Properties of Halo Nuclei from Precision Atomic Physics

Gordon W.F. Drake
University of Windsor,
Zong-Chao Yan
University of New Brunswick

Collaborators

Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student)
Atef Titi (Ph.D. student)
Eva Schulhof (M.Sc. student)

Financial Support: NSERC and SHARCnet
PSAS 2008
Windsor, July 23, 2008.

Main Theme:

- Derive nuclear charge radii by combining atomic theory with high precision spectroscopy (especially ${ }^{6} \mathrm{He}$ and ${ }^{11} \mathrm{Li}$ halo nuclei).

What's New?

1. Essentially exact solutions to the quantum mechanical three- and fourbody problems.
2. Recent advances in calculating QED corrections - especially the Bethe logarithm.
3. Single atom spectroscopy.

June 2008.
semin00.tex, March 2008.

Halo Nuclei ${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$

Isotope	Half-life	Spin	Isospin	Core + Valence
He-6	$\mathbf{8 0 7} \mathbf{~ m s}$	$\mathbf{0}^{+}$	$\mathbf{1}$	$\alpha+\mathbf{2 n}$
He-8	$\mathbf{1 1 9} \mathbf{~ m s}$	0^{+}	2	$\alpha+\mathbf{4 n}$

Core-Halo Structure

$$
\begin{aligned}
& \sigma_{I}(6 H e)-\sigma_{I}(4 H e)=\sigma_{-2 n}(6 H e) \\
& \sigma_{I}(8 H e)-\sigma_{I}(4 H e)=\sigma_{-2 n}(8 H e)+\sigma_{-4 n}(8 H e) \\
& \sigma_{I}(8 H e)-\sigma_{I}(6 H e) \neq \sigma_{-2 n}(8 H e)
\end{aligned}
$$

I. Tanihata et al., Phys. Lett. (1992)

HIGH PRECISION SPECTROSCOPY

THEORY

- Hyperfine structure
- N.R. energies and relativistic corrections
- QED effects

$$
{ }^{4} \mathrm{He}-{ }^{6} \mathrm{He}
$$

$1 s 2 p^{3} p$

Transition Isotope Shift

\Rightarrow nuclear radius

> Total Transition Frequency \Rightarrow QED shift

Transition
Isotope Shift
\Rightarrow
nuclear radius

Flow diagram for types of measurements.

Contributions to the energy and their orders of magnitude in terms of $Z, \mu / M=1.370745624 \times 10^{-4}$, and $\alpha^{2}=0.5325136197 \times 10^{-4}$.

Contribution	Magnitude
Nonrelativistic energy	Z^{2}
Mass polarization	$Z^{2} \mu / M$
Second-order mass polarization	$Z^{2}(\mu / M)^{2}$
Relativistic corrections	$Z^{4} \alpha^{2}$
Relativistic recoil	$Z^{4} \alpha^{2} \mu / M$
Anomalous magnetic moment	$Z^{4} \alpha^{3}$
Hyperfine structure	$Z^{3} g_{I} \mu_{0}^{2}$
Lamb shift	$Z^{4} \alpha^{3} \ln \alpha+\cdots$
Radiative recoil	$Z^{4} \alpha^{3}(\ln \alpha) \mu / M$
Finite nuclear size	$Z^{4}\left\langle R_{N} / a_{0}\right\rangle^{2}$
Nuclear polarization	$Z^{3} e^{2} \alpha_{d, \text { nuc }} /\left(\alpha a_{0}\right)$

Nonrelativistic Eigenvalues

The Hamiltonian in atomic units is

$$
H=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{Z}{r_{1}}-\frac{Z}{r_{2}}+\frac{1}{r_{12}}
$$

Expand

$$
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{i, j, k} a_{i j k} r_{1}^{i} r_{2}^{j} r_{12}^{k} e^{-\alpha r_{1}-\beta r_{2}} \mathcal{Y}_{l_{1} l_{2} L}^{M}\left(\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}\right)
$$

(Hylleraas, 1929). Pekeris shell: $i+j+k \leq \Omega, \quad \Omega=1,2, \ldots$

Convergence study for the ground state of helium [1].

Ω	N	$E(\Omega)$	$R(\Omega)$
8	269	-2.903724377029560058400	
9	347	-2.903724377033543320480	
10	443	-2.903724377034047783838	8.90
11	549	-2.903724377034104634696	8.87
12	676	-2.903724377034116928328	4.62
13	814	-2.903724377034119224401	5.35
14	976	-2.903724377034119539797	7.28
15	1150	-2.903724377034119585888	6.84
16	1351	-2.903724377034119596137	4.50
17	1565	-2.903724377034119597856	5.96
18	1809	-2.903724377034119598206	4.90
19	2067	-2.903724377034119598286	4.44
20	2358	-2.903724377034119598305	4.02
Extrapolation	∞	$-2.903724377034119598311(1)$	
Korobov [2]	5200	-2.9037243770341195983111587	
Korobov extrap.	∞	$-2.9037243770341195983111594(4)$	
Schwartz [3]	10259	-2.9037243770341195983111592451944044400	
Schwartz extrap.	∞	-2.903724377034119598311159245194404446	
Goldman [4]	8066	-2.90372437703411959382	
Bürgers et al. $[5]$	24497	$-2.903724377034119589(5)$	
Baker et al. $[6]$	476	-2.9037243770341184	

[1] G.W.F. Drake, M.M. Cassar, and R.A. Nistor, Phys. Rev. A 65, 054501 (2002).
[2] V.I. Korobov, Phys. Rev. A 66, 024501 (2002).
[3] C. Schwartz, http://xxx.aps.org/abs/physics/0208004
[4] S.P. Goldman, Phys. Rev. A 57, R677 (1998).
[5] A. Bürgers, D. Wintgen, J.-M. Rost, J. Phys. B: At. Mol. Opt. Phys. 28, 3163 (1995).
[6] J.D. Baker, D.E. Freund, R.N. Hill, J.D. Morgan III, Phys. Rev. A 41, 1247 (1990). transp24.tex, Nov./00

Variational Basis Set for Lithium

Solve for Ψ_{0} and Ψ_{1} by expanding in Hylleraas coordinates

$$
\begin{equation*}
r_{1}^{j_{1}} r_{2}^{j_{2}} r_{3}^{j_{3}} r_{12}^{j_{12}} r_{23}^{j_{23}} r_{31}^{j_{31}} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}} \mathcal{Y}_{\left(\ell_{1} \ell_{2}\right) \ell_{12}, \ell_{3}}^{L M}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right) \chi_{1}, \tag{1}
\end{equation*}
$$

where $\mathcal{Y}_{\left(\ell_{1} \ell_{2}\right) \ell_{12}, \ell_{3}}^{L M}$ is a vector-coupled product of spherical harmonics, and χ_{1} is a spin function with spin angular momentum $1 / 2$. Include all terms from (1) such that

$$
\begin{equation*}
j_{1}+j_{2}+j_{3}+j_{12}+j_{23}+j_{31} \leq \Omega \tag{2}
\end{equation*}
$$

and study the eigenvalues as Ω is progressively increased.
The explicit mass-dependence of E is

$$
E=\varepsilon_{0}+\lambda \varepsilon_{1}+\lambda^{2} \varepsilon_{2}+O\left(\lambda^{3}\right), \text { in units of } 2 R_{M}=2(1+\lambda) R_{\infty}
$$

semin05.tex, January, 2005

Variational upper bounds for nonrelativistic eigenvalues.

State	$N_{\text {terms }}$	$E_{\infty}\left(2 \mathrm{R}_{\infty}\right)$	$\mathrm{E}_{M}\left(2 \mathrm{R}_{M}\right)$
$\mathrm{Li}\left(1 s^{2} 2 s^{2} \mathrm{~S}\right)$	6413	-7.478060323869	-7.478036728322
	9577	-7.478060323892	-7.478036728344
	9576	$-7.478060323890^{\mathrm{a}}$	
$\mathrm{Li}\left(1 s^{2} 3 s^{2} \mathrm{~S}\right)$	6413	-7.354098421392	-7.354075591755
	9577	-7.354098421425	-7.354075591788
$\mathrm{Li}\left(1 s^{2} 2 p^{2} \mathrm{P}\right)$	5762	-7.410156532488	-7.410137246549
	9038	-7.410156532593	-7.410137246663
$\mathrm{Be}^{+}\left(1 s^{2} 2 s^{2} \mathrm{~S}\right)$	6413	-14.324763176735	-14.324735613884
	9577	-14.324763176767	-14.324735613915
$\mathrm{Be}^{+}\left(1 s^{2} 3 s^{2} \mathrm{~S}\right)$	6413	-13.922789268430	-13.922763157509
	9577	-13.922789268518	-13.922763157598
$\mathrm{Be}^{+}\left(1 s^{2} 2 p^{2} \mathrm{P}\right)$	5762	-14.179333293227	-14.179323188964
	9038	-14.179333293333	-14.179323189509

${ }^{\text {a M M. Puchalski and K. Pachucki, Phys. Rev. A 73, } 022503 \text { (2006). }}$

Relativistic Corrections

Relativistic corrections of $O\left(\alpha^{2}\right)$ and anomalous magnetic moment corrections of $O\left(\alpha^{3}\right)$ are (in atomic units)

$$
\begin{equation*}
\Delta E_{\mathrm{rel}}=\langle\Psi| H_{\mathrm{rel}}|\Psi\rangle_{J}, \tag{3}
\end{equation*}
$$

where Ψ is a nonrelativistic wave function and $H_{\text {rel }}$ is the Breit interaction defined by

$$
\begin{aligned}
H_{\mathrm{rel}}= & B_{1}+B_{2}+B_{4}+B_{\mathrm{so}}+B_{\mathrm{soo}}+B_{\mathrm{ss}}+\frac{m}{M}\left(\tilde{\Delta}_{2}+\tilde{\Delta}_{\mathrm{so}}\right) \\
& +\gamma\left(2 B_{\mathrm{so}}+\frac{4}{3} B_{\mathrm{soo}}+\frac{2}{3} B_{3 e}^{(1)}+2 B_{5}\right)+\gamma \frac{m}{M} \tilde{\Delta}_{\mathrm{so}}
\end{aligned}
$$

where $\gamma=\alpha /(2 \pi)$ and

$$
\begin{gathered}
B_{1}=\frac{\alpha^{2}}{8}\left(p_{1}^{4}+p_{2}^{4}\right) \\
B_{2}=-\frac{\alpha^{2}}{2}\left(\frac{1}{r_{12}} \mathbf{p}_{1} \cdot \mathbf{p}_{2}+\frac{1}{r_{12}^{3}} \mathbf{r}_{12} \cdot\left(\mathbf{r}_{12} \cdot \mathbf{p}_{1}\right) \mathbf{p}_{2}\right) \\
B_{4}=\alpha^{2} \pi\left(\frac{Z}{2} \delta\left(\mathbf{r}_{1}\right)+\frac{Z}{2} \delta\left(\mathbf{r}_{2}\right)-\delta\left(\mathbf{r}_{12}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
H_{\mathrm{rel}}= & B_{1}+B_{2}+B_{4}+B_{\mathrm{so}}+B_{\mathrm{soo}}+B_{\mathrm{ss}}+\frac{m}{M}\left(\tilde{\Delta}_{2}+\tilde{\Delta}_{\mathrm{so}}\right) \\
& +\gamma\left(2 B_{\mathrm{so}}+\frac{4}{3} B_{\mathrm{soo}}+\frac{2}{3} B_{3 e}^{(1)}+2 B_{5}\right)+\gamma \frac{m}{M} \tilde{\Delta}_{\mathrm{so}} .
\end{aligned}
$$

Spin-dependent terms

$$
\begin{gathered}
B_{\mathrm{so}}=\frac{Z \alpha^{2}}{4}\left[\frac{1}{r_{1}^{3}}\left(\mathbf{r}_{1} \times \mathbf{p}_{1}\right) \cdot \boldsymbol{\sigma}_{1}+\frac{1}{r_{2}^{3}}\left(\mathbf{r}_{2} \times \mathbf{p}_{2}\right) \cdot \boldsymbol{\sigma}_{2}\right] \\
B_{\mathrm{soo}}=\frac{\alpha^{2}}{4}\left[\frac{1}{r_{12}^{3}} \mathbf{r}_{12} \times \mathbf{p}_{2} \cdot\left(2 \boldsymbol{\sigma}_{1}+\boldsymbol{\sigma}_{2}\right)-\frac{1}{r_{12}^{3}} \mathbf{r}_{12} \times \mathbf{p}_{1} \cdot\left(2 \boldsymbol{\sigma}_{2}+\boldsymbol{\sigma}_{1}\right)\right] \\
B_{\mathrm{ss}}=\frac{\alpha^{2}}{4}\left[-\frac{8}{3} \pi \delta\left(\mathbf{r}_{12}\right)+\frac{1}{r_{12}^{3}} \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}-\frac{3}{r_{12}^{3}}\left(\boldsymbol{\sigma}_{1} \cdot \mathbf{r}_{12}\right)\left(\boldsymbol{\sigma}_{2} \cdot \mathbf{r}_{12}\right)\right]
\end{gathered}
$$

Relativistic recoil terms (A.P. Stone, 1961)

$$
\begin{aligned}
\tilde{\Delta}_{2}= & -\frac{Z \alpha^{2}}{2}\left\{\frac{1}{r_{1}}\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right) \cdot \mathbf{p}_{1}+\frac{1}{r_{1}^{3}} b r_{1} \cdot\left[\mathbf{r}_{1} \cdot\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right)\right] \mathbf{p}_{1}\right. \\
& \left.+\frac{1}{r_{2}}\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right) \cdot \mathbf{p}_{2}+\frac{1}{r_{2}^{3}} b r_{2} \cdot\left[\mathbf{r}_{2} \cdot\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right)\right] \mathbf{p}_{2}\right\} \\
\tilde{\Delta}_{\mathrm{so}}= & \frac{Z \alpha^{2}}{2}\left(\frac{1}{r_{1}^{3}} \mathbf{r}_{1} \times \mathbf{p}_{2} \cdot \boldsymbol{\sigma}_{1}+\frac{1}{r_{2}^{3}} \mathbf{r}_{2} \times \mathbf{p}_{1} \cdot \boldsymbol{\sigma}_{2}\right)
\end{aligned}
$$

Two-Electron QED Shift

The lowest order helium Lamb shift is given by the Kabir-Salpeter formula (in atomic units)

$$
E_{L, 1}=\frac{4}{3} Z \alpha^{3}\left|\Psi_{0}(0)\right|^{2}\left[\ln \alpha^{-2}-\beta(1 \operatorname{sn} \ell)+\frac{19}{30}\right]
$$

where $\beta(1 s n \ell)$ is the two-electron Bethe logarithm defned by

$$
\beta(1 \operatorname{sn\ell })=\frac{\mathcal{N}}{\mathcal{D}}=\frac{\left.\sum_{i}\left|\left\langle\Psi_{0}\right| \mathbf{p}_{1}+\mathbf{p}_{2}\right| i\right\rangle\left.\right|^{2}\left(E_{i}-E_{0}\right) \ln \left|E_{i}-E_{0}\right|}{\left.\sum_{i}\left|\left\langle\Psi_{0}\right| \mathbf{p}_{1}+\mathbf{p}_{2}\right| i\right\rangle\left.\right|^{2}\left(E_{i}-E_{0}\right)}
$$

The sum in the denominator can be completed by closure:

$$
\mathcal{D}=\left\langle\Psi_{0}\right| \mathbf{p}\left(H-E_{0}\right) \mathbf{p}\left|\Psi_{0}\right\rangle=2 \pi Z\left|\Psi_{0}(0)\right|^{2}
$$

where $\mathbf{p}=\mathbf{p}_{1}+\mathbf{p}_{2}$.
Schwartz (1961) transformed the numerator to read

$$
\mathcal{N}=\lim _{K \rightarrow \infty}\left(-K\left\langle\Psi_{0}\right| \mathbf{p} \cdot \mathbf{p}\left|\Psi_{0}\right\rangle+\mathcal{D} \ln (K)+\int_{0}^{K} k d k\left\langle\Psi_{0}\right| \mathbf{p}\left(H-E_{0}+k\right)^{-1} \mathbf{p}\left|\Psi_{0}\right\rangle\right)
$$

Expensive in computer time and slowly convergent. Recent work by
J. D. Baker,R. C. Rorrrey, M. Jerziorska, and J. D. Morgan III (unpublished), V. I. Korobov and S. V. Korobov, Phys. Rev. A 59, 3394 (1999).
semin09.tex, January, 2005

Alternative method: demonstration for hydrogen
Define a variational basis set with multiple distance scales according to:

$$
\chi_{i, j}=r^{i} \exp \left(-\alpha_{j} r\right) \cos (\theta)
$$

with

$$
\begin{aligned}
j & =0,1, \ldots, \Omega-1 \\
i & =0,1, \ldots, \Omega-j-1
\end{aligned}
$$

and

$$
\alpha_{j}=\alpha_{0} \times g^{j}, \quad g \simeq 10
$$

The number of elements is $N=\Omega(\Omega+1) / 2$.
Diagonalize the Hamiltonian in this basis set to generate a set of pseudostates.
semin09.tex, January, 2005

The sequence of basis sets is:

$$
\begin{aligned}
& \Omega=1 ; \quad N=1: \\
& e^{-\alpha r} \\
& \Omega=2 ; \quad N=3: \\
& e^{-10 \alpha r} \\
& e^{-\alpha r}, \quad r e^{-\alpha r} \\
& \Omega=3 ; \quad N=6: \\
& e^{-100 \alpha r} \\
& e^{-10 \alpha r}, \quad r e^{-10 \alpha r}, \\
& e^{-\alpha r}, \quad r e^{-\alpha r}, \quad r^{2} e^{-\alpha r} \\
& \Omega=4: \quad N=10 \\
& e^{-1000 \alpha r} \\
& e^{-100 \alpha r}, \quad r e^{-100 \alpha r}, \\
& e^{-10 \alpha r}, \quad r e^{-10 \alpha r}, \quad r^{2} e^{-10 \alpha r} \\
& e^{-\alpha r}, \quad r e^{-\alpha r}, \quad r^{2} e^{-\alpha r}, \quad r^{3} e^{-\alpha r}
\end{aligned}
$$

Differential contributions to the Bethe logarithm for the ground state of hydrogen. Each point represents the contribution from one pseudostate.

Convergence of the Bethe logarithm for hydrogen.

