonrelativistic energy levels of H_2^+ . The 10-figure accuracy of the electron–proton cusp quoted here represents, to our knowledge, an improvement of about five orders of magnitude over the best available value in the literature [12, 20]. This further shows the reliability of the wavefunctions to compute observables, other than the energy, to high precision, and especially the highly singular operators that appear in the relativistic and QED corrections.

References

8

- [1] Jacobson P L, Fisher D S, Fehrenbach C W, Sturrus W G and Lundeen S R 1997 Phys. Rev. A 56 R4361 Jacobson P L, Fisher D S, Fehrenbach C W, Sturrus W G and Lundeen S R 1998 Phys. Rev. A 57 4065 (erratum)
- [2] Jacobson P L, Komara R A, Sturrus W G and Lundeen S R 2000 Phys. Rev. A 62 012509
- [3] Korobov V I 2001 Phys. Rev. A 63 044501
- [4] Sturrus W G, Hessels E A, Arcuni P W and Lundeen S R 1991 Phys. Rev. A 44 3032
- [5] Fu Z W, Hessels E A and Lundeen S R 1992 Phys. Rev. A 46 R5313
- [6] Nez F, Plimmer M D, Bourzeix S, Julien L, Biraben F, Felder R, Millerioux Y and de Natale P 1995 IEEE Trans. Instrum. Meas. 44 568
- [7] Hilico L, Billy N, Grémaud B and Delande D 2001 J. Phys. B: At. Mol. Opt. Phys. 34 1
- [8] Hilico L private communication
- [9] Bailey D H and Frolov A M 2002 J. Phys. B: At. Mol. Opt. Phys. 35 4287
- [10] Korobov V I 2000 Phys. Rev. A 61 064503
- [11] Yan Z-C, Zhang J-Y and Y L 2003 Phys. Rev. A 67 062504
- [12] Frolov A M 2002 J. Phys. B: At. Mol. Opt. Phys. 35 L331
- [13] Cassar M M 1998 MSc Thesis University of Windsor
- [14] Drake G W F 1996 Atomic, Molecular and Optical Physics Handbook ed G W F Drake (Woodbury, NY: AIP)
- [15] Hilico L, Billy N, Grémaud B and Delande D 2000 Eur. Phys. J. D 12 449
- [16] Zare R N 1988 Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Toronto: Wiley) [17] Drake G W F 1993 Long Range Casimir Forces: Theory and Recent Experiments in Atomic Systems ed F S Levin and D A Micha (New York: Plenum)
- [18] Kono A and Hattori S 1985 Phys. Rev. A 31 1199
- [19] Bhatia A K 1998 Phys. Rev. A 58 2787
- [20] Bhatia A K and Drachman R J 1999 Phys. Rev. A 59 205 Bhatia A K and Drachman R J 1998 Phys. Rev. A 31 383 [21] Cohen E R and Taylor B N 2000 Phys. Today 53 9
- [22] http://physics.nist.gov/cuu/Constants/index.html
- [23] Kato T 1957 Commun. Pure Appl. Math. 10 151
- [24] Pack R T and Brown W B 1966 J. Chem. Phys. 45 556
- [25] Drake G W F and Yan Zong-Chao 1994 Chem. Phys. Lett. 229 486
- [26] Moss R E 1999 J. Phys. B: At. Mol. Opt. Phys. 32 L89
- [27] Taylor J M, Yan Z-C, Dalgarno A and Babb J F 1999 Mol. Phys. 97 25

See endnote 1

transp08.tex, June/04

Comparison of nuclear structure theories with experiment for the rms nuclear charge radius r_c . The dotted lines connect sequences of calculations for different nuclei, and the error bars denote the experimental values, relative to the ⁴He and ⁷Li reference nuclei. The points are grouped as (\otimes) variational microcluster calculations and a no-core shell model ; (\oplus) effective three-body cluster models ; (Θ) large-basis shell model ; (∇) stochastic variational multicluster ; (Φ) dynamic correlation model . The remaining points are quantum Monte Carlo calculations with various effective potentials as follows: (X) AV8'; (•) AV18/UIX; (•) AV18/IL2; (\triangle) AV18/IL3; (\diamond) AV18/IL4 (for

Nuclear Charge Radii

S - 2006 37th Meeting of the Division of Atomic, Molecu...

