

Measurement of the

1s2s ${}^{1}S_{0} - 1s2p {}^{3}P_{1}$ Interval in Helium-like Silicon by Fast-Beam Laser Spectroscopy

Edmund Myers, Thomas DeVore, Matthew Redshaw (Florida State), David Crosby (Oxford)

\$\$ from US-NSF and NIST

Why study mid-Z Helium-like ions?

Fundamental multi-electron atom! Only two electrons + Z/r Coulomb potential...

Test ground for *relativistic many-body theory Correlated electrons plus bound-state QED*

Why study mid-Z Helium-like ions?

Fine structure constant from He 1s2p ³P Fine structure

PRL 97, 013002 (2006)

Improved Theory of Helium Fine Structure

Krzysztof Pachucki

Institute of Theoretical Physics, Warsaw University, Hoża 69, 00-681 Warsaw, Poland (Received 22 February 2006; published 5 July 2006)

Improved theoretical predictions for the fine-structure splitting of $2^3 P_J$ levels in helium are obtained by the calculation of contributions of order α^5 Ry. New results for transition frequencies $\nu_{01} = 29616943.01(17)$ kHz and $\nu_{12} = 2291161.13(30)$ kHz disagree significantly with the experimental values, indicating an outstanding problem in bound state QED.

$2^{3}P_{0} - 2^{3}P_{1}$ Fine-	-structure in Helium
Theory:	29,616,9 <u>43.01(17)</u> Hz
Experiment:	29,616,9 <u>51.66(70)</u> Hz
\Rightarrow 0.3 ppm discrep	pancy [α (g-2) 0.37 ppb]
\mathbf{X}	

4

Fractional line width of 2³P fine structure

For α from FS to compete with *g*-2 need 1ppb precision

Theory starting points

$$H_{\text{Non-Rel}} = \frac{-\hbar^2}{2m} \left(\bar{\nabla}_1^2 + \bar{\nabla}_2^2 \right) - \frac{Ze^2}{r_1} - \frac{Ze^2}{r_2} + \frac{e^2}{r_{12}}$$

Low Z: Non-Relativistic Schrödinger Hamiltonian

$$H_{\text{Dirac}} = c\,\vec{\alpha}\cdot\vec{p} + \beta mc^2 - \frac{Ze^2}{r}$$

High Z: One-electron Dirac Hamiltonian

$$H = H_{1,\text{Dirac}} + H_{2,\text{Dirac}} + \frac{e^2}{r_{12}} + H_{\text{Breit}} \quad \text{Mid Z: Breit Hamiltonian}$$
$$H_{\text{Breit}} = -\frac{e^2}{2r_{12}} \left[\vec{\alpha}_1 \cdot \vec{\alpha}_2 + \frac{(\vec{\alpha}_1 \cdot \vec{r}_{12})(\vec{\alpha}_2 \cdot \vec{r}_{12})}{r_{12}^2} \right]$$

6

Two-electron QED corrections: Self-energy screening vacuum polarization screening

Artemyev, A.N., et al, Phys. Rev A, 71 (2005) 062104

"Recent" Theory (numerical results *n*=2)

Range of Z

"Unified Method + QED" "Schrodinger + QED"	Drake Zhang, Yan, Drake Busuttil, Drake	Can JP 1988 PRL 1996 Web 2008	2 - 100 2 - 12 2 - 18
"No-pair Breit-Dirac + QED RMBPT Johnson AOMPT Plante, RCI Chen, C Cheng, Cheng,	[,] " Johnson, Sapirstein Cheng, Johnson Chen, Johnson, Sapirste Chen	PRA 1992 PRA 1994 PRA 1993 ein PRA 1994 PRA 2000	10 - 36 3 - 100 5 - 100 4 - 92 22 - 36
"Dirac + QED" Artemyev, Shabae	v, Yerokhin, Plunien, Sof	f PRA 2005	12 -100
<i>Also</i> Mohr, Sapirstein Asen, Salomonson, Lindgre Lindgren, Salomonson, He	PRA 2000, etc n PRA 2002 " edendahl PRA 2006, etc.	'Merging MBPT w	ith QED" 8

UV and X-ray spectroscopy in emission?

Artemyev, Shabaev, Yerokhin, Plunien and Soff, PRA 71, 2005

(Theory Paper) Compares experiment and theory for 12 < Z < 100

Only one non-laser experimental result has precision to differentiate Artemyev et al from Plante et al and Chen et al.