Ω	N	$\beta(1 s)$	Differences	Ratios
2	3	2.04133473671235643207		
3	6	2.25562501021050378880	0.21429027349814735672	
4	10	2.28660583806175080919	0.03098082785124702039	6.917
5	15	2.29046731873800820861	0.00386148067625739942	8.023
6	21	2.29092465658916831858	0.00045733785116010997	8.443
7	28	2.29097528980426278650	0.00005063321509446792	9.032
8	36	2.29098074679466355929	0.00000545699040077279	9.279
9	45	2.29098131145011677157	0.00000056465545321228	9.664
10	55	2.29098136890590489232	0.00000005745578812075	9.828
11	66	2.29098137458983244603	0.00000000568392755370	10.108
12	78	2.29098137514650642811	0.00000000055667398208	10.211
13	91	2.29098137519991895769	0.00000000005341252957	10.422
14	105	2.29098137520502205119	0.00000000000510309350	10.467
15	120	2.29098137520550236046	0.00000000000048030928	10.625
16	136	2.29098137520554763881	0.00000000000004527834	10.608
17	153	2.29098137520555186303	0.00000000000000422422	10.719
18	171	2.29098137520555226032	0.00000000000000039729	10.633
19	190	2.29098137520555229746	0.00000000000000003714	10.697
20	210	2.29098137520555230096	0.00000000000000000351	10.594
Extrap.	2.29098137520555230133			

Partial Bethe logarithm sums for the ground state of helium, summed over pseudostates up to energy E. Each solid point represents the contribution from one pseudostate. The open circles are the corresponding partial sums for hydrogen.

Bethe logarithms for He-like atoms.

State	$Z=2$	$Z=3$	$Z=4$	$Z=5$	$Z=6$
$1{ }^{1} \mathrm{~S}$	2.9838659 (1)	$2.982624558(1)$	$2.98250305(4)$	$2.982591383(7)$	2.98271694
$2{ }^{1} \mathrm{~S}$	$2.980118275(4)$	$2.97636309(2)$	2.973976 98(4)	$2.97238816(3)$	2.97126629
$2{ }^{3} \mathrm{~S}$	$2.97774236(1)$	$2.973851679(2)$	2.971735 560(4)	$2.970424952(5)$	2.96953706
$2{ }^{1} \mathrm{P}$	2.983803 49(3)	$2.98318610(2)$	$2.98269829(1)$	$2.98234018(7)$	2.98
$2{ }^{3} \mathrm{P}$	2.983690 84(2)	$2.98295868(7)$	$2.9824435(1)$	$2.9820895(1)$	2.981
$3{ }^{1} \mathrm{~S}$	2.982870 512(3)	$2.9814365(3)$	2.980455 81(7)	$2.979778086(4)$	2.979289 8(
$3{ }^{3} \mathrm{~S}$	$2.982372554(8)$	$2.980849595(7)$	$2.979904876(3)$	2.979282037	2.9788
$3{ }^{1} \mathrm{P}$	$2.98400137(2)$	2.983768943 (8)	2.983584 906(6)	$2.983449763(6)$	2.983348
$3{ }^{3} \mathrm{P}$	$2.9839398(3)$	$2.98366636(4)$	2.98347930 (2)	$2.983350844(8)$	2.983
$4{ }^{1} \mathrm{~S}$	$2.98359631(1)$	2.9829446 (3)	2.9824863 (1)	$2.982166154(3)$	2.981
$4{ }^{3} \mathrm{~S}$	$2.98342912(5)$	$2.98274035(4)$	$2.98229137(7)$	$2.98198821(2)$	2.981772
$4{ }^{1} \mathrm{P}$	$2.984068766(9)$	2.9839610 (2)	$2.9838758(1)$	$2.9838132(1)$	2.983766 6
$4{ }^{3} \mathrm{P}$	2.984039 84(5)	2.98391345 (9)	2.9838289 (1)	$2.9837701(2)$	2.983
$5{ }^{1} \mathrm{~S}$	2.983857 4(1)	$2.98351301(2)$	2.983267 901(6)	$2.98309485(5)$	2.9829
$5{ }^{3} \mathrm{~S}$	$2.98378402(8)$	$2.98342250(2)$	$2.983180677(6)$	$2.98301517(3)$	2.98289
$5{ }^{1} \mathrm{P}$	$2.984096174(9)$	$2.98403803(5)$	2.983992 23(1)	$2.98395867(5)$	2.983933
$5{ }^{3} \mathrm{P}$	2.9840803 (2)	$2.9840144(4)$	2.9839689 (4)	$2.9839372(4)$	2.983914

For $\mathrm{He}^{+}, \beta(1 s)=2.984128555765$
G.W.F. Drake and S.P. Goldman, Can. J. Phys. 77, 835 (1999).

ASYMPTOTIC EXPANSIONS

Core Polarization Model (Drachman)

- neglect exchange.
- Rydberg electron moves in the field generated by the polarizable core.

$$
V(x)=-\frac{Z-1}{x}+\Delta V(x)
$$

Illustration of the physical basis for the asymptotic expansion method in which the Rydberg electron moves in the field generated by the polarized core.

$$
\Delta V(x)=-\frac{c_{4}}{x^{4}}-\frac{c_{6}}{x^{6}}-\frac{c_{7}}{x^{7}}-\frac{c_{8}}{x^{8}}-\frac{c_{9}}{x^{9}}-\frac{c_{10}}{x^{10}}+\cdots
$$

For example, $c_{4}=\frac{1}{2} \alpha_{1}$.

Then

$$
\Delta E_{n L}=-\frac{(Z-1)^{2}}{2 n^{2}}+\left\langle\chi_{0}\right| \Delta V(x)\left|\chi_{0}\right\rangle+\left\langle\chi_{0}\right| \Delta V(x)\left|\chi_{1}\right\rangle
$$

where $\left|\chi_{1}\right\rangle=$ first-order perturbation correction to $\left|\chi_{0}\right\rangle$ due to $\Delta V(x)$; i.e.

$$
\left[h_{0}(x)-e_{0}\right]\left|\chi_{1}\right\rangle+\Delta V(x)\left|\chi_{0}\right\rangle=\left|\chi_{0}\right\rangle\langle | \Delta V(x)\left|\chi_{0}\right\rangle
$$

semin40.tex, January, 2005

Asymptotic expansion for the energy of the 1s10k state of helium.

Quantity	Value
$-Z^{2} / 2$	-2.00000000000000000
$-1 /\left(2 n^{2}\right)$	-0.00500000000000000
$c_{4}\left\langle r^{-4}\right\rangle$	-0.00000000739334195
$c_{6}\left\langle r^{-6}\right\rangle$	0.00000000000498047
$c_{7}\left\langle r^{-7}\right\rangle$	0.00000000000027895
$c_{8}\left\langle r^{-8}\right\rangle$	-0.00000000000022433
$c_{9}\left\langle r^{-9}\right\rangle$	-0.00000000000000225
$c_{1} 0\left\langle r^{-10}\right\rangle$	0.00000000000000373
Second order	-0.00000000000007091
Total	$-2.00500000738837630(74)$
Variational	$-2.0050000073883758769(0)$
Difference	$-0.00000000000000042(74)$
	$\simeq 3 \mathrm{~Hz}$

Two-electron Bethe logs for high angular momentum

$$
\beta(1 \text { snl })=\beta(1 s)+\left(\frac{Z-1}{Z}\right)^{4} \frac{\beta(n l)}{n^{3}}+\frac{0.316205}{Z^{6}}\left\langle x^{-4}\right\rangle+\Delta \beta(1 \text { snl })
$$

Residual two-electron Bethe logs $n^{3} \Delta \beta(1$ snl $)$.

State	$n^{3} \Delta \beta(1$ snl $)$	Least squares fit	Difference
$3^{1} \mathrm{D}$	$-0.00000108(4)$		
$3^{3} \mathrm{D}$	$0.00018174(5)$		
$4^{1} \mathrm{D}$	$-0.0000184(3)$		
$4^{3} \mathrm{D}$	$0.00023118(7)$		
$5^{1} \mathrm{D}$	$-0.00002684(9)$		$-0.00000002(2)$
$5^{3} \mathrm{D}$	$0.00024973(12)^{\text {a }}$		$-0.00000001(2)$
$4^{1} \mathrm{~F}$	$0.00000658(2)$	0.00000660	$0.00000001(3)$
$4^{3} \mathrm{~F}$	$0.00000763(2)$	0.00000764	$0.00000001(3)$
$5^{1} \mathrm{~F}$	$0.00000870(3)$	0.00000869	$0.0000000(1)$
$5^{3} \mathrm{~F}$	$0.00001042(3)$	0.00001041	$-0.0000001(3)$
$6^{1} \mathrm{~F}$	$0.0000098(1)$	0.00000983	$0.000000000(3)$
$6^{3} \mathrm{~F}$	$0.0000119(3)$	0.00001198	$0.000000000(3)$
$5^{1} \mathrm{G}$	$0.000000770(3)$	0.000000770	$0.000000001(3)$
$5^{3} \mathrm{G}$	$0.000000771(3)$	0.000000771	$0.000000003(8)$
$6^{1} \mathrm{G}$	$0.000001043(3)$	0.000001042	$0.000000000(2)$
$6^{3} \mathrm{G}$	$0.000001050(8)$	0.000001047	$0.000000000(2)$
$6^{1} \mathrm{H}$	$0.000000127(2)$	0.000000127	
$6^{3} \mathrm{H}$	$0.000000127(2)$	0.000000127	

${ }^{\text {a }}$ Corresponds to an energy uncertainty of $\pm 14 \mathrm{~Hz}$.

A least-squares fit gives

$$
\begin{aligned}
& \Delta \beta\left(1 \text { snl }{ }^{1} \mathrm{~L}\right)=95.6(0.9)\left\langle x^{-6}\right\rangle-841(19)\left\langle x^{-7}\right\rangle+1394(50)\left\langle x^{-8}\right\rangle \\
& \Delta \beta\left(1 \text { snl }{ }^{3} \mathrm{~L}\right)=95.0(0.9)\left\langle x^{-6}\right\rangle-840(23)\left\langle x^{-7}\right\rangle+1581(60)\left\langle x^{-8}\right\rangle
\end{aligned}
$$

Comparison of Bethe Logarithms $\ln \left(k_{0}\right)$ in units of $\ln \left(Z^{2} R_{\infty}\right)$.

Atom	$1 s^{2} 2 s$	$1 s^{2} 3 s$	$1 s^{2} 2 p$	$1 s^{2}$	$1 s$
Li	$2.98106(1)$	$2.98236(6)$	$2.98257(6)$	2.982624	2.984128
Be^{+}	$2.97926(2)$	$2.98162(1)$	$2.98227(6)$	2.982503	2.984128

Comparison of Bethe Logarithm finite mass coefficient $\Delta \beta_{\mathrm{MP}}$.

Atom	$1 s^{2} 2 s$	$1 s^{2} 3 s$	$1 s^{2} 2 p$	$1 s^{2}$	$1 s$
Li	$0.11305(5)$	$0.1105(3)$	$0.1112(5)$	0.1096	0.0
Be^{+}	$0.12558(4)$	$0.1171(1)$	$0.1217(6)$	0.1169	0.0

$$
\ln \left(k_{0} / Z^{2} R_{M}\right)=\beta_{\infty}+(\mu / M) \Delta \beta_{\mathrm{MP}}
$$

where β_{∞} is the Bethe logarithm for infinite nuclear mass.

The electron-electron part is (Araki and Sucher)

$$
\begin{equation*}
\Delta E_{L, 2}=\alpha^{3}\left(\frac{14}{3} \ln \alpha+\frac{164}{15}\right)\left\langle\delta\left(\mathbf{r}_{i j}\right)\right\rangle-\frac{14}{3} \alpha^{3} Q, \tag{6}
\end{equation*}
$$

where the Q term is defined by

$$
\begin{equation*}
Q=(1 / 4 \pi) \lim _{\epsilon \rightarrow 0}\left\langle r_{i j}^{-3}(\epsilon)+4 \pi(\gamma+\ln \epsilon) \delta\left(\mathbf{r}_{i j}\right)\right\rangle \tag{7}
\end{equation*}
$$

γ is Euler's constant, ϵ is the radius of a sphere about $r_{i j}=0$ excluded from the integration.

Finite Nuclear Size Correction

In lowest order

$$
\begin{equation*}
\Delta E_{\mathrm{nuc}}=\frac{2 \pi Z r_{\mathrm{rms}}^{2}}{3}\left\langle\delta\left(\mathbf{r}_{i}\right)\right\rangle \tag{8}
\end{equation*}
$$

where $r_{\mathrm{rms}}=R_{\mathrm{rms}} / a_{\mathrm{Bohr}}, R_{\mathrm{rms}}$ is the root-mean-square radius of the nuclear charge distribution, and $a_{\text {Bohr }}$ is the Bohr radius.
semin08.tex, January, 2005

Contributions to the ${ }^{6} \mathrm{He}-{ }^{4} \mathrm{He}$ isotope shift (MHz).

Contribution	$2^{3} \mathrm{~S}_{1}$	$3^{3} \mathrm{P}_{2}$	$2^{3} \mathrm{~S}_{1}-3{ }^{3} \mathrm{P}_{2}$
E_{nr}	$52947.324(19)$	$17549.785(6)$	$35397.539(16)$
μ / M	$2248.202(1)$	$-5549.112(2)$	$7797.314(2)$
$(\mu / M)^{2}$	-3.964	-4.847	0.883
$\alpha^{2} \mu / M$	1.435	0.724	0.711
$E_{\text {nuc }}^{\mathrm{a}}$	-1.264	0.110	-1.374
$\alpha^{3} \mu / M, 1-\mathrm{e}$	-0.285	-0.037	-0.248
$\alpha^{3} \mu / M, 2-\mathrm{e}$	0.005	0.001	0.004
Total 3	$55191.453(19)$	$11996.625(4)$	$43194.828(16)$
Experiment $^{\mathrm{b}}$			$43194.772(56)$
Difference			$0.046(56)$

${ }^{\text {a }}$ Assumed nuclear radius is $r_{\text {nuc }}\left({ }^{6} \mathrm{He}\right)=2.04 \mathrm{fm}$.
In general, $\operatorname{IS}(2 S-3 P)=43196.202(16)+1.008\left[r_{\text {nuc }}^{2}\left({ }^{4} \mathrm{He}\right)-r_{\text {nuc }}^{2}\left({ }^{6} \mathrm{He}\right)\right]$.
Adjusted nuclear radius is $r_{\text {nuc }}\left({ }^{6} \mathrm{He}\right)=2.054(14) \mathrm{fm}$.
${ }^{\mathrm{b}}$ Z.-T. Lu, Argonne collaboration.

Nuclear Charge Radius of ${ }^{8} \mathbf{H e}$

P. Mueller, ${ }^{1, *}$ I. A. Sulai, ${ }^{1,2}$ A.C.C. Villari, ${ }^{3}$ J. A. Alcántara-Núñez, ${ }^{3}$ R. Alves-Condé, ${ }^{3}$ K. Bailey, ${ }^{1}$ G. W.F. Drake, ${ }^{4}$ M. Dubois, ${ }^{3}$ C. Eléon, ${ }^{3}$ G. Gaubert, ${ }^{3}$ R. J. Holt, ${ }^{1}$ R. V.F. Janssens, ${ }^{1}$ N. Lecesne, ${ }^{3}$ Z.-T. Lu, ${ }^{1,2}$ T. P. O'Connor, ${ }^{1}$ M.-G. Saint-Laurent, ${ }^{3}$ J.-C. Thomas, ${ }^{3}$ and L.-B. Wang ${ }^{5}$
${ }^{1}$ Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{2}$ Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
${ }^{3}$ GANIL (IN2P3/CNRS-DSM/CEA), B.P. 55027 F-14076 Caen Cedex 5, France
${ }^{4}$ Physics Department, University of Windsor, Windsor, Ontario, Canada N9B 3P4
${ }^{5}$ Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 21 November 2007; published 21 December 2007)
The root-mean-square (rms) nuclear charge radius of ${ }^{8} \mathrm{He}$, the most neutron-rich of all particle-stable nuclei, has been determined for the first time to be $1.93(3) \mathrm{fm}$. In addition, the rms charge radius of ${ }^{6} \mathrm{He}$ was measured to be $2.068(11) \mathrm{fm}$, in excellent agreement with a previous result. The significant reduction in charge radius from ${ }^{6} \mathrm{He}$ to ${ }^{8} \mathrm{He}$ is an indication of the change in the correlations of the excess neutrons and is consistent with the ${ }^{8} \mathrm{He}$ neutron halo structure. The experiment was based on laser spectroscopy of individual helium atoms cooled and confined in a magneto-optical trap. Charge radii were extracted from the measured isotope shifts with the help of precision atomic theory calculations.

Atomic Energy Levels of Helium

A helium glow discharge

Laser Spectroscopic Determination of the Nuclear Charge Radius of ${ }^{6} \mathbf{H e}$

L.-B. Wang, P. Mueller, K. Bailey, J.P. Greene, D. Henderson, R.J. Holt, R.V.F. Janssens, C.L. Jiang, Z.-T. Lu, T.P. O'Connor, R.C. Pardo, K.E. Rehm, J.P. Schiffer, X.D. Tang Argonne National Lab. G.W.F. Drake University of Windsor

Motivation

- Test the Standard Nuclear Structure Model;
- Study nucleon interactions in neutron-rich matter.

Method: Atomic isotope shift

${ }^{6} \mathrm{He}-{ }^{4} \mathrm{He}$ isotope shift at $2{ }^{3} \mathrm{~S}_{1}-3{ }^{3} \mathrm{P}_{2}, 389 \mathrm{~nm}$ IS $(\mathrm{MHz})=43,196.202(20)+1.008 \times\left[\left\langle r^{2}\right\rangle_{4 H e}-\left\langle r^{2}\right\rangle_{6 H e}\right]$
-- G.W.F. Drake, Nucl. Phys. A737c, 25 (2004)

Its charge radius expands due to the motion of the ${ }^{4} \mathrm{He}$ core

Fluorescence signal of one trapped ${ }^{6} \mathrm{He}$ atom

Spectrum of $150{ }^{6} \mathrm{He}$ atoms in one hour

Comparison between theory and experiment for the total transition frequencies of ${ }^{7} \mathrm{Li}$ and ${ }^{9} \mathrm{Be}^{+}$. Units are cm^{-1}.