4:00 PM, Wednesday, May 17, 2006 Knoxville Convention Center - Ballroom AB, 4:00pm - 6:00pm

Abstract: G1.00036 : Towards a Laser Spectroscopic Determination of the \$^8\$He Nuclear Charge Radius

Authors:

. Mueller K. Bailey R.J. Holt R.V.F. Janssens ZT. Lu T.P. O'Connor I. Sulai (Argonne National Lab)	MG. Saint Laurent JCh. Thomas A.C.C. Villari (GANIL)	O. Naviliat-Cuncic X. Flechard (Laboratoire de Physique Corpusculaire Caen)
SM. Hu (University of Science and Technology of China)	G.W.F. Drake (University of Windsor)	M. Paul (Hebrew University)

We will report on the progress towards a laser spectroscopic determination of the $\8 He nuclear charge radius. $\8 He (t[1/2] = 119 ms) has the highest neutron to proton ratio of all known isotopes. Precision measurements of its nuclear structure shed light on nuclear forces in neutron rich matter, e.g. neutron stars. The experiment is based on our previous work on high-resolution laser spectroscopy of individual helium atoms captured in a magneto-optical trap. This technique enabled us to accurately measure the atomic isotope shift between $\6 He and $\4 He and thereby to determine the $\6 He rms charge radius to be 2.054(14) fm. We are currently well on the way to improve the overall trapping efficiency of our system to compensate for the shorter lifetime and lower production rates of $\8 He as compared to $\6 He. The $\8 He measurement will be performed on-line at the GANIL cyclotron facility in Caen, France and is planned for late 2006.

⁷ Be	9Be∕	DBe/	1Be/	2Be/	#Be
53.12 d	00	$15 \times D^6 a$	B.818	215 m	4.84 m
3/2-	3/2-	0+	1/2+	<i>O</i> +	<i>O</i> +

Conclusions

- The finite basis set method with multiple distance scales provides an effective and efficient method of calculating Bethe logarithms, thereby enabling calculations up to order α^3 Ry for lithium.
- The objective of calculating isotope shifts to better than \pm 100 kHz has been achieved for two- and three-electron atoms, thus allowing measurements of the nuclear charge radius to ± 0.02 fm.
- The results provide a significant test of theoretical models for the nucleon-nucleon potential, and hence for the properties of nuclear matter in general.

semin23.tex, January 2005

Relativistic and QED Effects in Helium and Lithium: Isotope Shifts

Gordon W.F. Drake University of Windsor, Canada

<u>Collaborators</u>

Zong-Chao Yan (UNB) Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student) Atef Titi (Ph.D. student) Roman Atanasof (M.Sc. student) Eva Schulhof (M.Sc. student)

Financial Support: NSERC and SHARCnet

A Tribute to Walter Johnson Notre Dame, April 4–5, 2008.

Objectives

- 1. Calculate nonrelativistic eigenvalues for helium, lithium and Be⁺ of spectroscopic accuracy.
- 2. Include finite nuclear mass (mass polarization) effects up to second order by perturbation theory.
- 3. Include relativistic and QED corrections by perturbation theory.
- 4. Compare the results with high precision measurements.
- 5. Use the results to measure the nuclear radius of exotic "halo" isotopes of helium, lithium and beryllium such as 6 He, 11 Li, and 11 Be⁺.

What's New?

- 1. Essentially exact solutions to the quantum mechanical three- and fourbody problems.
- 2. Recent advances in calculating QED corrections especially the Bethe logarithm.
- 3. Single atom spectroscopy.