(Z=18), where the experimental determination of the $2 {}^{3}P_{0,2}-2 {}^{3}S_{1}$ transition energies by Kukla *et al.* [84] demonstrated a 2σ deviation from the previous theoretical results. Our calculation brings the theoretical and experimental results into agreement for the $2 {}^{3}P_{0}-2 {}^{3}S_{1}$ transition and reduces the discrepancy for the $2 {}^{3}P_{2}-2 {}^{3}S_{1}$ transition to 0.5σ .

Kukla, Livingston, Suleiman, Berry, Dunford, Gemmell, Kanter, Cheng, Curtis PRA 51 1995

Why measure the 2 ${}^{1}S_{0}$ - 2 ${}^{3}P_{1}$ interval?

- In IR for Z < 40, partly allowed E1 ⇒ laser spectroscopy
 ⇒ small interval ⇒ high *absolute* precision
- S-state \Rightarrow sensitive to QED

Fast-Beam Laser Resonance Technique

Experimental Setup

(1.450 µm)

High-Finesse Power-Build-up Cavity

$$\frac{P_c}{P_0} = \frac{4T_1}{\left(A_1 + A_2 + T_1 + T_2\right)^2} \qquad T \le 50 \text{ ppm}$$

14

Previous Measurement:

VOLUME 88, NUMBER 2

PHYSICAL REVIEW LETTERS

14 JANUARY 2002

Measurement of the 1s2s ${}^{1}S_{0}$ -1s2p ${}^{3}P_{1}$ Intercombination Interval in Helium-like Silicon

M. Redshaw and E.G. Myers

Department of Physics, Florida State University, Tallahassee, Florida 32306-4350 (Received 31 August 2001; published 28 December 2001)

Using Doppler-tuned fast-beam laser spectroscopy the $1s2s {}^{1}S_{0}-1s2p {}^{3}P_{1}$ intercombination interval in ${}^{28}Si^{12+}$ has been measured to be 7230.5(2) cm⁻¹. The experiment made use of a single-frequency Nd:YAG(1.319 μ m) laser and a high-finesse optical buildup cavity. The result provides a precision test of modern relativistic and QED atomic theory.

DOI: 10.1103/PhysRevLett.88.023002

PACS numbers: 31.30.Jv, 32.30.Bv

- Single co-propagating laser at 1,319 nm
- 28 ppm precision
- Limited by uncertainty in beam velocity

Two laser Doppler-shift cancellation (c.f. $Li^+ 2 {}^{3}S_{1} - 2 {}^{3}P_{J}$ at TSR, ESR storage rings to test special relativity)

Co-propagating:
$$\omega_1' = \omega_1 \gamma_1 (1 - \beta_1 \cos \theta_1)$$

Counter-propagating: $\omega_2' = \omega_2 \gamma_2 (1 + \beta_2 \cos \theta_2)$

Doppler-shift cancellation cont...
In practice, we can easily have

$$|\beta_1 - \beta_2| < 0.0005$$
, $|\theta_1|, |\theta_2| < 0.01$
Hence, $\omega' = (\omega_1 \omega_2)^{\frac{1}{2}} \left[1 + f \left\{ \Delta p, \ \overline{p}, \ \Delta \left(\theta^2 \right) \ \overline{\theta^2} \right\} \right]^{\frac{1}{2}}$
 $f \approx \Delta p \left(1 + \frac{\Delta p}{2} - \frac{\overline{p}^2}{2} \right) - \frac{\Delta \left(\theta^2 \right)}{2} \overline{p} \left(1 + \frac{\overline{p}^2}{4} \right) + \overline{\theta^2} \left(\overline{p}^2 - \frac{\Delta p}{2} \right) + \cdots$

where, $\Delta p \equiv (\beta_2 \gamma_2 - \beta_1 \gamma_1) =$ difference in ion beam rigidity. <u>Mainly sensitive to Δp </u>

Thompson, J.K., Howie, D.J.H., and Myers, E.G., Phys. Rev. A., 57 (1998) 180

300 mW, fiber coupled, diode lasers at 1,450 nm (pumps for Raman amplifiers)

Not intended for single-frequency operation...