Atom/lon	$2^{2} \mathrm{P}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}$	$2^{2} \mathrm{P}_{3 / 2}-2^{2} \mathrm{~S}_{1 / 2}$	$3^{2} \mathrm{~S}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}$	$2^{2} \mathrm{~S}_{1 / 2} \mathrm{I} . \mathrm{P}$.
${ }^{7} \mathrm{Li}$ (this work)	$14903.6479(10)$	$14903.9832(10)$	$27206.0930(10)$	$43487.1583(10)$
${ }^{7} \mathrm{Li}$ (expt.)	$14903.648130(14)^{\mathrm{a}}$	$14903.983648(14)^{\mathrm{a}}$	$27206.09420(10)^{\mathrm{b}}$	$43487.15940(18)^{\mathrm{c}}$
Difference	$-0.0002(10)$	$-0.0004(10)$	$-0.0012(10)$	$-0.0011(10)$
${ }^{9} \mathrm{Be}^{+}$(this work)	$31928.738(5)$	$31935.310(5)$	$88231.920(6)$	$146882.923(5)$
${ }^{9} \mathrm{Be}^{+}$(expt.)	31928.744^{d}	31935.320^{d}	88231.915^{d}	146882.86^{d}
		$31935.310(47)^{\mathrm{e}}$		
Difference	$-0.006(5)$	$-0.010(5)$	$0.005(6)$	$0.063(5)$
		$0.000(47)$		

${ }^{\text {a }}$ Sansonetti et al.
${ }^{\text {b }}$ Bushaw et al.
${ }^{\text {c Bushaw et al. }}$
${ }^{\mathrm{d}}$ Ralchenko et al.
${ }^{e}$ Nakamura et al.
semin44.tex, March, 2008

The ToPLiS Collaboration

Resonance Ionization of Lithium

"Doubly-Resonant-4-Photon Ionization"

2s - 3s transition
\rightarrow Narrow line
2-photon spectroscopy
\rightarrow Doppler cancellation
Spontaneous decay
\rightarrow Decoupling of precise spectroscopy and efficient ionization
$2 p-3 d$ transition
\rightarrow Resonance enhancement for efficient ionization

LBSM - Large Basis Shell Model (Navrátil et al., 2003).
SVMC - Stochastic Variational MultiCluster (Suzuki et al., 2002).
DCM - Dynamic Correlation Model (Tomaselli et al., 2002).
GFMC - Green's Function Monte Carlo (Wiringa \& Peiper, 2007).

Conclusions

- The finite basis set method with multiple distance scales provides an effective and efficient method of calculating Bethe logarithms, thereby enabling calculations up to order α^{3} Ry for helium and lithium.
- The objective of calculating isotope shifts to better than $\pm 10 \mathrm{kHz}$ has been achieved for two- and three-electron atoms, thus allowing measurements of the nuclear charge radius to $\pm 0.002 \mathrm{fm}$.
- The results provide a significant test of theoretical models for the nucleon-nucleon potential, and hence for the properties of nuclear matter in general.

PSAS Conference 2008

International Conference on

Precision Physics of Simple Atomic Systems

July 22-26, 2008

University of Windsor. Windsor, Ontario, Canada

Contributions to the ${ }^{7} \mathrm{Li}-{ }^{6} \mathrm{Li}$ isotope shifts for the $1 s^{2} 2 p^{2} \mathrm{P}_{J}-1 s^{2} 2 s^{2} \mathrm{~S}$ transitions and comparison with experiment. Units are MHz .

Contribution	$2^{2} \mathrm{P}_{1 / 2}-2^{2} \mathrm{~S}$	$2^{2} \mathrm{P}_{3 / 2}-{ }^{2} \mathrm{~S}$
Theory		
μ / M	$10533.508(5)^{\text {a }}$	$10533.508(5)^{\text {a }}$
$(\mu / M)^{2}$	0.061	0.061
$\alpha^{2} \mu / M$	-1.4855(13)	-1.0904(13)
$\alpha^{3} \mu / M$, anom. magnetic	-0.000 17	0.00009
$\alpha^{3} \mu / M$, one-electron	0.0184	0.0184
$\alpha^{3} \mu / M$, two-electron	0.009(2)	0.009(2)
$r_{\text {rms }}^{2}$	0.194 ± 0.271	0.194 ± 0.271
$r_{\text {rms }}^{2} \mu / M$	-0.000 73(11)	-0.00073(11)
Total	$10534.052(6)$	$10534.448(6)$
RCI-MBPT ${ }^{\text {b }}$	10608(300)	10607(300)
Experiment		
Sansonetti et al. ${ }^{\text {c }}$	$10532.9(6)$	10533.3 (5)
Windholz et al. ${ }^{\text {d }}$	10 534.3(3)	10539.9(1.2)
Scherf et al. ${ }^{\text {e }}$	10533.13(15)	10534.93(15)
Walls et al. ${ }^{\text {f }}$	10534.26(13)	
Noble et al. ${ }^{\text {g }}$	10534.039 (70)	

${ }^{\text {a }}$ The additional uncertainty from the atomic mass determinations is $\pm 0.008 \mathrm{MHz}$.
${ }^{\text {b }}$ V.A. Korol and M.G. Kozlov, Phys. Rev. A 76, 022103 (2007).
${ }^{\text {c}}{ }^{\text {C. J. Sansonetti et al., Phys. Rev. A 52, } 2682 \text { (1995). }}$
${ }^{\text {d}}$ L. Windholz and C. Umfer, Z. Phys. D 29, 121 (1994).
${ }^{e}$ W. Scherf, O. Khait, H. Jäger, and L. Windholz, Z. Phys. D 36, 31, (1996).
${ }^{f}$ J. Walls et al., Eur. Phys. J. D 22159 (2003).
${ }^{\mathrm{g}}$ G.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A 74, 012502 (2006).

Contributions to the ${ }^{7} \mathrm{Li}-{ }^{6} \mathrm{Li}$ isotope shifts for the $1 s^{2} 2 p^{2} \mathrm{P}_{J}-1 s^{2} 2 s^{2} \mathrm{~S}$ transitions and comparison with experiment. Units are MHz .

Contribution	$2^{2} \mathrm{P}_{1 / 2}-2^{2} \mathrm{~S}$	$2^{2} \mathrm{P}_{3 / 2}-2^{2} \mathrm{~S}$
Theory		
μ / M	$10533.508(5)^{\text {a }}$	$10533.508(5)^{\text {a }}$
$(\mu / M)^{2}$	0.061	0.061
$\alpha^{2} \mu / M$	-1.4855(13)	-1.0904(13)
$\alpha^{3} \mu / M$, anom. magnetic	-0.000 17	0.00009
$\alpha^{3} \mu / M$, one-electron	0.0184	0.0184
$\alpha^{3} \mu / M$, two-electron	0.009(2)	0.009(2)
$r_{\text {rms }}^{2}$	0.194 ± 0.271	0.194 ± 0.271
$r_{\text {rms }}^{2} \mu / M$	-0.000 73(11)	-0.00073(11)
Total	$10534.052(6)$	$10534.448(6)$
RCI-MBPT ${ }^{\text {b }}$	10608(300)	10607(300)
Experiment		
Sansonetti et al. ${ }^{\text {c }}$	10 532.9(6)	10 533.3(5)
Windholz et al. ${ }^{\text {d }}$	10534.3 (3)	10539.9(1.2)
Scherf et al. ${ }^{\text {e }}$	10533.13(15)	10534.93(15)
Walls et al. ${ }^{\text {f }}$	10534.26(13)	
Noble et al. ${ }^{\text {g }}$	10 534.039(70)	

${ }^{\text {a }}$ The additional uncertainty from the atomic mass determinations is $\pm 0.008 \mathrm{MHz}$.
${ }^{\text {b }}$ V.A. Korol and M.G. Kozlov, Phys. Rev. A 76, 022103 (2007).
${ }^{\text {c}}{ }^{\text {C. J. Sansonetti et al., Phys. Rev. A 52, } 2682 \text { (1995). }}$
${ }^{\text {d}}$ L. Windholz and C. Umfer, Z. Phys. D 29, 121 (1994).
${ }^{e}$ W. Scherf, O. Khait, H. Jäger, and L. Windholz, Z. Phys. D 36, 31, (1996).
${ }^{f}$ J. Walls et al., Eur. Phys. J. D 22159 (2003).
${ }^{\mathrm{g}}$ G.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A 74, 012502 (2006).

Spin-independent Relativistic Corrections of $O\left(\alpha^{4}\right)$ a.u.

$$
\Delta E_{\mathrm{B}}^{(4)}=\alpha^{4}\left\langle H_{\mathrm{e}-\mathrm{n}}(1)+H_{\mathrm{e}-\mathrm{n}}(2)+H_{V}\right\rangle+\sum_{I} \alpha^{4}\left\langle B_{I} \frac{1}{(E-H)^{\prime}} B_{I}\right\rangle
$$

where

$$
H_{\mathrm{e}-\mathrm{n}}(i)=\frac{p_{i}^{6}}{16}-\frac{1}{8}\left[\mathbf{p}_{i}, \frac{Z}{r_{i}}\right]^{2}-\frac{5}{128}\left[p_{i}^{2},\left[p_{i}^{2}, \frac{Z}{r_{i}}\right]\right]-\frac{3}{32} p_{i}^{2}\left[\mathbf{p}_{i},\left[\mathbf{p}_{i}, \frac{Z}{r_{i}}\right]\right]
$$

and
$B_{I}=$ Breit interaction terms.
K. Pachucki, Phys. Rev. Lett. 84, 4561 (2000).
V. I. Korobov, Phys. Rev. A 66, 024501 (2002).
transp25.tex, June 03
M. H. Chen, K. T. Cheng, and W. R. Johnson, Phys. Rev. A 47, 3692 (1993).

For the $O\left(\alpha^{4}\right)$ contributions to the fine structure splittings in He-like ions:

\[

\]

Expand

$$
\begin{aligned}
\Psi & =\Psi_{0}+\frac{\mu}{M} \Psi_{1}+\left(\frac{\mu}{M}\right)^{2} \Psi_{2}+\cdots \\
\mathcal{E} & =\mathcal{E}_{0}+\frac{\mu}{M} \mathcal{E}_{1}+\left(\frac{\mu}{M}\right)^{2} \mathcal{E}_{2}+\cdots
\end{aligned}
$$

The zero-order problem is the Schrödinger equation for infinite nuclear mass

$$
\left\{-\frac{1}{2} \nabla_{\rho_{1}}^{2}-\frac{1}{2} \nabla_{\rho_{2}}^{2}-\frac{Z}{\rho_{1}}-\frac{Z}{\rho_{2}}+\frac{1}{\left|\boldsymbol{\rho}_{1}-\boldsymbol{\rho}_{2}\right|}\right\} \Psi_{0}=\mathcal{E}_{0} \Psi_{0}
$$

The "normal" isotope shift is

$$
\Delta E_{\text {normal }}=-\frac{\mu}{M}\left(\frac{\mu}{m}\right) \mathcal{E}_{0} \quad 2 R_{\infty}
$$

The first-order "specific" isotope shift is

$$
\Delta E_{\text {specific }}^{(1)}=-\frac{\mu}{M}\left(\frac{\mu}{m}\right)\left\langle\Psi_{0}\right| \nabla_{\rho_{1}} \cdot \nabla_{\rho_{2}}\left|\Psi_{0}\right\rangle \quad 2 R_{\infty}
$$

The second-order "specific" isotope shift is

$$
\Delta E_{\text {specific }}^{(2)}=\left(-\frac{\mu}{M}\right)^{2}\left(\frac{\mu}{m}\right)\left\langle\Psi_{0}\right| \nabla_{\rho_{1}} \cdot \nabla_{\rho_{2}}\left|\Psi_{1}\right\rangle \quad 2 R_{\infty}
$$

Two contexts

I. For total transition frequencies

$$
\Delta E=E_{i}-E_{f}
$$

and the dominant source of uncertainty is the higher-order QED term $\alpha^{4} \mathcal{E}_{\text {ho }}^{(0)} \simeq 10^{-8}$, where here and throughout the superscript denotes the power of λ.
II. For isotope shifts
terms independent of λ cancel (except for the last \bar{r}_{c}^{2} term), and the term $\alpha^{4} \lambda \mathcal{E}_{\text {ho }}^{(1)} \simeq$ 10^{-12} contributes only at the level of a few kHz . The isotope shift between isotopes A and B in the same atomic state is then

$$
\begin{align*}
& \Delta E(B-A)= \\
& \lambda_{-}\left[\mathcal{E}_{\mathrm{NR}}^{(1)}-\mathcal{E}_{\mathrm{NR}}^{(0)}+\lambda_{+}\left(\mathcal{E}_{\mathrm{NR}}^{(2)}-\mathcal{E}_{\mathrm{NR}}^{(1)}\right)+\alpha^{2}\left(\mathcal{E}_{\mathrm{rel}}^{(1)}-\mathcal{E}_{\mathrm{rel}}^{(0)}\right)\right. \\
& \left.+\alpha^{3}\left(\mathcal{E}_{\mathrm{QED}}^{(1)}-\mathcal{E}_{\mathrm{QED}}^{(0)}\right)+\alpha^{4}\left(\mathcal{E}_{\mathrm{ho}}^{(1)}-\mathcal{E}_{\mathrm{ho}}^{(0)}\right)\right] \\
& +\left(\bar{r}_{\mathrm{c}, B}^{2}-\bar{r}_{\mathrm{c}, A}^{2}\right) \mathcal{E}_{\mathrm{nuc}}^{(0)} \tag{1}
\end{align*}
$$

where $\lambda_{ \pm}=(\mu / M)_{B} \pm(\mu / M)_{A}$.

Mass Scaling

$H=-\frac{\hbar^{2}}{2 M} \nabla_{X}^{2}-\frac{\hbar^{2}}{2 m} \nabla_{x_{1}}^{2}-\frac{\hbar^{2}}{2 m} \nabla_{x_{2}}^{2}-\frac{Z e^{2}}{\left|\mathbf{X}-\mathbf{x}_{1}\right|}-\frac{Z e^{2}}{\left|\mathbf{X}-\mathbf{x}_{2}\right|}+\frac{e^{2}}{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|}$
Transform to centre-of-mass plus relative coordinates $\mathbf{R}, \mathbf{r}_{1}, \mathbf{r}_{2}$

$$
\begin{aligned}
& \mathbf{R}=\frac{M \mathbf{X}+m \mathbf{x}_{1}+m \mathbf{x}_{2}}{M+2 m} \\
& \mathbf{r}_{1}=\mathbf{X}-\mathbf{x}_{1} \\
& \mathbf{r}_{2}=\mathbf{X}-\mathbf{x}_{2}
\end{aligned}
$$

and ignore centre-of-mass motion. Then

$$
H=-\frac{\hbar^{2}}{2 \mu} \nabla_{r_{1}}^{2}-\frac{\hbar^{2}}{2 \mu} \nabla_{r_{2}}^{2}-\frac{\hbar^{2}}{M} \nabla_{r_{1}} \cdot \nabla_{r_{2}}-\frac{Z e^{2}}{r_{1}}-\frac{Z e^{2}}{r_{2}}+\frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}
$$

New Variational Techniques

I. Double the basis set

$$
\begin{aligned}
& \text { If } \phi_{i, j, k}(\alpha, \beta)=r_{1}^{i} r_{2}^{j} r_{12}^{k} e^{-\alpha r_{1}-\beta r_{2}} \\
& \text { then } \tilde{\phi}_{i, j, k}=a_{1} \phi_{i, j, k}\left(\alpha_{1}, \beta_{1}\right)+a_{2} \phi_{i, j, k}\left(\alpha_{2}, \beta_{2}\right) \\
& \text { asymptotic inner correlation }
\end{aligned}
$$

II. Include the screened hydrogenic function

$$
\phi_{\mathrm{SH}}=\psi_{1 s}(Z) \psi_{n L}(Z-1)
$$

explicitly in the basis set.
III. Optimize the nonlinear parameters

$$
\begin{aligned}
& \frac{\partial E}{\partial \alpha_{t}}=-2\left\langle\Psi_{\mathrm{tr}}\right| H-E\left|r_{1} \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; \alpha_{t}\right) \pm r_{2} \Psi\left(\mathbf{r}_{2}, \mathbf{r}_{1} ; \alpha_{t}\right)\right\rangle \\
& \frac{\partial E}{\partial \beta_{t}}=-2\left\langle\Psi_{\mathrm{tr}}\right| H-E\left|r_{2} \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; \alpha_{t}\right) \pm r_{1} \Psi\left(\mathbf{r}_{2}, \mathbf{r}_{1} ; \alpha_{t}\right)\right\rangle
\end{aligned}
$$

for $t=1,2$, with $\left\langle\Psi_{\text {tr }} \mid \Psi_{\text {tr }}\right\rangle=1$.
$\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; \alpha_{t}\right)=$ terms in Ψ_{tr} which depend explicitly on α_{t}.

QED Corrections

the QED shift for a $1 s^{2} n L n^{2} L$ state of lithium then has the form

$$
E_{\mathrm{QED}}=E_{\mathrm{L}, 1}+E_{\mathrm{M}, 1}+E_{\mathrm{R}, 1}+E_{\mathrm{L}, 2}
$$

where the main one-electron part is (in atomic units)

$$
E_{\mathrm{L}, 1}=\frac{4 Z \alpha^{3}\left\langle\delta\left(\mathbf{r}_{i}\right)\right\rangle^{(0)}}{3}\left\{\ln (Z \alpha)^{-2}-\beta\left(n^{2} L\right)+\frac{19}{30}+\cdots\right\}
$$

the mass scaling and mass polarization corrections are

$$
E_{\mathrm{M}, 1}=\frac{\mu\left\langle\delta\left(\mathbf{r}_{i}\right)\right\rangle^{(1)}}{M\left\langle\delta\left(\mathbf{r}_{i}\right)\right\rangle^{(0)}} E_{\mathrm{L}, 1}+\frac{4 Z \alpha^{3} \mu\left\langle\delta\left(\mathbf{r}_{i}\right)\right\rangle^{(0)}}{3 M}\left[1-\Delta \beta_{\mathrm{MP}}\left(n^{2} L\right)\right]
$$

and the recoil corrections (including radiative recoil) are given by

$$
E_{\mathrm{R}, 1}=\frac{4 Z^{2} \mu \alpha^{3}\left\langle\delta\left(\mathbf{r}_{i}\right)\right\rangle^{(0)}}{3 M}\left[\frac{1}{4} \ln (Z \alpha)^{-2}-2 \beta\left(n^{2} L\right)-\frac{1}{12}-\frac{7}{4} a\left(n^{2} L\right)\right]
$$

where $\beta\left(n^{2} L\right)=\ln \left(k_{0} / Z^{2} R_{\infty}\right)$ is the two-electron Bethe logarithm.
semin08.tex, January, 2005

The dominating nuclear excitations are $E 1$ transitions by the electric dipole coupling $-\vec{d} \cdot \vec{E}$ [20]. The energy shift due to the two-photon exchange in the temporal gauge is

$$
\begin{align*}
E_{\mathrm{pol}}= & i e^{2} \psi^{2}(0) \int \frac{d \omega}{2 \pi} \int \frac{d^{3} k}{(2 \pi)^{3}} \omega^{2} \frac{\left(\delta^{i k}-\frac{k^{i} k^{k}}{\omega^{2}}\right)}{\omega^{2}-k^{2}} \frac{\left(\delta^{j l}-\frac{k^{j} k^{l}}{\omega^{2}}\right)}{\omega^{2}-k^{2}} \\
& \times \operatorname{Tr}\left[\left(\gamma^{j} \frac{1}{\not b-\not k-m} \gamma^{i}+\gamma^{i} \frac{1}{p b+\not k-m} \gamma^{j}\right) \frac{\left(\gamma^{0}+I\right)}{4}\right] \\
& \times\left\langle\phi_{N}\right| d^{k} \frac{1}{E_{N}-H_{N}-\omega} d^{l}\left|\phi_{N}\right\rangle, \tag{14}
\end{align*}
$$

where $\psi^{2}(0)=(m \alpha)^{3}\left\langle\sum_{a} \delta^{3}\left(r_{a}\right)\right\rangle, p=(m, \overrightarrow{0})$, and we used plane wave approximation for the electrons, since the characteristic photon momentum k is much larger than the inverse Bohr radius. After performing k integration and replacing $\omega=i w$, one obtains

$$
\begin{equation*}
E_{\mathrm{pol}}=-m \alpha^{4}\left\langle\sum_{a} \delta^{3}\left(r_{a}\right)\right\rangle\left(m^{3} \tilde{\alpha}_{\mathrm{pol}}\right) \tag{15}
\end{equation*}
$$

where $\tilde{\alpha}_{\text {pol }}$ is a kind of electric polarizability of the nucleus, which is given by the following double integral:
$\left.\tilde{\alpha}_{\mathrm{pol}}=\frac{16 \alpha}{3} \int_{E_{T}}^{\infty} d E \frac{1}{e^{2}}\left|\left\langle\phi_{N}\right| \vec{d}\right| E\right\rangle\left.\right|^{2}$

FIG. 1 (color online). Electric dipole line strength by Nakamura et al. [20] adapted to the new value of E_{T} from Ref. [7].

$$
\begin{equation*}
\tilde{\alpha}_{\mathrm{pol}}=60.9(6.1) \mathrm{fm}^{3}=1.06(0.11) \times 10^{-6} \mathrm{~m}^{-3} \tag{18}
\end{equation*}
$$

Calculated isotope shift parameter $\Delta E_{B-A}^{(0)}$ for various transitions in Li and Be^{+}. Units are MHz .