Group	Measurements		
Amsterdam (Eikema et al.)	He 1s ^{2 1} S – 1s2p ¹ P		
NIST (Bergeson et al.)	He 1s ^{2 1} S – 1s2s ¹ S		
Harvard (Gabrielse)	He 1s2s ³ S – 1s2p ³ P		
N. Texas (Shiner et al.)	He 1s2s ³ S – 1s2p ³ P		
Florence (Inguscio et al.)	He 1s2s ³ S – 1s2p ³ P		
York (Storry & Hessels)	He 1s2p ³ P fine structure		
Argonne (ZT. Lu et al.)	He 1s3p ³ P fine structure		
Paris (Biraben et al.)	He 1s2s ³ S – 1s3d ³ D		
NIST (Sansonetti & Gillaspy)	He 1s2s ¹ S – 1snp ¹ P		
Argonne (ZT. Lu et al.)	6 He I.S. completed June/04		
Yale (Lichten et al.)	He 1s2s ¹ S – 1snd ¹ D		
Colorado State (Lundeen et al.)	He 10 1,3 L – 10 1,3 (L+1)		
York (Rothery & Hessels)	He 10 1,3 L – 10 1,3 (L+1)		
Strathclyde (Riis et al.)	Li ⁺ 1s2s ³ S – 1s2p ³ P		
York (Clarke & van Wijngaarden)	Li ⁺ 1s2s ³ S – 1s2p ³ P		
U. West. Ont (Holt & Rosner)	Be ⁺⁺ 1s2s ³ S – 1s2p ³ P		
Argonne (Berry et al.)	B ³⁺ 1s2s ³ S – 1s2p ³ P		
Florida State (Myers et al.)	N ⁵⁺ 1s2s ³ S – 1s2p ³ P		
Florida State (Myers/Silver)	F^{7+} 1s2p ^{3}P fine structure		
Florida State (Myers/Tarbutt)	Mg^{10+} 1s2p ^{3}P fine structure		

High precision measurements for helium and He-like ions.

Main Theme:

Create new measurement tools by combining high precision theory and experiment.

Examples:

- Interpretation of parity nonconservation (24 papers by Johnson et al.)
- Cosmological variation of fundamental constants (Flambaum).
- Interpretation of isotope shifts (with M. Safronova).

Focus on Isotope Shifts for Halo Nuclei

- 1. Calculate nonrelativistic eigenvalues for helium, lithium and Be⁺ of spectroscopic accuracy.
- 2. Include finite nuclear mass (mass polarization) effects up to second order by perturbation theory.
- 3. Include relativistic and QED corrections by perturbation theory.
- 4. Compare the results with high precision measurements.
- 5. Use the results to measure the nuclear radius of exotic "halo" isotopes of helium, lithium and beryllium such as 6 He, 8 He, 11 Li, and 11 Be⁺ (Drake, 1993).

Nonrelativistic and Relativistic Contributions to the Energy

$$E_{\rm NR} \quad \langle B_{\rm P} \rangle \quad \text{QED}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad (\alpha Z)^2 \longrightarrow$$

$$E_{\rm Dirac} \quad \longrightarrow \qquad E_0^0 Z^2 + E_0^2 \alpha^2 Z^4 + E_0^4 \alpha^4 Z^6 + E_0^6 \alpha^6 Z^8 + \cdots$$

$$\langle e^2/r_{12} + B_{\rm D} \rangle \quad \longrightarrow \qquad + E_1^0 Z^1 + E_1^2 \alpha^2 Z^3 + E_1^4 \alpha^4 Z^5 + E_1^6 \alpha^6 Z^7 + \cdots$$

$$+ E_2^0 Z^0 + E_2^2 \alpha^2 Z^2 + \underline{E_2^4 \alpha^4 Z^4} + E_2^6 \alpha^6 Z^6 + \cdots$$

$$+ E_3^0 Z^{-1} + E_3^2 \alpha^2 Z^1 + \cdots$$

$$\downarrow \qquad + \cdots + \cdots$$

where

 $E_{\rm NR}$ = nonrelativistic energy, $\langle B_{\rm P} \rangle$ = Pauli form of the Breit interaction, $E_{\rm Dirac}$ = sum of one-electron Dirac energies, $\langle B_{\rm D} \rangle$ = relativistic Dirac form of the Breit interaction.