 \Rightarrow Use Fiber-Bragg Grating to force single mode operation Acknowledgement: David Shiner, Ali Khademian, U. North Texas

1,450 nm, ~200 mW, locked to Power BUC

Laser-induced resonances

Error Budget

Source	Uncertainty (ppm)
Statistics (fitting)	0.75
Wavemeter calibration	0.2
Line shape asymmetry	< 0.1
Ion beam divergence and misalignment	0.02
Yield dependence on velocity	< 0.03
Total	0.78

²⁸Si¹²⁺ 1s2s ${}^{1}S_{0}$ – 1s2p ${}^{3}P_{1}$ Theory and Experiment *circa 2002*

²⁸Si¹²⁺ 1s2s ${}^{1}S_{0}$ – 1s2p ${}^{3}P_{1}$ Theory and Experiment *circa 2008*

Time

²⁸Si¹²⁺ 1s2s ${}^{1}S_{0} - 1s2p {}^{3}P_{1}$ Results

This Experiment ('08) Previous Experiment ('02)	(units cm ⁻¹) 7230.585(6) x30 7230.5(2) improvement
<i>Closest Theory:</i> Plante, Johnson and Sapirstein('94) Theory – Experiment	7231.1 0.515(6) (70 ppm, 90 σ !)

Expt'l uncertainty = $2.5 \times 10^{-4} (Z\alpha)^4$ atomic units 13 ppm of QED corrections 0.25% of nuclear size correction

Status of laser spectroscopy of moderate-*Z* He-like ions

All (low n) laser spectroscopy on He-like ions

2³ P Fine Structure (units cm⁻¹)

Experiment (FSU)	N⁵+ 0-1 8.6707(7)	F ⁷⁺ 1-2 957.8730(12) (1.2 ppm)	Mg ¹⁰⁺ 0-1 833.133(15)
Zhang et al '96	8.686(20)	957.840(80)	832.335
Plante et al '94	8.73(2)	957.87(2)	833.1(2)
Chen et al '93	8.67(2)	957.85(2)	833.3(2)
σ (theory) /σ<mark>(expt)</mark>	~28	~17	~13

E.G. Myers, PSAS 2000, "Hydrogen Atom"

$2 {}^{1}S_{0} - 2 {}^{3}P_{1}$ Intercombination (units cm⁻¹)

	N ⁵⁺	Si ¹²⁺	
Experiment	986.3180(7)	<u>7230.585(</u>	<u>6)</u>
			$(Z\alpha)^4au?$
Drake '88	986.579	7251.8	some
Cheng et al '94	993.6	7264.7	most
Cheng with Drake QED	985.9	7228.9	most
Plante et al '94	984.7	7231.1	most
Artemyev et al '05		7229(2)	all

|Expt–Closest Theory| /σ(expt) ~370

~90

Laser spectroscopy of He-like ions: *Future Directions*

Low-Z: C⁴⁺
$$2^{3}S - 2^{3}P_{0,1,2}$$
 (227 nm)
 $2^{1}S - 2^{3}P_{1}$ (79 µm)

Higher-Z: Ca^{18+} 2 ${}^{3}S - 2 {}^{3}P_{0,2}$ (59 nm, 47 nm) VUV lasers: harmonic generation, mixing, fs comb ? Cooled ions in a storage ring?

Precise measurement of He-like fine structure for FS constant?

Mean lifetimes of n = 2 levels in helium-like ions

Beam velocities ~few cm/ns

 $2 {}^{3}S_{1}$ useful initial level for Z < 30

29

QED Sensitivity of 2 ${}^{3}S - 2 {}^{3}P_{0,2}$

E.G. Myers, PSAS 2000 "Hydrogen Atom"

Enforcing single-frequency operation & lasing at 1,450 nm (*Shiner, Khademian*)

Fiber-Bragg grating: narrow-band, wavelength selective reflector

Power amplification: Injection-locking

Master laser: stable, single-frequency, low power (~ 30 mW) Slave laser: less stable, similar λ , higher power (> 200 mW)

34

Why study energy levels in Helium-like ions?

Helium-like ions vs Helium

Contributions to Energy levels <u>vary with powers of Z</u> Relativistic effects: $\sim (Z\alpha)^4 mc^2$, $(Z\alpha)^6 mc^2$...

QED effects:
$$\sim \alpha \ln \left[(Z\alpha)^{-2} \right] (Z\alpha)^4 mc^2 \dots$$

Helium-like ions vs Hydrogen-like ions

- 1. No equivalent Dirac equation
- 2. QED corrections much more complicated

He-Like ions, n = 1,2

Why helium-like silicon?

Why Si¹²⁺ 1s2s ${}^{1}S_{0} - 1s2p {}^{3}P_{1}$?

- QED and relativistic effects increase with Z
- But, theory is more accurate than **all** UV, X-Ray spectroscopy!
- High absolute precision ⇒ small interval + laser spectroscopy
 Si¹²⁺ is highest Z for "precise" laser spectroscopy

Our Measurement

 $1s2s {}^{1}S_{0} - 1s2p {}^{3}P_{1}$ interval in helium-like silicon, ${}^{28}Si^{12+}$

39