Isotopes	${ }^{2} \mathrm{P}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}$	${ }^{2} \mathrm{P}_{3 / 2}-2^{2} \mathrm{~S}_{1 / 2}$	$3^{2} \mathrm{~S}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}$
${ }^{7} \mathrm{Li}-{ }^{6} \mathrm{Li}$	$-10532.111(6)$	$-10532.506(6)$	$-11452.821(2)$
${ }^{7} \mathrm{Li}-{ }^{-} \mathrm{Li}$	$7940.627(5)$	$7940.925(5)$	$8634.989(2)$
${ }^{7} \mathrm{Li}-{ }^{9} \mathrm{Li}$	$14098.840(8)$	$14099.369(8)$	$15331.799(3)$
${ }^{7} \mathrm{Li}^{1}{ }^{1} \mathrm{Li}^{\mathrm{a}}$	$23082.642(11)$	$23083.493(11)$	$25101.470(5)$
${ }^{9} \mathrm{Be}^{7} \mathrm{Be}$	$-49225.765(19)$	$-49231.814(19)$	$-48514.03(2)$
${ }^{9} \mathrm{Be}^{10} \mathrm{Be}$	$17310.44(6)$	$17312.57(6)$	$17060.56(6)$
${ }^{9} \mathrm{Be}-{ }^{11} \mathrm{Be}$	$31560.01(6)$	$31563.89(6)$	$31104.60(6)$

${ }^{a}$ Includes nuclear polarization corrections of 62 kHz for the $3^{2} \mathrm{P}_{J}-2^{2} \mathrm{~S}_{1 / 2}$ transitions, and 39 kHz for the $3{ }^{2} \mathrm{~S}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}$ transition.

$$
\begin{aligned}
\Delta E(B-A) & =\lambda_{-}\left[\mathcal{E}_{\text {tot }}^{(1)}-\mathcal{E}_{\mathrm{tot}}^{(0)}+\lambda_{+}\left(\mathcal{E}_{\mathrm{tot}}^{(2)}-\mathcal{E}_{\mathrm{tot}}^{(1)}\right)\right]+C\left(\bar{r}_{\mathrm{c}, B}^{2}-\bar{r}_{\mathrm{c}, A}^{2}\right) \\
& =\Delta E_{(B-A)}^{(0)}+C\left(\bar{r}_{\mathrm{c}, B}^{2}-\bar{r}_{\mathrm{c}, A}^{2}\right)
\end{aligned}
$$

and for Be^{+}:
$\mathrm{C}\left(2^{2} \mathrm{P}-2^{2} \mathrm{~S}\right)=16.912 \mathrm{MHz} / \mathrm{fm}^{2}$
$\mathrm{C}\left(3^{2} \mathrm{~S}-2^{2} \mathrm{~S}\right)=10.376 \mathrm{MHz} / \mathrm{fm}^{2}$

Contributions to the ${ }^{7} \mathrm{Li}^{6}{ }^{6} \mathrm{Li}$ isotope shift for the $1 s^{2} 3 s^{2} \mathrm{~S}-1 s^{2} 2 s^{2} \mathrm{~S}$ transition. Units are MHz .

Contribution	$3^{2} \mathrm{~S}-2^{2} \mathrm{~S}$
μ / M	11454.6557^{a}
$(\mu / M)^{2}$	-1.7940
$\alpha^{2} \mu / M$	$0.0156(3)$
$\alpha^{3} \mu / M$, one-electron	$-0.067(2)$
$\alpha^{3} \mu / M$, two-electron	$0.010(2)$
$r_{\text {rms }}^{2}$	1.238 ± 0.39
$r_{\text {rms }}^{2} \mu / M$	$-0.0007(1)$
Total	$11454.058(2) \pm 0.39$
King $^{\text {b }}$	11446.1
Vadla et al. ${ }^{\text {c }}$. (experiment)	$11434(20)$
Bushaw et al. ${ }^{\text {d }}$ (experiment)	$11453.734(30)$

${ }^{\text {a }}$ The additional uncertainty from the atomic mass determinations is $\pm 0.008 \mathrm{MHz}$.
${ }^{\text {b }}$ F. W. King, Phys. Rev. A 40, 1735 (1989); 43, 3285 (1991).

${ }^{\text {d B. A. Bushaw, W. Nörtershäuser, G. Ewalt, A. Dax, and G. W. F. Drake, Phys. Rev. }}$
Lett. 91, 043004 (2003).
semin18.tex, March, 2008

Total coefficients for various transitions in Li and Be^{+}. Units are a.u.

Atom/ion transition	$\mathcal{E}_{\text {tot }}^{(0)}$	$\mathcal{E}_{\text {tot }}^{(1)}$	$\mathcal{E}_{\text {tot }}^{(2)}$
$\mathrm{Li}\left(2^{2} \mathrm{P}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}\right)$	$0.0679156344(29)$	$-0.12299087(7)$	$-0.004236(3)$
$\mathrm{Li}\left(2^{2} \mathrm{P}_{3 / 2}-2^{2} \mathrm{~S}_{1 / 2}\right)$	$0.0679171624(29)$	$-0.12299547(7)$	$-0.004236(3)$
$\mathrm{Li}\left(3^{2} \mathrm{~S}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}\right)$	$0.1239705407(35)$	$-0.13376436(3)$	$0.1236596(6)$
$\mathrm{Li}\left(2^{2} \mathrm{~S}_{1 / 2}\right) \mathrm{IP} . \mathrm{P}$.	$0.1981585744(26)$	$-0.21101255(3)$	$0.2352863(6)$
$\mathrm{Be}^{+}\left(2^{2} \mathrm{P}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}\right)$	$0.145504341(25)$	$-0.43204823(7)$	$-0.09475(14)$
$\mathrm{Be}^{+}\left(2^{2} \mathrm{P}_{3 / 2}-2^{2} \mathrm{~S}_{1 / 2}\right)$	$0.145534287(25)$	$-0.43210132(7)$	$-0.09475(14)$
$\mathrm{Be}^{+}\left(3^{2} \mathrm{~S}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}\right)$	$0.402040134(26)$	$-0.42586169(7)$	$0.33998300(2)$
$\mathrm{Be}^{+}\left(2^{2} \mathrm{~S}_{1 / 2}\right) \mathrm{I} . \mathrm{P}$.	$0.669290555(24)$	$-0.70162633(7)$	$0.72196394(1)$

$$
\Delta E(B-A)=\lambda_{-}\left[\mathcal{E}_{\text {tot }}^{(1)}-\mathcal{E}_{\text {tot }}^{(0)}+\lambda_{+}\left(\mathcal{E}_{\text {tot }}^{(2)}-\mathcal{E}_{\text {tot }}^{(1)}\right)\right]+\left(\bar{r}_{\mathrm{c}, B}^{2}-\bar{r}_{\mathrm{c}, A}^{2}\right) \mathcal{E}_{\text {nuc }}^{(0)}
$$

where $\lambda_{ \pm}=(\mu / M)_{B} \pm(\mu / M)_{A}$, and
$\mathcal{E}_{\text {tot }}^{(k)}=\mathcal{E}_{\mathrm{NR}}^{(k)}+\alpha^{2} \mathcal{E}_{\text {rel }}^{(k)}+\alpha^{3} \mathcal{E}_{\mathrm{QED}}^{(k)}+\alpha^{4} \mathcal{E}_{\text {ho }}^{(k)} \quad$ for each $k=0,1,2$.
semin44.tex, March, 2008

Calculated isotope shift parameter $\Delta \nu_{B-A}^{(0)}$ for various transitions in Li and Be^{+}. Units are MHz .

Isotopes	$2^{2} \mathrm{P}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}$	$2^{2} \mathrm{P}_{3 / 2}-2^{2} \mathrm{~S}_{1 / 2}$	$3^{2} \mathrm{~S}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}$
${ }^{7} \mathrm{Li}-{ }^{6} \mathrm{Li}$	$-10532.111(6)$	$-10532.506(6)$	$-11452.821(2)$
${ }^{7} \mathrm{Li}-{ }^{8} \mathrm{Li}$	$7940.627(5)$	$7940.925(5)$	$8634.989(2)$
${ }^{7} \mathrm{Li}-{ }^{-} \mathrm{Li}$	$14098.840(8)$	$14099.369(8)$	$15331.799(3)$
${ }^{7} \mathrm{Li}-1{ }^{1} \mathrm{Li}^{\mathrm{a}}$	$23082.642(11)$	$23083.493(11)$	$25101.470(5)$
${ }^{9} \mathrm{Be}^{-}{ }^{7} \mathrm{Be}$	$-49225.765(19)$	$-49231.814(19)$	$-48514.03(2)$
${ }^{9} \mathrm{Be}-{ }^{10} \mathrm{Be}$	$17310.44(6)$	$17312.57(6)$	$17060.56(6)$
${ }^{9} \mathrm{Be}-{ }^{11} \mathrm{Be}$	$31560.01(6)$	$31563.89(6)$	$31104.60(6)$

${ }^{\text {a }}$ Includes nuclear polarization corrections of 62 kHz for the $3{ }^{2} \mathrm{P}_{J}-2^{2} \mathrm{~S}_{1 / 2}$ transitions, and 39 kHz for the $3{ }^{2} \mathrm{~S}_{1 / 2}-2{ }^{2} \mathrm{~S}_{1 / 2}$ transition.

Determination of the Nuclear Radius for Isotopes of Lithium

$$
\begin{equation*}
R_{\mathrm{rms}}^{2}\left({ }^{A} \mathrm{Li}\right)=R_{\mathrm{rms}}^{2}\left({ }^{6} \mathrm{Li}\right)+\frac{E_{\text {meas }}^{A}-E_{0}^{A}}{C} \tag{1}
\end{equation*}
$$

where $E_{\text {meas }}^{A}$ is the measured isotope shift for ${ }^{A} \mathrm{Li}$ relative to ${ }^{6} \mathrm{Li}$, and E_{0}^{A} contains all the calculated contributions to the isotope shift with the exception of the shift due to finite nuclear size.

$$
\text { Values of } E_{0}^{A} \text { to determine } R_{\mathrm{rms}}^{2} \text { from the }
$$ measured isotope shift in various transitions. Units are MHz .

Isotopes	$E_{0}^{A}\left(2^{2} P_{1 / 2}-2^{2} S\right)$	$E_{0}^{A}\left(2^{2} P_{3 / 2}-2^{2} S\right)$	$E_{0}^{A}\left(3^{2} S-2^{2} S\right)$
${ }^{7} \mathrm{Li}-{ }^{6} \mathrm{Li}$	$10532.19(7)$	$10532.58(7)$	$11453.00(6)$
${ }^{8} \mathrm{Li}-{ }^{6} \mathrm{Li}$	$18472.86(12)$	$18473.55(12)$	$20088.10(10)$
${ }^{9} \mathrm{Li}-6 \mathrm{Li}$	$24631.11(16)$	$24632.03(16)$	$26785.01(13)$
${ }^{10} \mathrm{Li}-6 \mathrm{Li}$	$29575.46(20)$	$29576.56(20)$	$32161.92(17)$
${ }^{11} \mathrm{Li}-6 \mathrm{Li}$	$33615.19(24)$	$33616.45(24)$	$36555.11(21)$

$C=-2.4565 \mathrm{MHz} / \mathrm{fm}^{2}$ for the $2{ }^{2} \mathrm{P}_{J}-2{ }^{2} \mathrm{~S}_{1 / 2}$ I.S.
$C=-1.5661 \mathrm{MHz} / \mathrm{fm}^{2}$ for $3{ }^{2} \mathrm{~S}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}$ I.S.

Comparison between theory and experiment for the fine structure splittings and ${ }^{7} \mathrm{Li}^{6} \mathrm{Li}$ splitting isotope shift (SIS). Units are MHz.

Reference	${ }^{7} \mathrm{Li} 2^{2} \mathrm{P}_{3 / 2}-2^{2} \mathrm{P}_{1 / 2}{ }^{6} \mathrm{Li} 2^{2} \mathrm{P}_{3 / 2}-2^{2} \mathrm{P}_{1 / 2}$	SIS	
Present work	$10051.333 \pm 3^{\mathrm{a}}$	$10050.937 \pm 3^{\mathrm{a}}$	0.395
Brog et al. ${ }^{\mathrm{b}}$	$10053.24(22)$	$10052.76(22)$	$0.48(31)$
Scherf et al. ${ }^{\mathrm{c}}$	$10053.4(2)$	$10051.62(20)$	$1.78(28)$
Walls et al. ${ }^{\mathrm{d}}$	$10052.37(11)$	$10053.044(91)$	$-0.67(14)$
Orth et al. ${ }^{\mathrm{e}}$	$10053.184(58)$		
Noble et al. ${ }^{\mathrm{f}}$	$10053.119(58)$	$10052.964(50)$	$0.155(76)$
Das et al. ${ }^{\mathrm{g}}$	$10052.862(67)$	$10051.999(46)$	$-0.863(79)$
Recommended value	$10053.2(1)$	$10052.8(1)$	

${ }^{\text {a }}$ Includes uncertainty of $\pm 3 \mathrm{MHz}$ due to mass-independent higher-order terms not yet calculated.
${ }^{\mathrm{b}}$ K.C. Brog, Phys. Rev. 153, 91 (1967).
${ }^{\text {c W W. Scherf, O. Khait, H. Jager, and L. Windholz, Z. Phys. D 36, } 31 \text { (1996). }}$
${ }^{\text {d J. Walls, R. Ashby, J. J. Clarke, B. Lu, and W. A. van Wijngaarden, Eur. Phys. J D }}$ 22159 (2003).
${ }^{\mathrm{e}}$ H. Orth, H. Ackermann, and E.W. Otten, Z. Phys. A 273, 221 (1975).
${ }^{f}$ G.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A 74, 012502 (2006).
${ }^{\text {g }}$ D. Das and V. Natarajan, Phys. Rev. A 75, 052508 (2007).

Contributions to the ${ }^{9} \mathrm{Be}^{+}{ }^{11} \mathrm{Be}^{+}$isotope shifts for the $1 s^{2} 2 p^{2} \mathrm{P}_{J}-1 s^{2} 2 s^{2} \mathrm{~S}$ transitions. Units are MHz .

Contribution	$2^{2} \mathrm{P}_{1 / 2}-2^{2} \mathrm{~S}$	$2^{2} \mathrm{P}_{3 / 2}-2^{2} \mathrm{~S}$
Theory		
μ / M	$31568.486(8)(56)^{\mathrm{a}}$	$31568.486(8)(56)^{\mathrm{a}}$
$(\mu / M)^{2}$	$0.764(1)$	$0.764(1)$
$\alpha^{2} \mu / M$	$-10.041(2)$	$-6.165(1)$
$\alpha^{3} \mu / M$, anom. magnetic	-0.002	0.001
$\alpha^{3} \mu / M$, one-electron	$0.773(7)$	$0.773(7)$
$\alpha^{3} \mu / M$, two-electron	$0.030(5)$	$0.030(5)$
$r_{\text {rms }}^{2}$	1.147 ± 2.3	1.147 ± 2.3
Total	$31561.154(57)$	$31565.033(57)$

The SIS is 3.879 MHz .

A Proving Ground for Nuclear Structure Theories

References

- Z.-C. Yan, M. Tambasco, and G. W. F. Drake, "Energies and oscillator strengths for lithiumlike ions", Phys. Rev. A 57, 1652 (1998).
- Z.-C. Yan and G. W. F. Drake, "Relativistic and QED energies in lithium", Phys. Rev. Lett. 81, 774 (1998).
- Z.-C. Yan and G. W. F. Drake, "Calculations of lithium isotope shifts", Phys. Rev. A, 61, 022504 (2000).
- Z.-C. Yan and G. W. F. Drake, "Lithium transition energies and isotope shifts: QED recoil corrections", Phys. Rev. A, 66, 042504 (2002).
- Z.-C. Yan and G. W. F. Drake, "Bethe logarithm and QED shift for lithium", Phys. Rev. Lett. 91, 113004 (2003).
semin08.tex, January, 20053

Conclusions

- Sufficiently accurate theory is in place to measure nuclear radii from high precision spectroscopy on two- and three-electron atoms.
- New QED theory is now available for for the spin-independent terms of order α^{4} Ryd. These can be tested at present levels of experimental accuracy.
- A new measurement of the fine structure constant can be obtained from helium fine structure, but a substantial discrepancy between theory and experiment remains for the $J=1 \rightarrow 2$ interval.
semin24.tex, January 2005

Main Theme:

- Obtain essentially exact solutions up to order α^{3} Ry for the entire singly excited spectrum of helium and lithium - new results for Be^{+}.

What's New?