Two regions: $(\alpha Z)^2 = Z^{-1}$ when $Z \approx 27$.

- For Z < 27 start with $H_{\rm NR}$ and sum column-wise with relativistic corrections as a perturbation.
- For Z > 27 start with H_{Dirac} and sum row-wise with the electron-electron interaction as a peturbation.
- Unified Method: Sum the first two rows and the first two columns and subtract the terms that are counted twice.

What's New?

- 1. Essentially exact solutions to the quantum mechanical three- and fourbody problems.
- 2. Recent advances in calculating QED corrections especially the Bethe logarithm.
- 3. Single atom spectroscopy.

Energy Levels and Isotope shifts

The three key parameters controlling the energy levels are

 α = fine structure constant λ = $\mu/M = m_{\rm e}/(m_{\rm e} + M)$ $\bar{r}_{\rm c}$ = nuclear charge radius

In terms of these parameters, the theoretical contributions to the energy levels of an atom or ion such as ${\rm Be^+}$ can be expanded in the form

$$E = \mathcal{E}_{\rm NR}^{(0)} + \lambda \mathcal{E}_{\rm NR}^{(1)} + \lambda^2 \mathcal{E}_{\rm NR}^{(2)} + \alpha^2 \left(\mathcal{E}_{\rm rel}^{(0)} + \lambda \mathcal{E}_{\rm rel}^{(1)} \right) + \alpha^3 \left(\mathcal{E}_{\rm QED}^{(0)} + \lambda \mathcal{E}_{\rm QED}^{(1)} \right) + \alpha^4 \left(\mathcal{E}_{\rm ho}^{(0)} + \lambda \mathcal{E}_{\rm ho}^{(1)} \right) + \bar{r}_{\rm c}^2 \left(\mathcal{E}_{\rm nuc}^{(0)} + \lambda \mathcal{E}_{\rm nuc}^{(1)} \right) + \cdots$$

in units of $\alpha^2 \mu c^2 = \alpha^2 (1 - \lambda) mc^2$ The subscripts are: NR = nonrelativistic energy rel = relativistic corrections QED = quantum electrodynamic corrections ho = higher order QED corrections (ho) nuc = shift due to finite nuclear size.

	NMS+SMS	FS	Total IS	Expt.
3 <i>s</i>	1448.8	-7.5	1441.3	
$3p_{1/2}$	707.9	0.3	708.2	
$3p_{3/2}$	707.3	0.3	707.6	
$3d_{3/2}$	391.8	0.0	391.8	
$3d_{5/2}$	391.8	0.0	391.8	
$3p_{3/2}-3s$	-740.9	7.9	-733.0	$-758.5(7)^{a}$
				$-756.9(1.9)^{b}$
3p _{5/2} -3s	-741.5	7.9	-733.6	-757.72(24) ^c
^a Pescht <i>et</i>	al. [4].			
Huber <i>et a</i>	al. [28].			
Gangrsky	<i>et al.</i> [25].			
М. S	Safronova	and	W. Johr	nson

QED and Isotope Shifts in Lithium and Be⁺

> Gordon W.F. Drake University of Windsor,

Zong-Chao Yan University of New Brunswick

Collaborators

Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student) Atef Titi (Ph.D. student) Roman Atanasof (M.Sc. student) Eva Schulhof (M.Sc. student)

Financial Support: NSERC and SHARCnet

CAP Annual Congress Quebec City, June 11, 2008.