1. Essentially exact solutions to the quantum mechanical three- and fourbody problems.
2. Recent advances in calculating QED corrections - especially the Bethe logarithm.
3. Single atom spectroscopy.

March 2008.
semin00.tex, March 2008.

Charge Radii Measurements

Methods of measuring nuclear radii (interaction radii, matter radii, charge radii)

* Nuclear scattering - model dependent
* Electron scattering - stable isotope only
* Muonic atom spectroscopy - stable isotope only
* Atomic isotope shift

RMS point proton radii (fm) from theory and experiment

	$\mathrm{He-3}$	$\mathrm{He}-\mathbf{4}$	$\mathrm{He}-\mathbf{6}$	$\mathrm{He-8}$
QMC Theory	$1.74(1)$	$1.45(1)$	$1.89(1)$	$1.86(1)$
μ-He Lamb Shift		$1.474(7)$		
Atomic Isotope Shift	$1.766(6)$		$?$	$?$
p-He Scattering			$1.95(10) \mathrm{GG}$	$1.68(7) \mathrm{GG}$
			$1.81(09) \mathrm{GO}$	$1.42(7) \mathrm{GO}$

G.D. Alkhazov et al., Phys. Rev. Lett. 78, 2313 (1997);
D. Shiner et al., Phys. Rev. Lett. 74, 3553 (1995).

Summary of the nuclear spin (S), lifetime $\left(T_{1 / 2}\right)$, atomic mass $\left(M_{A}\right)$, magnetic dipole and electric quadrupole nuclear moments (μ_{I} and Q), hyperfine structure splitting (HFS, in the $2 S$ state), rms mass radius $R_{\mathrm{rms}}^{(m)}$, and charge radius $R_{\mathrm{rms}}^{(e)}$ for the isotopes of lithium.

${ }^{7} \mathrm{Li}$		${ }^{8} \mathrm{Li}$		${ }^{9} \mathrm{Li}$		${ }^{11} \mathrm{Li}$
Quantity	$3 / 2$	2	$3 / 2$	$3 / 2$		
$T_{1 / 2}(\mathrm{~ms})$	∞	$838(6)$	$178.3(4)$	$8.59(14)$		
$M_{A}(\mathrm{u})$	$7.0160040(5)$	$8.0224867(5)$	$9.0267891(21)$	$11.043796(29)$		
$\mu_{I}(\mathrm{~nm})$	$3.2564268(17)$	$1.653560(18)$	$3.4391(6)$	$3.6678(25)$		
$Q(\mathrm{mbarn})$	$-40.0(3)$	$31.1(5)$	$-27.4(1.0)$	$-31.2(4.5)$		
$\mathrm{HFS}(\mathrm{MHz})$	$803.5040866(10)$	$382.543(7)$	$856(16)$	$920(39)$		
$R_{\text {mm }}^{(m)}(\mathrm{fm})$	$2.35(3)$	$2.38(2)$	$2.32(2)$	$3.10(17)$		
$R_{\mathrm{rms}}^{(e)}(\mathrm{fm})$	$2.39(3)$	$2.25(1)^{\mathrm{a}}$	$2.17(1)^{\mathrm{a}}$	$?$		

${ }^{\text {a }}$ Quantum Monte Carlo calculation by Steven C. Pieper and Robert B. Wiringa, ANL. Experiment: Use two-photon spectroscopy to measure the isotope shift in the $2 \mathrm{~S}-3 \mathrm{~S}$ transition for ${ }^{11}$ Li to an accuracy of $\pm 200 \mathrm{kHz}$. Compare with high precision theory to determine the nuclear charge radius to an accuracy of $\pm 0.03 \mathrm{fm}$.

Comparison Result for Li^{+}

From the isotope shift in the $1 s 2 s^{3} \mathrm{~S}_{1}-1 s 2 p^{3} \mathrm{P}_{J}$ transitions of Li^{+},

$$
R_{\mathrm{rms}}\left({ }^{6} \mathrm{Li}\right)-R_{\mathrm{rms}}\left({ }^{7} \mathrm{Li}\right)=0.15 \pm 0.01 \mathrm{fm}
$$

From nuclear scattering data

$$
\begin{aligned}
R_{\mathrm{rms}}\left({ }^{6} \mathrm{Li}\right) & =2.55 \pm 0.04 \mathrm{fm} \\
R_{\mathrm{rms}}\left({ }^{7} \mathrm{Li}\right) & =2.39 \pm 0.03 \mathrm{fm} \\
\text { difference } & =0.16 \pm 0.05 \mathrm{fm}
\end{aligned}
$$

E. Riis, A. G. Sinclair, O. Poulsen, G. W. F. Drake, W. R. C. Rowley and A. P. Levick, Phys. Rev. A 49, 207 (1994).
semin02.tex, January, 2005

Comparison between theory and experiment for the ${ }^{7}$ Li transition frequencies and ionization potential. Units are cm^{-1}.

Transition	Theory	Experiment	Difference
$2^{2} \mathrm{P}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}$	$14903.6541(10)$	$14903.648130(14)^{\mathrm{a}}$	$-0.0060(10)^{*}$
$2^{2} \mathrm{P}_{3 / 2}-2^{2} \mathrm{~S}_{1 / 2}$	$14903.9893(10)$	$14903.983648(14)^{\mathrm{a}}$	$-0.0057(10)^{*}$
$3^{2} \mathrm{~S}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}$	$27206.0926(9)$	$27206.0952(10)^{\mathrm{b}}$	$-0.0025(25)$
		$27206.09420(10)^{\mathrm{c}}$	$-0.0016(9)$
		$27206.09412(13)^{\mathrm{d}}$	$-0.0015(9)$
$2^{2} \mathrm{~S}_{1 / 2}$ I.P.	$43487.1583(6)$	$43487.150(5)^{\mathrm{e}}$	$0.0083(50)$
		$43487.15934(17)^{\mathrm{f}}$	$-0.0010(6)$

${ }^{a}$ C. J. Sansonetti, B. Richou, R. Engleman, Jr., and L. J. Radziemski, Phys. Rev. A 52, 2682 (1995).
${ }^{\text {b }}$ L. J. Radziemski, R. Engleman, Jr., and J. W. Brault, Phys. Rev. A 52, 4462 (1995).
${ }^{\text {ch.A. Bushaw, W. Nörtershäuser, G. Ewald, A. Dax, and G.W. F. Drake, Phys. Rev. }}$ Lett., 91, 043004 (2003).
${ }^{d}$ G. Ewald, W. Nörtershäuser, A. Dax, G. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A Wojtaszek, B.A. Bushaw, G.W. F. Drake, Z.-C. Yan, and C. Zimmermann, Phys. Rev. Lett., 93, 113002 (2004).
${ }^{e}$ C. E. Moore, NSRDS-NBS Vol. 14 (U.S. Department of Commerce, Washington, DC, 1970)
${ }^{f}$ B.A. Bushaw, preliminary value

* no Bethe log calculation for $2{ }^{2} \mathrm{P}$ states.

Partial contributions to the Bethe log for the $1 s 5 g{ }^{1} \mathrm{G}$ state of He .

Atomic Isotope Shift

$$
\text { Isotope Shift } \quad \delta v=\delta v_{\mathrm{MS}}+\delta v_{\mathrm{FS}}
$$

Mass shift:
due to nucleus recoil
$\delta v_{\mathrm{MS}} \propto \frac{A-A^{\prime}}{A A^{\prime}}$

Field shift:
due to nucleus size

$\operatorname{IS}\left(2^{3} \mathrm{~S}_{1}-2^{3} \mathrm{P}_{2}\right)=34473.625(20)+1.210\left(\left\langle\mathrm{r}^{2}\right\rangle_{\mathrm{He} 4}-\left\langle\mathrm{r}^{2}\right\rangle_{\mathrm{He6}}\right) \mathrm{MHz}$ $\operatorname{IS}\left(2^{3} \mathrm{~S}_{1}-3^{3} \mathrm{P}_{2}\right)=43196.202(20)+1.008\left(\left\langle\mathrm{r}^{2}\right\rangle_{\mathrm{He} 4}-\left\langle\mathrm{r}^{2}\right\rangle_{\text {He6 }}\right) \mathrm{MHz}$
*G. Drake, Univ. of Windsor, private communication
100 kHz error in frequency $\leftrightarrow \rightarrow \mathbf{1 \%}$ error in radius

Single Atom Detection

* Capture efficiency $\sim 10^{-8}$

Single atom detection necessary!

* Single-atom signal $\sim 1.5 \mathrm{kHz}$
* Single-atom $\mathrm{S} / \mathrm{N} \sim 10$ in 100 ms
* ${ }^{6} \mathrm{He}$ capture rate ~ 100 per hour

Nucleon-Nucleon Interaction at Low Energy

* Fundamental theory QCD not calculable in low-energy regime (nucleus structure)
* Modern nuclear calculation uses "effective potential" between nucleons

Isotope Shifts and Charge Radius
 of Halo Nuclei

Gordon W.F. Drake
University of Windsor and GSI
Collaborators
Zong-Chao Yan (UNB)
Mark Cassar (PDF)
Zheng Zhong (Ph.D. student)
Qixue Wu (Ph.D. student)
Atef Titi (Ph.D. student)
Razvan Nistor (M.Sc. completed)
Levent Inci (M.Sc. completed)

Financial Support: NSERC and SHARCnet
Imperial College, February 27, 2006.

Main Theme:

- Derive nuclear charge radii by combining atomic theory with high precision spectroscopy (especially ${ }^{6} \mathrm{He}$ and ${ }^{11} \mathrm{Li}$ halo nuclei).

What's New?

1. Essentially exact solutions to the quantum mechanical three- and fourbody problems.
2. Recent advances in calculating QED corrections - especially the Bethe logarithm.
3. Single atom spectroscopy.
semin00.tex, January 2005

Helium: Slaying the Dragon of Atomic Physics

Variational energies for the $n=10$ singlet and triplet states of helium.

State	Singlet	Triplet
10 S	$-2.005142991747919(79)$	$-2.0053107949156113(11)$
10 P	$-2.0049879838022179(26)$	$-2.0050688054977067(30)$
10 D	$-2.00500207165425681(75)$	$-2.00500281808022884(53)$
10 F	$-2.00500041756466880(11)$	$-2.00500042168660488(26)$
10 G	$-2.005000112764318746(22)$	$-2.005000112777003317(21)$
10 H	$-2.005000039214394532(17)$	$-2.005000039214417416(17)$
10 I	$-2.0050000160865161947(3)$	$-2.0050000160865162194(3)$
10 K	$-2.0050000073883758769(0)$	$-2.0050000073883758769(0)$

$$
\begin{aligned}
E & =-2-\frac{1}{2 n^{2}}+\cdots \\
& =-2.005 \cdots
\end{aligned}
$$

Effective Model \& Quantum Monte Carlo Calculation

S. Pieper and R. Wiringa. Ann. Rev. Nucl. Part. Sci. 51, 53 (2001)

Two-body potential
Argonne V18

$$
H=\sum_{i} K_{i}+\sum_{i<j} v_{\mathrm{EM}}^{\gamma}+\underset{1-\pi}{v_{i j}^{\pi}}+\underset{\text { short-range }}{v_{i j}^{R}}
$$

Coupling parameters fit to NN scattering data
Problem: binding energy of most light nuclei too small

Three-body potential

$$
\begin{aligned}
& V_{i j k}=V_{i j k}^{2 \pi}+V_{i j k}^{3 \pi}+V_{i j k}^{R}
\end{aligned}
$$

Coupling parameters fit to energy levels of light nuclei

High precision measurements for lithium.

Group	Measurements
NIST (Radziemski et al. [1])	many transitions
York (Van Wijngaarden et al. [2])	$2^{2} \mathrm{~S}-2^{2} \mathrm{P}$ I.S.
GSI (Bushaw et al. [3])	$2^{2} \mathrm{~S}-3^{2}$ S I.S.
GSI (Ewald et al. [4])	${ }^{8}$ Li, ${ }^{9}$ Li I.S.
TRIUMF/GSI (Sánchez et al. [5])	${ }^{11}$ Li I.S.
Windsor/UNB (Yan, Drake [6])	theory

[1] L. J. Radziemski, R. Engleman, Jr., and J. W. Brault, Phys. Rev. A 52, 4462 (1995).
[2] J. Walls, R, Ashby J.J. Clarke, B. Lu, and W.A. van Wijngaarden, Eur. Phys. J D
22159 (2003).
[3] B. A. Bushaw, W. Nörtershäuser, G. Ewalt, A. Dax, and G. W. F. Drake, Phys. Rev. Lett. 91, 043004 (2003).
[4] G. Ewald, W. Nördershäuser, A. Dax, S. Göte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sánchez, A. Wojtaszek, B.A. Bushaw, G.W.F. Drake, Z.-C. Yan, and C. Zimmermann, Phys. Rev. Lett. 93, 113002 (2004) (2004).
[5] R. Sánchez et al. Phys. Rev. Lett. 96, 033022 (2006).
[6] Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 91, 113004 (2003).

Comparison of values for the rms nuclear charge radius R of ${ }^{3} \mathrm{He}$ obtained by various methods. (IS: isotope shift)

Method	$R(\mathrm{fm})$	Year	Author
e^{-}scattering	$1.87(5)$	1965	Collard et al.
e^{-}scattering	$1.88(5)$	1970	McCarthy et al.
e^{-}scattering	$1.844(45)$	1977	McCarthy et al.
e^{-}scattering	$1.89(5)$	1977	Szalata et al.
e^{-}scattering	$1.935(30)$	1983	Dunn et al.
e^{-}scattering	$1.877(30)$	1984	Retzlaff et al.
e^{-}scattering	$1.976(15)$	1985	Ottermann et al.
e^{-}scattering	$1.959(30)^{a}$	1994	Amroun et al.
Theory	1.92	1983	Hadjimichael et al.
Theory	1.92	1986	Schiavilla et al.
Theory	1.93	1986	Chen et al.
Theory	1.95	1987	Strueve et al.
Theory	1.92	1988	Kim et al.
Theory	$1.958(6)$	1993	Wu et al.
Theory	$1.954(7)$	1993	Friar et al.
Theory	$1.96(1)$	2001	Piper and Wiringa
Atomic IS	$1.951(10)^{\mathrm{b}}$	1993	Drake
Atomic IS	$1.9659(14)$	1994	Shiner et al.
Atomic IS	$1.985(42)$	1994	Marin et al.

Comparison of nuclear charge radius determinations for ${ }^{3} \mathrm{He}$.

semin20.tex, January, 2005

Comparison of nuclear charge radius determinations for ${ }^{6} \mathrm{Li}$.

The inner error bars exclude the $\pm 0.03 \mathrm{fm}$ uncertainty due to the reference radius $r_{\mathrm{c}}\left({ }^{7} \mathrm{Li}\right)=2.39(3) \mathrm{fm}$.
semin21.tex, January, 2005

Strategy

1. Calculate nonrelativistic eigenvalues for helium-like and lithium-like ions to spectroscopic accuracy.
2. Include finite nuclear mass (mass polarization) effects up to second order by perturbation theory.
3. Include relativistic and QED corrections by perturbation theory.
4. Compare the results for transition frequencies with high precision measurements.
5. Use the residual discrepancy between theory and experiment to measure the nuclear charge radius of exotic "halo" isotopes of lithium such as ${ }^{11} \mathrm{Li}$.

Question: Why not use hydrogenic ions where the theory is much simpler?
Answer: Line widths are narrower in the corresponding helium-like or lithium-like ion by a factor of 100 or more, and these charge states are easier to produce.
semin22.tex, January 2005

Bethe logarithms for lithium

N	$\beta\left(2^{2} \mathrm{~S}\right)$	Difference	Ratio
87	2.8465271		
207	2.9642629	0.1177357	
459	2.9789857	0.0147228	8.00
937	2.9807196	0.0017339	8.49
1763	2.9809043	0.0001847	9.39
Extrp.	$2.98093(3)$		
$\mathrm{Li}^{+}\left(1 s^{2}{ }^{1} \mathrm{~S}\right)$	$2.982624555(4)$		
N	$\beta\left(3^{2} \mathrm{~S}\right)$	Difference	Ratio
87	2.7464739		
207	2.9394848	0.1930108	
459	2.9750774	0.0355926	5.42
937	2.9812660	0.0061886	5.75
1763	2.9822261	0.0009601	6.45
Extrp.	$2.9824(2)$		
$\mathrm{Li}^{+}\left(1 s^{2}{ }^{1} \mathrm{~S}\right)$	$2.982624555(4)$		

Z.-C. Yan and G. W. F. Drake, "Bethe logarithm and QED shift for lithium", Phys. Rev. Lett. 91, 113004 (2003).

Bethe logarithms for lithium - finite mass correction

N	$\Delta \beta_{M}\left(2^{2} \mathrm{~S}\right)$	Difference	Ratio
87	0.123748		
207	0.119291	0.004457	
459	0.115390	0.003901	1.14
937	0.114140	0.001250	3.12
1763	0.113845	0.000295	4.24
Extrap	$0.1135(3)$		
$\mathrm{Li}^{+}\left(1 s^{2}{ }^{1} \mathrm{~S}\right)$	0.1096		
N	$\Delta \beta_{M}\left(3{ }^{2} \mathrm{~S}\right)$	Difference	Ratio
87	0.098298281		
207	0.104933801		
459	0.110410361		
937	0.112767733		
1763	0.110416727		
Extrap	$0.112(1)$		
$\mathrm{Li}^{+}\left(1 s^{2}{ }^{1} \mathrm{~S}\right)$	0.1096		

Z.-C. Yan and G. W. F. Drake, "Bethe logarithm and QED shift for lithium", Phys. Rev. Lett. 91, 113004 (2003).

Final Results for the ${ }^{6} \mathrm{He}$ Isotope Shift

Using the accurately measured transition frequency in ${ }^{4} \mathrm{He}$ as a reference, the transition frequency in ${ }^{6} \mathrm{He}$ can be accurately calculated to be

$$
\begin{equation*}
\nu\left(2{ }^{3} \mathrm{~S}_{1}-2{ }^{3} \mathrm{P}_{2}\right)=276766663.53(2)-1.2104 \bar{r}_{6_{\mathrm{He}}}^{2} \mathrm{MHz} \tag{9}
\end{equation*}
$$

where $\bar{r}_{6} \mathrm{He}$ is the rms nuclear radius of ${ }^{6} \mathrm{He}$, in units of fm , and the ${ }^{6} \mathrm{He}-{ }^{4} \mathrm{He}$ isotope shift is

$$
\begin{gather*}
\delta \nu\left(2^{3} \mathrm{~S}_{1}-2{ }^{3} \mathrm{P}_{2}\right)=34473.625(13)+1.2104\left(\bar{r}_{4}^{2} \mathrm{He}-\bar{r}_{6}^{2} \mathrm{He}\right) \mathrm{MHz} \tag{10}\\
\delta \nu\left(2{ }^{3} \mathrm{~S}_{1}-3{ }^{3} \mathrm{P}_{2}\right)=43196.202(16)+1.008\left(\bar{r}_{4}^{2} \mathrm{He}-\bar{r}_{6}^{2} \mathrm{He}\right) \mathrm{MHz} \tag{11}
\end{gather*}
$$

The uncertainty of $\pm 16 \mathrm{kHz}$ is due entirely to the uncertainty in the measured atomic mass of ${ }^{6} \mathrm{He}(6.018888(1) \mathrm{u})$, and not to the atomic structure calculations themselves. From Eq. (11) it follows that a measurement of the isotope shift to an accuracy of 100 kHz is sufficient to determine the nuclear radius of ${ }^{6} \mathrm{He}$ (relative to ${ }^{4} \mathrm{He}$) to an accuracy of 1%. The result provides a direct test of the theoretical value $\bar{r}_{6}{ }_{\mathrm{He}}=2.04 \mathrm{fm}$ recently obtained by Monte Carlo techniques by
S.C. Pieper, and R.B. Wiringa. Ann. Rev. Nucl. Part. Science 51, 53 (2001); S.C. Pieper, K. Varga, and R.B. Wiringa, Phys. Rev. C 66, 044310 (2002).

Argonne Collaboration L.-B. Wang, P. Mueller, K. Bailey, G.W.F. Drake, J. Greene, D. Henderson, R.J. Holt, R.V.F. Janssens, C.L. Jiang, Z.-T. Lu, T.P. O'Conner, R.C. Pardo, K.E. Rehm, J.P. Schiffer, and X.-D. Tang.
${ }^{4} \mathrm{He}$

Single Atom Spectroscopy
$\sim 150{ }^{6} \mathrm{He}$ atoms in one hour
April 6, 2004

${ }^{4}$ He Finestructure Splitting in $3 p^{3} \mathrm{P}_{0,1,2}$

$$
3{ }^{3} P_{1}-3{ }^{3} P_{2}
$$

$$
3{ }^{3} P_{0}-3{ }^{3} P_{2}
$$

-

FS Splitting in MHz
Lamb ('57): I. Wieder and W.E. Lamb, Jr., Phys. Rev. 107, 125 (1957)
Pipkin ('78): P. Kramer and F. Pipkin, Phys. Rev. A18, 212 (1978)
Metcalf ('86): D.-H. Yang, P. McNicholl, and H. Metcalf, Phys. Rev. A33, 1725 (1986)
ATTA ('04): this work Drake ('04): private ommuncation
${ }^{4}$ He Finestructure Splitting in $3 p^{3} P_{0,1,2}$

FS Splitting in MHz
Lamb ('57): I. Wieder and W.E. Lamb, Jr., Phys. Rev. 107, 125 (1957)
Pipkin ('78): P. Kramer and F. Pipkin, Phys. Rev. A18, 212 (1978)
Metcalf ('86): D.-H. Yang, P. McNicholl, and H. Metcalf, Phys. Rev. A33, 1725 (1986)
ATTA ('04): this work
Drake ('04): private ommuncation

Experimental Setup - Schematic

Experimental Arrangement

${ }^{6} \mathrm{He}$ - Nuclear Charge Radius

Isotope shift $\left(2^{3} \mathrm{~S}_{1}-3^{3} \mathrm{P}_{2},{ }^{6} \mathrm{He}-{ }^{4} \mathrm{He}\right)$ 43 194.772(56) MHz

${ }^{6} \mathrm{He}$ rms charge radius
2.054(14) fm (0.7\%)

L.-B. Wang et al., PRL 93, 142501 (2004)

Determination of the Nuclear Radius for Isotopes of Lithium

$$
\begin{equation*}
R_{\mathrm{rms}}^{2}\left({ }^{A} \mathrm{Li}\right)=R_{\mathrm{rms}}^{2}\left({ }^{6} \mathrm{Li}\right)+\frac{E_{\mathrm{meas}}^{A}-E_{0}^{A}}{C} \tag{12}
\end{equation*}
$$

where $E_{\text {meas }}^{A}$ is the measured isotope shift for ${ }^{A} \mathrm{Li}$ relative to ${ }^{6} \mathrm{Li}$, and E_{0}^{A} contains all the calculated contributions to the isotope shift with the exception of the shift due to finite nuclear size.

Values of E_{0}^{A} to determine R_{rms}^{2} from the measured isotope shift in various transitions. Units are MHz .

Isotopes	$E_{0}^{A}\left(2^{2} P_{1 / 2}-2^{2} S\right)$	$E_{0}^{A}\left(2^{2} P_{3 / 2}-2^{2} S\right)$	$E_{0}^{A}\left(3^{2} S-2^{2} S\right)$
${ }^{7} \mathrm{Li}-{ }^{6} \mathrm{Li}$	$10532.19(7)$	$10532.58(7)$	$11453.00(6)$
${ }^{8} \mathrm{Li}-6 \mathrm{Li}$	$18472.86(12)$	$18473.55(12)$	$20088.10(10)$
${ }^{9} \mathrm{Li}-6$			
Li^{6}	$24631.11(16)$	$24632.03(16)$	$26785.01(13)$
${ }^{10} \mathrm{Li}-6 \mathrm{Li}$	$29575.46(20)$	$29576.56(20)$	$32161.92(17)$
${ }^{11} \mathrm{Li}-{ }^{6} \mathrm{Li}$	$33615.19(24)$	$33616.45(24)$	$36555.11(21)$

$C=-2.4565 \mathrm{MHz} / \mathrm{fm}^{2}$ for the $2^{2} \mathrm{P}_{J}-2^{2} \mathrm{~S}_{1 / 2}$ I.S.
$C=-1.5661 \mathrm{MHz} / \mathrm{fm}^{2}$ for $3{ }^{2} \mathrm{~S}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}$ I.S.

Contributions to the ${ }^{7} \mathrm{Li} 1 s^{2} 3 s^{2} \mathrm{~S}-1 s^{2} 2 s^{2} \mathrm{~S}$ transition energy and $1 s^{2} 2 s^{2} \mathrm{~S}$ ionization potential (I.P.), in units of cm^{-1}.

Term	$3^{2} \mathrm{~S}_{1 / 2}-2^{2} \mathrm{~S}_{1 / 2}$	$2^{2} \mathrm{~S}_{1 / 2}$ I.P.
Nonrelativistic	$27206.492856(4)$	$43488.2202449(16)$
Nonrel., μ / M	$-2.29585430(16)$	$-3.621707668(4)$
Nonrel., $(\mu / M)^{2}$	0.000165962	0.000315803
Relativistic, α^{2}	$2.0890(4)$	$2.81133(2)$
Rel. recoil, $\alpha^{2} \mu / M$	$-0.00004(1)$	$-0.000011(9)$
QED $\left(\mathrm{e}^{-}-\right.$nucl. $), \alpha^{3}$	$-0.1986(3)$	$-0.25832(3)$
QED $\left(\mathrm{e}^{-}-\mathrm{e}^{-}\right), \alpha^{3}$	0.010747	0.013884
QED higher order, $\alpha^{4} \ldots$	$-0.0054(4)$	$-0.0070(4)$
Nuclear size, R^{2}	$-0.000298(8)$	$-0.000389(10)$
Total	$27206.0926(9)$	$43487.1583(6)$
Expt.	$27206.0952(10)^{\mathrm{a}}$	$43487.150(5)^{\mathrm{c}}$
	$27206.09420(9)^{\mathrm{b}}$	$43487.15934(17)^{\mathrm{d}}$
Diff.	$-0.0016(9)$	$-0.0010(5)$

${ }^{\text {a L. J. Radziemski, R. Engleman, Jr., and J. W. Brault, Phys. Rev. A 52, } 4462 \text { (1995). }}$
${ }^{\text {b B B A. Bushaw, W. Nörtershäuser, G. Ewalt, A. Dax, and G. W. F. Drake, Phys. Rev. }}$ Lett. 91, 043004 (2003).
${ }^{c}$ C. E. Moore, NSRDS-NBS Vol. 14 (U.S. Department of Commerce, Washington, DC, 1970.
${ }^{\mathrm{d}}$ Bruce Bushaw, preliminary value.

Contributions to the ${ }^{7} \mathrm{Li}-{ }^{6} \mathrm{Li}$ isotope shifts for the $1 s^{2} 2 p^{2} P_{J}-1 s^{2} 2 s^{2} S$ transitions and comparison with experiment. Units are MHz .

Contribution	$2^{2} P_{1 / 2}-2^{2} S$	$2^{2} P_{3 / 2}-2^{2} S$
	Theory	
μ / M	$10533.50192(60)^{\mathrm{a}}$	$10533.50192(60)^{\mathrm{a}}$
$(\mu / M)^{2}$	$0.0573(20)$	$0.0573(20)$
$\alpha^{2} \mu / M$	$-1.397(66)$	$-1.004(66)$
$\alpha^{3} \mu / M$, anom. magnetic	$-0.0001753(84)$	$0.0000875(84)$
$\alpha^{3} \mu / M$, one-electron	$0.0045(10)$	$0.0045(10)$
$\alpha^{3} \mu / M$, two-electron	$0.0105(20)$	$0.0105(20)$
$r_{\text {rms }}^{2}$	$1.94(61)$	$1.94(61)$
$r_{\text {rms }}^{2} \mu / M$	$-0.00073(11)$	$-0.00073(11)$
Total	$10534.12(7) \pm 0.61$	$10534.51(7) \pm 0.61$
	Experiment	
Sansonetti et al. ${ }^{\mathrm{b}}$	$10532.9(6)$	$10533.3(5)$
Windholz et al..$^{\mathrm{c}}$	$10534.3(3)$	$10539.9(1.2)$
Scherf et al. ${ }^{\mathrm{d}}$	$10533.13(15)$	$10534.93(15)$
Walls et al..$^{\mathrm{e}}$	$10534.26(13)$	

${ }^{\text {a }}$ The additional uncertainty from the atomic mass determinations is $\pm 0.008 \mathrm{MHz}$.
${ }^{\mathrm{b}}$ C. J. Sansonetti, B. Richou, R. Engleman, Jr., and L. J. Radziemski, Phys. Rev. A 52, 2682 (1995).
${ }^{c}$ L. Windholz and C. Umfer, Z. Phys. D 29, 121 (1994).
${ }^{d}$ W. Scherf, O. Khait, H. Jäger, and L. Windholz, Z. Phys. D 36, 31, (1996).
${ }^{\mathrm{e}}$ J. Walls, R. Ashby, J. J. Clarke, B. Lu, and W. A. van Wijngaarden, Eur. Phys. J D 22159 (2003).

Rayleigh-Schrödinger Variational Principle

Diagonalize H in the

$$
\chi_{i j k}=r_{1}^{i} r_{2}^{j} r_{12}^{k} e^{-\alpha r_{1}-\beta r_{2}} \mathcal{Y}_{l_{1} l_{2} L}^{M}\left(\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}\right)
$$

basis set to satisfy the variational condition

$$
\delta \int \Psi(H-E) \Psi d \tau=0
$$

For finite nuclear mass M,

$$
H=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{Z}{r_{1}}-\frac{Z}{r_{2}}+\frac{1}{r_{12}}-\frac{\mu}{M} \nabla_{1} \cdot \nabla_{2}
$$

in reduced mass atomic units e^{2} / a_{μ}, where $a_{\mu}=(m / \mu) a_{0}$ is the reduced mass Bohr radius, and $\mu=m M /(m+M)$ is the electron reduced mass.
transp09.tex, January/05

Rescale distances and energies according to

$$
\begin{aligned}
\boldsymbol{\rho} & =\mathbf{r} / a_{\mu} \\
\mathcal{E} & =E /\left(e^{2} / a_{\mu}\right)
\end{aligned}
$$

where $a_{\mu}=\frac{\hbar^{2}}{\mu e^{2}}$ is the reduced mass Bohr radius,
and $\frac{e^{2}}{a_{\mu}}=2 R_{\mu}=2 \frac{\mu}{m} R_{\infty}=2\left(1-\frac{\mu}{M}\right) R_{\infty}$.
The Schrödinger equation is then (in mass-scaled atomic units)

$$
\left\{-\frac{1}{2} \nabla_{\rho_{1}}^{2}-\frac{1}{2} \nabla_{\rho_{2}}^{2}-\frac{\mu}{M} \nabla_{\rho_{1}} \cdot \nabla_{\rho_{2}}-\frac{Z}{\rho_{1}}-\frac{Z}{\rho_{2}}+\frac{1}{\left|\boldsymbol{\rho}_{1}-\boldsymbol{\rho}_{2}\right|}\right\} \Psi=\mathcal{E} \Psi
$$

semin03.tex, January/05

Convergence of the nonrelativistic energies for the $1 s^{2} 2 s^{2} S$ and $1 s^{2} 2 p^{2} P$ states of lithium, in atomic units.

$\Omega \quad$ No. of terms	$E(\Omega)$	$E(\Omega)-E(\Omega-1)$	$R(\Omega)^{\text {a }}$
	$1 s^{2} 2 s^{2} S$		

| 2 | 19 | -7.4775557203218 | | |
| :--- | :---: | :--- | :--- | :--- | :--- |
| 3 | 51 | -7.4779958351408 | -0.0004401148190 | |
| 4 | 121 | -7.4780535672999 | -0.0000577321591 | 7.623 |
| 5 | 257 | -7.4780594644637 | -0.0000058971638 | 9.790 |
| 6 | 503 | -7.4780602280801 | -0.0000007636164 | 7.723 |
| 7 | 919 | -7.4780603110929 | -0.0000000830129 | 9.199 |
| 8 | 1590 | -7.4780603217247 | -0.0000000106318 | 7.808 |
| 9 | 2626 | -7.4780603234168 | -0.0000000016921 | 6.283 |
| 10 | 3502 | -7.4780603236189 | -0.0000000002021 | 8.371 |
| ∞ | | $-7.4780603236503(71)$ | | |

	$s^{2} 2 p^{2} P$						
2	20	-7.410088210427					
3	56	-7.410146240952	-0.000058030525				
4	139	-7.410155057909	-0.000008816956	6.582			
5	307	-7.410156274821	-0.000001216912	7.245			
6	623	-7.410156490483	-0.000000215662	5.643			
7	1175	-7.410156524272	-0.000000033789	6.383			
8	1846	-7.410156530070	-0.000000005798	5.828			
9	2882	-7.410156531534	-0.000000001464	3.960			
10	3463	-7.410156531721	-0.000000000187	7.813			
∞		$-7.410156531763(42)$					

${ }^{\mathrm{a}} R(\Omega)=\frac{R(\Omega-1)-R(\Omega-2)}{R(\Omega)-R(\Omega-1)}$
semin06.tex, January, 2005

The Recoil Term

The recoil term $a\left(n^{2} L\right)$ corresponds, in the hydrogenic case, to the term $\tilde{a}(n L)$ given by

$$
\begin{equation*}
\tilde{a}(n L)=-2\left(\ln \frac{2}{n}+\sum_{q=1}^{n} q^{-1}+1-\frac{1}{2 n}\right) \delta_{L, 0}+\frac{1-\delta_{L, 0}}{L(L+1)(2 L+1)} . \tag{4}
\end{equation*}
$$

In the multi-electron case, it corresponds to the term

$$
\begin{equation*}
a\left(n^{2} L\right)=\frac{2 Q_{1}}{\left\langle\delta\left(\mathbf{r}_{i}\right)\right\rangle^{(0)}}+2 \ln Z-3 \tag{5}
\end{equation*}
$$

where Q_{1} is the matrix element

$$
Q_{1}=(1 / 4 \pi) \lim _{\epsilon \rightarrow 0}\left\langle r_{i}^{-3}(\epsilon)+4 \pi\left(\gamma_{\mathrm{eu}}+\ln \epsilon\right) \delta\left(\mathbf{r}_{i}\right)\right\rangle
$$

γ_{eu} is Euler's constant, ϵ is the radius of a sphere about $r_{i}=0$ excluded from the integration, and a summation over i from 1 to 3 is assumed for lithium.
semin08.tex, January, 2005

J. Phys. B. 37, 2485 (2004)

High precision variational calculations for \mathbf{H}_{2}^{+}

Mark M Cassar and G W F Drake
University of Windsor, Windsor, ON N9B 3P4, Canada
E-mail: cassar1@uwindsor.ca

Received 5 November 2003, in final form 29 April 2004
Published DD MMM 2004
Online at stacks.iop.org/JPhysB/37/1
DOI: 10.1088/0953-4075/37/0/000

Abstract

A double basis set in Hylleraas coordinates is used to obtain improved variational upper bounds for the nonrelativistic energy of the $1^{1} \mathrm{~S}(v=0, R=$ $0), 2{ }^{1} \mathrm{~S}(v=1, R=0)$ and $2{ }^{3} \mathrm{P}(v=0, R=1)$ states of H_{2}^{+}. This method shows a remarkable convergence rate for relatively compact basis set expansions. A comparison with the most recent work is made. The accuracy of the wavefunctions is tested using the electron-proton Kato cusp condition.

2. Calculations

After isolating the centre-of-mass motion, the Hamiltonian for H_{2}^{+}may be written (in reduced mass atomic units) as

$$
\begin{equation*}
H=-\frac{1}{2} \nabla_{r_{1}}^{2}-\frac{1}{2} \nabla_{r_{2}}^{2}-\frac{\mu}{m_{\mathrm{e}}} \nabla_{r_{1}} \cdot \nabla_{r_{2}}-\frac{1}{r_{1}}-\frac{1}{r_{2}}+\frac{1}{r_{12}}, \tag{3}
\end{equation*}
$$

where μ is the reduced electron mass; the electron has been chosen to be at the origin of the coordinate system. The main task now is to solve the Schrödinger equation

$$
\begin{equation*}
H \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=E \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \tag{4}
\end{equation*}
$$

for the stationary states of the Hamiltonian H.
For our modified double basis set, the trial function for S-states is given by
$\Psi^{\mathrm{S}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{p=1}^{2} \sum_{i, j=0}^{\Omega_{1}} \sum_{k=\Omega_{\mathrm{low}}}^{\Omega_{\text {high }}} a_{i j k}^{(p)} r_{1}^{i} r_{2}^{j} r_{12}^{k} \exp \left(-\alpha^{(p)} r_{1}-\beta^{(p)} r_{2}-\gamma^{(p)} r_{12}\right) \pm$ (exchange),
where $\Omega_{1} \geqslant i+j$, that is, Ω_{1} is the maximum sum of powers of r_{1} and r_{2},

$$
\begin{aligned}
& \Omega_{\mathrm{low}}=\mathcal{M}-\Omega_{1}+(i+j) \\
& \Omega_{\mathrm{high}}=\mathcal{M}+\Omega_{1}-(i+j)
\end{aligned}
$$

and the integer $\mathcal{M}>\Omega_{1}$ is an adjustable parameter; and for states with $L>0$,

$$
\begin{equation*}
\Psi^{L>0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sum_{\text {ang }} \Psi^{\mathrm{S}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \mathcal{Y}_{l_{1} l_{2}}^{L M}\left(\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}\right) \tag{6}
\end{equation*}
$$

where $\mathcal{Y}_{l_{1} l_{2}}^{L M}\left(\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}\right)$ is a vector-coupled product of spherical harmonics [16] and $\sum_{\text {ang }}$ means that all distinct angular couplings are included according to the scheme in [17].

Normally, all distinct combinations of powers $\{i, j, k\}$ would be included in expansions (5) and (6); however, in order to avoid problems of near linear dependence for S-states, all terms with $i>j$ are omitted only in (5). In addition, we employed a form of truncation first introduced by Kono and Hattori [18] in which terms with $i+j+|\mathcal{M}-k|-\left|l_{1}-l_{2}\right|+|j-i|>\Omega_{1}$ are avoided

Table 1. Convergence study for the ground state of $\mathrm{H}_{2}^{+} . \Omega\left(=\mathcal{M}+\Omega_{1}\right)$ is the highest power of r_{12} and N is the total number of terms in the basis set. Atomic units are used.

Ω	N	Ratio $^{\text {a }}$	
42	33	-0.597138979257696807296095	
43	57	-0.597139061191160229487982	
44	90	-0.597139062954250154856869	46.47
45	134	-0.597139063120531138258260	10.60
46	190	-0.597139063123316985447178	59.69
47	260	-0.597139063123402568522508	32.55
48	345	-0.597139063123404987310249	35.38
49	447	-0.597139063123405072038078	28.55
50	567	-0.597139063123405074674920	32.13
51	707	-0.597139063123405074825966	17.46
52	868	-0.597139063123405074834205	18.33
53	1052	-0.597139063123405074834331	65.43
Extrapolation		$-0.597139063123405074834338(3)$	19.80
b	2200	-0.5971390631234050740	
c		$-0.597139063123405076(2)$	
d	3500	-0.59713906312340507483	
e	1330	-0.5971390631234050741	
f	$-0.5971390631234050745(4)$		

[^0]Table 3. Convergence study for the $2^{1} \mathrm{~S}$ state of $\mathrm{H}_{2}^{+} . \Omega\left(=\mathcal{M}+\Omega_{1}\right)$ is the highest power of r_{12} and N is the total number of terms in the basis set. Atomic units are used.

Ω	N	Ratio $^{\text {a }}$	
39	20	-0.587151043016274880167	
40	40	-0.587155435230538473190	
41	70	-0.587155671003177129307	18.63
42	112	-0.587155678540275385079	31.28
43	168	-0.587155679208721236702	11.28
44	240	-0.587155679212575658166	173.42
45	330	-0.587155679212741279834	23.27
46	440	-0.587155679212746648696	30.85
47	572	-0.587155679212746807755	33.75
48	728	-0.587155679212746811406	43.56
49	910	-0.587155679212746812118	5.13
50	1015	-0.587155679212746812191	9.65
51	1240	-0.587155679212746812205	5.57
52	1496	-0.587155679212746812211	2.03
Extrapolation		$-0.587155679212746812212(2)$	6.18
b		$-0.587155679212(1)$	
c		-0.5871556792127	
d	$-0.5871556792136(5)$		

[^1]Table 4. Convergence study for the $2^{3} \mathrm{P}$ state of $\mathrm{H}_{2}^{+} . \Omega\left(=\mathcal{M}+\Omega_{1}\right)$ is the highest power of r_{12} and N is the total number of terms in the basis set. Atomic units are used.

Ω	N	$E(\Omega)$	Ratio $^{\text {a }}$
40	39	-0.59687282171825076131	
41	82	-0.59687372819190393874	
42	149	-0.59687373811317743223	91.37
43	244	-0.59687373882233810835	13.99
44	373	-0.59687373883202963519	73.17
45	540	-0.59687373883275020025	13.45
46	751	-0.59687373883276235510	59.28
47	1010	-0.59687373883276466879	5.25
48	1323	-0.59687373883276472956	38.07
49	1694	-0.59687373883276473480	11.60
Extrapolation		$-0.59687373883276473496(5)$	32.92
b	$-0.5968737388328(5)$		
c	-0.5968737388328		
d	$-0.596873738832764733(1)$		

[^2]Contributions to the ${ }^{7} \mathrm{Li}-{ }^{6} \mathrm{Li}$ isotope shifts for the $1 s^{2} 2 p^{2} P_{J}-1 s^{2} 2 s^{2} S$ transitions and comparison with experiment. Units are MHz .

Contribution	$2^{2} P_{1 / 2}-2^{2} S$	$2^{2} P_{3 / 2}-2^{2} S$
	Theory	
μ / M	$10533.50192(60)^{\mathrm{a}}$	$10533.50192(60)^{\mathrm{a}}$
$(\mu / M)^{2}$	$0.0573(20)$	$0.0573(20)$
$\alpha^{2} \mu / M$	$-1.397(66)$	$-1.004(66)$
$\alpha^{3} \mu / M$, anom. magnetic	$-0.0001753(84)$	$0.0000875(84)$
$\alpha^{3} \mu / M$, one-electron	$0.0045(10)$	$0.0045(10)$
$\alpha^{3} \mu / M$, two-electron	$0.0105(20)$	$0.0105(20)$
$r_{\text {rms }}^{2}$	$1.94(61)$	$1.94(61)$
$r_{\text {rms }}^{2} \mu / M$	$-0.00073(11)$	$-0.00073(11)$
Total	$10534.12(7) \pm 0.61$	$10534.51(7) \pm 0.61$
	Experiment	
Sansonetti et al. ${ }^{\mathrm{b}}$	$10532.9(6)$	$10533.3(5)$
Windholz et al. ${ }^{\text {c }}$	$10534.3(3)$	$10539.9(1.2)$
Scherf et al. ${ }^{\mathrm{d}}$	$10533.13(15)$	$10534.93(15)$
Walls et al. ${ }^{\text {e }}$	$10534.26(13)$	
Noble et al. ${ }^{\mathrm{f}}$	$10534.039(70)$	

${ }^{\text {a }}$ The additional uncertainty from the atomic mass determinations is ± 0.008 MHz.
${ }^{\mathrm{b}}$ C. J. Sansonetti, B. Richou, R. Engleman, Jr., and L. J. Radziemski, Phys. Rev. A 52, 2682 (1995).
${ }^{\text {cLL. Windholz and C. Umfer, Z. Phys. D 29, } 121 \text { (1994). }}$
${ }^{\text {d }}$ W. Scherf, O. Khait, H. Jäger, and L. Windholz, Z. Phys. D 36, 31, (1996). ${ }^{\mathrm{e}}$ J. Walls, R. Ashby, J. J. Clarke, B. Lu, and W. A. van Wijngaarden, Eur. Phys. J. D 22159 (2003).
${ }^{f}$ G.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A submitted.

Contributions to the ${ }^{7} \mathrm{Li}-{ }^{6} \mathrm{Li}$ isotope shifts for the $1 s^{2} 2 p^{2} P_{J}-1 s^{2} 2 s^{2} S$ transitions and comparison with experiment. Units are MHz .

Contribution	$2^{2} P_{1 / 2}-2^{2} S$	$2^{2} P_{3 / 2}-2^{2} S$
	Theory	
μ / M	$10533.50192(60)^{\mathrm{a}}$	$10533.50192(60)^{\mathrm{a}}$
$(\mu / M)^{2}$	$0.0573(20)$	$0.0573(20)$
$\alpha^{2} \mu / M$	$-1.397(66)$	$-1.004(66)$
$\alpha^{3} \mu / M$, anom. magnetic	$-0.0001753(84)$	$0.0000875(84)$
$\alpha^{3} \mu / M$, one-electron	$0.0045(10)$	$0.0045(10)$
$\alpha^{3} \mu / M$, two-electron	$0.0105(20)$	$0.0105(20)$
$r_{\text {rms }}^{2}$	$1.94(61)$	$1.94(61)$
$r_{\text {rms }}^{2} \mu / M$	$-0.00073(11)$	$-0.00073(11)$
Total	$10534.12(7) \pm 0.61$	$10534.51(7) \pm 0.61$
	Experiment	
Sansonetti et al. ${ }^{\mathrm{b}}$	$10532.9(6)$	$10533.3(5)$
Windholz et al. ${ }^{\text {c }}$	$10534.3(3)$	$10539.9(1.2)$
Scherf et al. ${ }^{\mathrm{d}}$	$10533.13(15)$	$10534.93(15)$
Walls et al. ${ }^{\text {e }}$	$10534.26(13)$	
Noble et al. ${ }^{\mathrm{f}}$	$10534.039(70)$	

${ }^{\text {a }}$ The additional uncertainty from the atomic mass determinations is ± 0.008 MHz.
${ }^{\mathrm{b}}$ C. J. Sansonetti, B. Richou, R. Engleman, Jr., and L. J. Radziemski, Phys. Rev. A 52, 2682 (1995).
${ }^{\text {cLL. Windholz and C. Umfer, Z. Phys. D 29, } 121 \text { (1994). }}$
${ }^{\text {d }}$ W. Scherf, O. Khait, H. Jäger, and L. Windholz, Z. Phys. D 36, 31, (1996). ${ }^{\mathrm{e}}$ J. Walls, R. Ashby, J. J. Clarke, B. Lu, and W. A. van Wijngaarden, Eur. Phys. J. D 22159 (2003).
${ }^{f}$ G.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A submitted.

Comparison between theory and experiment for the fine structure splittings and ${ }^{7} \mathrm{Li}-{ }^{6} \mathrm{Li}$ splitting isotope shift (SIS). Units are MHz.

Reference	${ }^{7} \mathrm{Li} 2^{2} \mathrm{P}_{3 / 2}-2^{2} \mathrm{P}_{1 / 2}$	${ }^{6} \mathrm{Li} 2{ }^{2} \mathrm{P}_{3 / 2}-2^{2} \mathrm{P}_{1 / 2}$	SIS
Present work	$10051.24(2) \pm 3^{\mathrm{a}}$	$10050.85(2) \pm 3^{\mathrm{a}}$	$0.393(6)$
Brog et al. ${ }^{\mathrm{b}}$	$10053.24(22)$	$10052.76(22)$	$0.48(31)$
Scherf et al. ${ }^{\mathrm{c}}$	$10053.4(2)$	$10051.62(20)$	$1.78(28)$
Walls et al. $^{\mathrm{d}}$	$10052.37(11)$	$10053.044(91)$	$-0.67(14)$
Orth et al. ${ }^{\mathrm{e}}$	$10053.184(58)$		
Noble et al. ${ }^{\mathrm{f}}$	$10053.119(58)$	$10052.964(50)$	$0.155(76)$
Recommended value	$10053.2(1)$	$10052.8(1)$	

${ }^{\text {a }}$ Includes uncertainty of $\pm 3 \mathrm{MHz}$ due to mass-independent higher-order terms not yet calculated.
${ }^{\mathrm{b}}$ K.C. Brog, Phys. Rev. 153, 91 (1967).

${ }^{\text {d J. Walls, R. Ashby, J. J. Clarke, B. Lu, and W. A. van Wijngaarden, Eur. }}$
Phys. J D 22159 (2003).
${ }^{\mathrm{e}}$ H. Orth, H. Ackermann, and E.W. Otten, Z. Phys. A 273, 221 (1975).
${ }^{f}$ G.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A submitted.
semin43.tex, May, 2006

Doc5
 Printed on Thursday, June 15, 2006 at 01:32:47

$\begin{gathered} 7 \mathrm{Li}-11 \mathrm{Li} \underset{\mathrm{mr}}{\mathrm{mu/M}} \underset{\mathrm{M}}{2-1} \end{gathered}$	25104.803934335	0.000062605	0.114928928
nr (mu/M) ^2	25104.8039 -2.967598804	0.000006864	0.000010569
rel mu/M	0.415505222	0.121140432	
anom mu/M	0.000000000	0.000000000	
^3 Bethe log corr	-0.013934996	0.004087835	
^3 mu/M 2-e EL2	0.024632937	0.004480293	
^3 mu/M	-0.131023010	0.000857103	
^3 mu/M 1-e TOTAL	-0.144958006	0.004176724	
$\begin{aligned} & \text { H.O. sum }>a^{\wedge} 3 \\ & \text { totals } \end{aligned}$	-0.120325070	0.006125197	25102.131515683
mu/M	25105.099114488	0.121226300	0.114930280
$(\mathrm{mu} / \mathrm{M})^{\wedge} 2$	-2.967598804	0.000006864	0.000010569
$\mathrm{R}^{\wedge} 2$	0.000000000	0.000000000	0.000000000
R^2mu/M	0.000000000		
TOTAL	25102.131515741	0.121226300	0.114930280
TOTALerr	0.167047254		

High Precision Theory and Isotope Shifts

 for Li and Be^{+}Gordon W.F. Drake University of Windsor, Canada Zong-Chao Yan
University of New Brunswick, Canada
Collaborators
Mark Cassar (AIP)
Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student) Atef Titi (Ph.D. student)

Financial Support: NSERC and SHARCnet
DAMOP, Knoxville
May 2006

Studies of Light Halo Nuclei from Atomic Isotope Shifts

Gordon W.F. Drake
University of Windsor, Canada
Collaborators
Zong-Chao Yan (UNB)
Mark Cassar (PDF)
Zheng Zhong (Ph.D. student)
Qixue Wu (Ph.D. student)
Atef Titi (Ph.D. student)
Razvan Nistor (M.Sc. completed)
Levent Inci (M.Sc. completed)

Financial Support: NSERC and SHARCnet
The Lindgren Symposium
Göteborg, Sweden
2 June 2006

Isotope Shifts for the
 Determination of Nuclear Halo Radii

Gordon W.F. Drake
University of Windsor, Canada
Collaborators
Zong-Chao Yan (UNB)
Mark Cassar (PDF)
Zheng Zhong (Ph.D. student)
Qixue Wu (Ph.D. student)
Atef Titi (Ph.D. student)
Razvan Nistor (M.Sc. completed)
Levent Inci (M.Sc. completed)

Financial Support: NSERC and SHARCnet
PSAS2006
Venice, Italy
15 June 2006

Properties of Halo Nuclei

 from Atomic Isotope Shifts

 from Atomic Isotope Shifts}

Gordon W.F. Drake
University of Windsor, Canada
Collaborators
Zong-Chao Yan (UNB)
Mark Cassar (A.I.P.)
Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student)
Atef Titi (Ph.D. student)
Razvan Nistor (M.Sc. completed)
Levent Inci (M.Sc. completed)

Financial Support: NSERC and SHARCnet
Few Body 18 Conference
São Paulo, Brazil
22 August 2006

Studies of Light Halo Nuclei by the Isotope Shift Method

Gordon W.F. Drake
University of Windsor, Canada Zong-Chao Yan
University of New Brunswick, Canada

Collaborators
Mark Cassar (A.I.P.)
Zheng Zhong (Ph.D. student)
Qixue Wu (Ph.D. student)
Atef Titi (Ph.D. student)
Razvan Nistor (M.Sc. completed)
Levent Inci (M.Sc. completed)

Financial Support: NSERC and SHARCnet
International Conference on Trapped Charged Particles and Fundamental Physics Tigh-Na-Mara, B.C.
5 Septemper 2006

Table 5. Optimized scale factors for the three lowest states of H_{2}^{+}. Units are $\mu /\left(m_{\mathrm{e}} a_{0}\right)$, where a_{0} is the Bohr radius and μ is the reduced electron mass.

N	$\alpha^{(1)}$	$\beta^{(1)}$	$\gamma^{(1)}$	$\alpha^{(2)}$	$\beta^{(2)}$	$\gamma^{(2)}$
			$1{ }^{1} \mathrm{~S}$			
33	1.29828	0.40735	18.32544	1.15375	0.41833	19.53986
57	1.22168	0.50000	19.39575	1.17389	0.43097	18.86371
90	1.25781	0.89563	18.47211	1.16791	0.48340	19.37537
134	1.31140	0.59418	20.28973	1.18848	0.38226	19.57910
190	1.17108	0.85852	20.03717	1.10834	0.50781	19.78876
260	1.25067	1.02069	19.28625	1.16626	0.48297	18.98700
345	1.55286	1.03436	19.29443	1.19177	0.37036	18.99933
447	1.54388	1.12152	19.18494	1.17828	0.36896	19.31342
567	1.56165	1.28979	18.93579	1.16669	0.39282	19.41327
707	1.62518	1.40912	19.10522	1.22589	0.44189	18.63483
868	1.70325	1.45929	19.80695	1.20654	0.42932	19.41852
1052	1.71881	1.47198	19.98499	1.19287	0.42505	17.58771
			$2 \mathrm{~S}^{1} \mathrm{~S}$			
20	1.44666	0.19421	16.93994	1.07129	0.30090	17.51099
40	1.21973	0.37360	16.52173	1.10480	0.38855	18.23834
70	1.52942	0.36084	16.59521	1.15802	0.35980	18.12958
112	1.46509	0.28693	16.85657	1.29797	0.34454	17.87927
168	1.16699	0.71899	17.65454	1.13068	0.59479	17.73370
240	1.30774	0.81104	17.18604	1.18115	0.60138	17.44489
330	1.53186	0.93195	16.53748	1.16290	0.58606	17.15076
440	1.73041	0.98584	16.49695	1.16766	0.56006	17.84485
572	1.64624	1.02795	18.02319	1.10980	0.56873	18.67334
728	1.57294	1.07166	20.45264	1.12164	0.57385	18.97449
910	1.55615	1.06024	20.23523	1.13361	0.58002	19.17627
1015	1.85406	1.16150	20.27728	1.13300	0.58105	19.16602
1240	1.84467	1.15662	20.25494	1.13519	0.58411	19.18842
1496	1.82593	1.14484	20.04578	1.14673	0.59021	19.38757
39	1.32092	0.36035	18.00983	0.79034	0.69275	18.09076
39	1.25488	0.44232	18.60919	0.70331	0.55835	18.89685
149	1.36938	0.51270	17.93054	0.81281	0.65179	17.98999
244	1.18353	0.69800	18.51025	1.00165	0.70929	18.47931
373	1.28961	0.69476	18.65588	1.05634	0.79230	18.55469
540	1.32507	0.76434	18.63800	0.90845	0.73566	18.96375
751	1.53662	0.82697	18.44684	0.88232	0.71698	18.71686
1010	1.52887	0.83118	18.53229	0.87836	0.71906	18.63306
1323	1.53650	0.83392	18.61951	0.87421	0.71570	18.54572
1694	1.53607	0.85156	18.82404	0.86407	0.71399	18.34418

The 20-, 21- and 24-figure accuracies of the nonrelativistic energy eigenvalues presented above, although more than sufficient for comparison with experiment, lay a firm foundation for the calculation of higher order relativistic and QED corrections to the nonrelativistic energy levels of H_{2}^{+}. The 10 -figure accuracy of the electron-proton cusp quoted here represents, to our knowledge, an improvement of about five orders of magnitude over the best available value in the literature [12,20]. This further shows the reliability of the wavefunctions to compute observables, other than the energy, to high precision, and especially the highly singular operators that appear in the relativistic and QED corrections.

References

[1] Jacobson P L, Fisher D S, Fehrenbach C W, Sturrus W G and Lundeen S R 1997 Phys. Rev. A 56 R 4361 Jacobson P L, Fisher D S, Fehrenbach C W, Sturrus W G and Lundeen S R 1998 Phys. Rev. A 574065 (erratum)
[2] Jacobson P L, Komara R A, Sturrus W G and Lundeen S R 2000 Phys. Rev. A 62012509
[3] Korobov V I 2001 Phys. Rev. A 63044501
[4] Sturrus W G, Hessels E A, Arcuni P W and Lundeen S R 1991 Phys. Rev. A 443032
[5] Fu Z W, Hessels E A and Lundeen S R 1992 Phys. Rev. A 46 R5313
[6] Nez F, Plimmer M D, Bourzeix S, Julien L, Biraben F, Felder R, Millerioux Y and de Natale P 1995 IEEE Trans. Instrum. Meas. 44568
[7] Hilico L, Billy N, Grémaud B and Delande D 2001 J. Phys. B: At. Mol. Opt. Phys. 341
[8] Hilico L private communication
[9] Bailey D H and Frolov A M 2002 J. Phys. B: At. Mol. Opt. Phys. 354287
[10] Korobov V I 2000 Phys. Rev. A 61064503
[11] Yan Z-C, Zhang J-Y and Y L 2003 Phys. Rev. A 67062504
See endnote 1
[12] Frolov A M 2002 J. Phys. B: At. Mol. Opt. Phys. 35 L331
[13] Cassar M M 1998 MSc Thesis University of Windsor
[14] Drake G W F 1996 Atomic, Molecular and Optical Physics Handbook ed G W F Drake (Woodbury, NY: AIP)
[15] Hilico L, Billy N, Grémaud B and Delande D 2000 Eur. Phys. J. D 12449
[16] Zare R N 1988 Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Toronto: Wiley)
[17] Drake G W F 1993 Long Range Casimir Forces: Theory and Recent Experiments in Atomic Systems ed F S Levin and D A Micha (New York: Plenum)
[18] Kono A and Hattori S 1985 Phys. Rev. A 311199
[19] Bhatia A K 1998 Phys. Rev. A 582787
[20] Bhatia A K and Drachman R J 1999 Phys. Rev. A 59205 Bhatia A K and Drachman R J 1998 Phys. Rev. A 31383
[21] Cohen E R and Taylor B N 2000 Phys. Today 539
[22] http://physics.nist.gov/cuu/Constants/index.html
[23] Kato T 1957 Commun. Pure Appl. Math. 10151
[24] Pack R T and Brown W B 1966 J. Chem. Phys. 45556
[25] Drake G W F and Yan Zong-Chao 1994 Chem. Phys. Lett. 229486
[26] Moss R E 1999 J. Phys. B: At. Mol. Opt. Phys. 32 L89
[27] Taylor J M, Yan Z-C, Dalgarno A and Babb J F 1999 Mol. Phys. 9725

HIGH PRECISION SPECTROSCOPY

THEORY

- Hyperfine structure
- N.R. energies and relativistic corrections
- QED effects

Fine Structure

Isotope Shift
\Rightarrow internal check of theory and experiment

Transition

Isotope Shift
\Rightarrow nuclear radius

Total Transition Frequency
\Rightarrow QED shift

Flow diagram for types of measurements.

Comparison of nuclear structure theories with experiment for the rms nuclear charge radius r_{c}. The dotted lines connect sequences of calculations for different nuclei, and the error bars denote the experimental values, relative to the ${ }^{4} \mathrm{He}$ and ${ }^{7} \mathrm{Li}$ reference nuclei. The points are grouped as (\otimes) variational microcluster calculations and a no-core shell model ; (\oplus) effective three-body cluster models ; (Θ) large-basis shell model ; (∇) stochastic variational multicluster ; (Φ) dynamic correlation model. The remaining points are quantum Monte Carlo calculations with various effective potentials as follows: (X) AV8'; (•) AV18/UIX; (○) AV18/IL2; (\triangle) AV18/IL3; (\diamond) AV18/IL4 (for

Nuclear Charge Radii

4:00 PM, Wednesday, May 17, 2006
Knoxville Convention Center - Ballroom AB, 4:00pm - 6:00pm

Abstract: G1.00036 : Towards a Laser Spectroscopic Determination of the \$^8\$He Nuclear Charge Radius

Authors:

. Mueller	M.-G. Saint Laurent K. Bailey R.J. Holt	O. Naviliat-Cuncic R.V.F. Janssens Z.-T. Lu
A.C.C. Villari (GANIL)	X. Flechard (Laboratoire de Physique Corpusculaire T.P. O'Connor I. Sulai (Argonne National Lab)	
S.-M. Hu (University of Science and Technology of		
China)	G.W.F. Drake (University of Windsor)	M. Paul (Hebrew University)

We will report on the progress towards a laser spectroscopic determination of the $\$^{\wedge} 8 \$$ He nuclear charge radius. $\$ \wedge 8 \$ \mathrm{He}\left(\mathrm{t} \$ _\{1 / 2\} \$=119 \mathrm{~ms}\right.$) has the highest neutron to proton ratio of all known isotopes. Precision measurements of its nuclear structure shed light on nuclear forces in neutron rich matter, e.g. neutron stars. The experiment is based on our previous work on high-resolution laser spectroscopy of individual helium atoms captured in a magneto-optical trap. This technique enabled us to accurately measure the atomic isotope shift between $\$ \wedge 6 \$ \mathrm{He}$ and $\$^{\wedge} 4 \$ \mathrm{He}$ and thereby to determine the $\$ \wedge 6 \$ \mathrm{He}$ rms charge radius to be $2.054(14) \mathrm{fm}$. We are currently well on the way to improve the overall trapping efficiency of our system to compensate for the shorter lifetime and lower production rates of $\$^{\wedge} 8 \$ \mathrm{He}$ as compared to $\$^{\wedge} 6 \$ \mathrm{He}$. The $\$^{\wedge} 8 \$ \mathrm{He}$ measurement will be performed on-line at the GANIL cyclotron facility in Caen, France and is planned for late 2006.

${ }^{7} \mathrm{Be}$	${ }^{9} \mathrm{Be}$	${ }^{1} \mathrm{Be}$	IBe	2Be	${ }^{4} \mathrm{Be}$
$\begin{gathered} 53.2 d \\ 3 / 2 \end{gathered}$	$\begin{gathered} \infty \\ 3 / 2 \end{gathered}$	$\begin{gathered} 15 \times 10^{6} a \\ 0^{+} \end{gathered}$	$\begin{gathered} 13.818 \\ 72^{2} \end{gathered}$	$\underset{0^{+}}{215 \mathrm{~m}}$	${ }_{4}^{4.84 \mathrm{~mm}}$

Conclusions

- The finite basis set method with multiple distance scales provides an effective and efficient method of calculating Bethe logarithms, thereby enabling calculations up to order α^{3} Ry for lithium.
- The objective of calculating isotope shifts to better than $\pm 100 \mathrm{kHz}$ has been achieved for two- and three-electron atoms, thus allowing measurements of the nuclear charge radius to $\pm 0.02 \mathrm{fm}$.
- The results provide a significant test of theoretical models for the nucleon-nucleon potential, and hence for the properties of nuclear matter in general.

Relativistic and QED Effects in Helium and Lithium: Isotope Shifts

Gordon W.F. Drake
University of Windsor, Canada
Collaborators
Zong-Chao Yan (UNB) Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student) Atef Titi (Ph.D. student) Roman Atanasof (M.Sc. student) Eva Schulhof (M.Sc. student)

Financial Support: NSERC and SHARCnet
A Tribute to Walter Johnson
Notre Dame, April 4-5, 2008.

Objectives

1. Calculate nonrelativistic eigenvalues for helium, lithium and Be^{+}of spectroscopic accuracy.
2. Include finite nuclear mass (mass polarization) effects up to second order by perturbation theory.
3. Include relativistic and QED corrections by perturbation theory.
4. Compare the results with high precision measurements.
5. Use the results to measure the nuclear radius of exotic "halo" isotopes of helium, lithium and beryllium such as ${ }^{6} \mathrm{He},{ }^{11} \mathrm{Li}$, and ${ }^{11} \mathrm{Be}^{+}$.

What's New?

1. Essentially exact solutions to the quantum mechanical three- and fourbody problems.
2. Recent advances in calculating QED corrections - especially the Bethe logarithm.
3. Single atom spectroscopy.

High precision measurements for helium and He-like ions.
Group
Measurements

Amsterdam (Eikema et al.)
NIST (Bergeson et al.)
Harvard (Gabrielse)
N. Texas (Shiner et al.)

Florence (Inguscio et al.)
York (Storry \& Hessels)
Argonne (Z.-T. Lu et al.)
Paris (Biraben et al.)
NIST (Sansonetti \& Gillaspy)
Argonne (Z.-T. Lu et al.)
Yale (Lichten et al.)
Colorado State (Lundeen et al.)
York (Rothery \& Hessels)
Strathclyde (Riis et al.)
York (Clarke \& van Wijngaarden)
U. West. Ont (Holt \& Rosner)

Argonne (Berry et al.)
Florida State (Myers et al.)
Florida State (Myers/Silver)
Florida State (Myers/Tarbutt)
$\mathrm{He} 1 \mathrm{~s}^{2}{ }^{1} \mathrm{~S}-1 \mathrm{~s} 2 \mathrm{p}{ }^{1} \mathrm{P}$
He $1 \mathrm{~s}^{2}{ }^{1} \mathrm{~S}-1 \mathrm{~s} 2 \mathrm{~s}{ }^{1} \mathrm{~S}$
He 1s2s ${ }^{3} S-1 s 2 p^{3} P$
He 1s2s ${ }^{3} S-1 s 2 p^{3} P$
He 1s2s ${ }^{3} S-1 s 2 p^{3} P$
He 1s2p ${ }^{3} P$ fine structure
He 1s3p ${ }^{3} P$ fine structure
He 1s2s ${ }^{3} S-1 s 3 d^{3} D$
He 1s2s ${ }^{1} \mathrm{~S}-1$ snp ${ }^{1} \mathrm{P}$
${ }^{6} \mathrm{He}$ I.S. completed June/04
He 1s2s ${ }^{1}$ S -1 snd ${ }^{1} D$
He $10^{1,3} \mathrm{~L}-10^{1,3}(\mathrm{~L}+1)$
He $10^{1,3} \mathrm{~L}-10^{1,3}(\mathrm{~L}+1)$
$\mathrm{Li}^{+} 1 \mathrm{~s} 2 \mathrm{~s}^{3} \mathrm{~S}-1 \mathrm{~s} 2 \mathrm{p}^{3} \mathrm{P}$
$\mathrm{Li}^{+} 1 \mathrm{~s} 2 \mathrm{~s}^{3} \mathrm{~S}-1 \mathrm{~s} 2 \mathrm{p}^{3} \mathrm{P}$
$\mathrm{Be}^{++} 1 \mathrm{~s} 2 \mathrm{~s}^{3} \mathrm{~S}-1 \mathrm{~s} 2 \mathrm{p}^{3} \mathrm{p}$
$B^{3+}+1 s 2 s^{3} S-1 s 2 p^{3} P$
$N^{5+}+1 s 2 s^{3} S-1 s 2 p^{3} P$
$F^{7+} 1 s 2 p^{3} P$ fine structure
$\mathrm{Mg}^{10+} 1 \mathrm{~s} 2 \mathrm{p}{ }^{3} \mathrm{P}$ fine structure

Main Theme:
Create new measurement tools by combining high precision theory and experiment.

Examples:

- Interpretation of parity nonconservation (24 papers by Johnson et al.)
- Cosmological variation of fundamental constants (Flambaum).
- Interpretation of isotope shifts (with M. Safronova).

Focus on Isotope Shifts for Halo Nuclei

1. Calculate nonrelativistic eigenvalues for helium, lithium and Be^{+}of spectroscopic accuracy.
2. Include finite nuclear mass (mass polarization) effects up to second order by perturbation theory.
3. Include relativistic and QED corrections by perturbation theory.
4. Compare the results with high precision measurements.
5. Use the results to measure the nuclear radius of exotic "halo" isotopes of helium, lithium and beryllium such as ${ }^{6} \mathrm{He},{ }^{8} \mathrm{He},{ }^{11} \mathrm{Li}$, and ${ }^{11} \mathrm{Be}^{+}$ (Drake, 1993).

Nonrelativistic and Relativistic Contributions to the Energy

where

$$
\begin{aligned}
E_{\mathrm{NR}} & =\text { nonrelativistic energy, } \\
\left\langle B_{\mathrm{P}}\right\rangle & =\text { Pauli form of the Breit interaction, } \\
E_{\text {Dirac }} & =\text { sum of one-electron Dirac energies, } \\
\left\langle B_{\mathrm{D}}\right\rangle & =\text { relativistic Dirac form of the Breit interaction. }
\end{aligned}
$$

Two regions: $(\alpha Z)^{2}=Z^{-1}$ when $Z \approx 27$.

- For $Z<27$ start with H_{NR} and sum column-wise with relativistic corrections as a perturbation.
- For $Z>27$ start with $H_{\text {Dirac }}$ and sum row-wise with the electron-electron interaction as a peturbation.
- Unified Method: Sum the first two rows and the first two columns and subtract the terms that are counted twice.

What's New?

1. Essentially exact solutions to the quantum mechanical three- and fourbody problems.
2. Recent advances in calculating QED corrections - especially the Bethe logarithm.
3. Single atom spectroscopy.

Energy Levels and Isotope shifts

The three key parameters controlling the energy levels are

$$
\begin{aligned}
\alpha & =\text { fine structure constant } \\
\lambda & =\mu / M=m_{\mathrm{e}} /\left(m_{\mathrm{e}}+M\right) \\
\bar{r}_{\mathrm{c}} & =\text { nuclear charge radius }
\end{aligned}
$$

In terms of these parameters, the theoretical contributions to the energy levels of an atom or ion such as Be^{+}can be expanded in the form

$$
\begin{aligned}
E= & \mathcal{E}_{\mathrm{NR}}^{(0)}+\lambda \mathcal{E}_{\mathrm{NR}}^{(1)}+\lambda^{2} \mathcal{E}_{\mathrm{NR}}^{(2)}+\alpha^{2}\left(\mathcal{E}_{\mathrm{rel}}^{(0)}+\lambda \mathcal{E}_{\mathrm{rel}}^{(1)}\right) \\
& +\alpha^{3}\left(\mathcal{E}_{\mathrm{QED}}^{(0)}+\lambda \mathcal{E}_{\mathrm{QED}}^{(1)}\right)+\alpha^{4}\left(\mathcal{E}_{\mathrm{ho}}^{(0)}+\lambda \mathcal{E}_{\mathrm{ho}}^{(1)}\right) \\
& +\bar{r}_{\mathrm{c}}^{2}\left(\mathcal{E}_{\mathrm{nuc}}^{(0)}+\lambda \mathcal{E}_{\mathrm{nuc}}^{(1)}\right)+\cdots
\end{aligned}
$$

in units of $\alpha^{2} \mu c^{2}=\alpha^{2}(1-\lambda) m c^{2}$
The subscripts are:
NR = nonrelativistic energy
rel $=$ relativistic corrections
QED = quantum electrodynamic corrections ho $=$ higher order QED corrections (ho) nuc $=$ shift due to finite nuclear size.

TABLE VIII. Isotope shifts $\delta \nu^{22,23}(\mathrm{MHz})$ for $n=3$ states of Na .

NMS + SMS FS Total IS Expt.

$3 s$	1448.8	-7.5	1441.3	
$3 p_{1 / 2}$	707.9	0.3	708.2	
$3 p_{3 / 2}$	707.3	0.3	707.6	
$3 d_{3 / 2}$	391.8	0.0	391.8	
$3 d_{5 / 2}$	391.8	0.0	391.8	
$3 p_{3 / 2}-3 s$	-740.9	7.9	-733.0	$-758.5(7)^{\mathrm{a}}$
				$-756.9(1.9)^{\mathrm{b}}$
$3 p_{5 / 2}-3 s$	-741.5	7.9	-733.6	$-757.72(24)^{\mathrm{c}}$

${ }^{\text {a }}$ Pescht et al. [4].
${ }^{\mathrm{b}}$ Huber et al. [28].
${ }^{\mathrm{c}}$ Gangrsky et al. [25].
M. Safronova and W. Johnson

QED and Isotope Shifts

in Lithium and Be^{+}

Gordon W.F. Drake
University of Windsor,

Zong-Chao Yan
University of New Brunswick

Collaborators

Zheng Zhong (Ph.D. student) Qixue Wu (Ph.D. student) Atef Titi (Ph.D. student)
Roman Atanasof (M.Sc. student)
Eva Schulhof (M.Sc. student)

Financial Support: NSERC and SHARCnet
CAP Annual Congress
Quebec City, June 11, 2008.

[^0]: ${ }^{a}$ Ratio is the ratio of successive differences $[E(\Omega-1)-E(\Omega-2)] /[E(\Omega)-E(\Omega-1)]$.
 ${ }^{\mathrm{b}}$ Korobov variational bound [10].
 ${ }^{c}$ Korobov extrapolation [10].
 ${ }^{\mathrm{d}}$ Bailey and Frolov variational bound [9].
 e Yan et al variational bound [11].
 ${ }^{\mathrm{f}}$ Yan et al extrapolation [11].

[^1]: ${ }^{\text {a }}$ Ratio is the ratio of successive differences $[E(\Omega-1)-E(\Omega-2)] /[E(\Omega)-E(\Omega-1)]$.
 ${ }^{\mathrm{b}}$ Hilico et al [15].
 ${ }^{\text {c }}$ Moss variational bound [26].
 ${ }^{\text {d }}$ Taylor et al [27].

[^2]: ${ }^{\text {a }}$ Ratio is the ratio of successive differences $[E(\Omega-1)-E(\Omega-2)] /[E(\Omega)-E(\Omega-1)]$.
 ${ }^{\mathrm{b}}$ Taylor et al [27].
 ${ }^{\text {c }}$ Moss variational bound [26].
 ${ }^{\mathrm{d}}$ Yan et al extrapolation [11].

