

... for a brighter future

UChicago ► Argonne_{LLC}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Precision Laser Spectroscopy of Exotic Helium Isotopes

Peter Müller

Neutron Halo Nuclei ⁶He and ⁸He

Effective Model of Nuclear Interaction

Two-body potential: Argonne V18

$$H = \sum_{i} K_{i} + \sum_{i < j} v_{ij}^{\gamma} + v_{ij}^{\pi} + v_{ij}^{R}$$

EM 1- π short-range

Coupling parameters fit to NN scattering data

Problem: binding energy of most light nuclei too small

Three-body potential: *Illinois-2*

$$V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^{3\pi} + V_{ijk}^{R}$$

Coupling parameters fit to energy levels of light nuclei

Pieper & Wiringa. Ann. Rev. Nucl. Part. Sci. (2001)

Green's Function Monte Carlo Calculations

GFMC – Neutron and Proton Densities in Helium-4,6,8

Atomic Energy Levels of Helium

He energy level diagram

Atomic Isotope Shift

For $2^{3}S_{1} - 3^{3}P_{2}$ transition @ 389 nm: $\delta v = \delta v_{MS} + C_{FS} \delta < r^{2} >$ ⁶He - ⁴He : $\delta v_{6,4} = 43196.202(16)$ MHz + 1.008 ($< r^{2} >_{He4} - < r^{2} >_{He6}$) MHz/fm² ⁸He - ⁴He : $\delta v_{8,4} = 64702.519(1)$ MHz + 1.008 ($< r^{2} >_{He4} - < r^{2} >_{He8}$) MHz/fm² G.W.F. Drake, Univ. of Windsor, *Nucl. Phys. A737c, 25 (2004)*

100 kHz error in IS $\leftarrow \rightarrow \sim 1\%$ error in radius

Laser Cooling and Trapping

Technical challenges:

- Short lifetime, small samples (<10⁶ atoms/s available)
- Low metastable population efficiency (~ one in 100.000)
- Precision requirement (100 kHz = Doppler shift @ 4 cm/s)

Magneto-Optical Trap (MOT)

- Cooling: Temperature~ 1 mK,
 - \rightarrow avoid Doppler shift / width
- Long observation time: 100 ms
- Spatial confinement: trap size < 1 mm
 - \rightarrow single atom sensitivity
- Selectivity: → no isotobic / isobaric interference

Where to find ⁸He?

GANIL Caen, France

Switch & Scan

⁶He + ⁸He Sample Spectra

Isotope Shift and Field Shift : J - Dependence?

Experimental Uncertainties and Corrections

		⁶ He	⁸ He
	Photon Counting	8 kHz	32 kHz
Statistical {	Laser Alignment	2 kHz	12 kHz
	Reference Laser	2 kHz	24 kHz
Systematic {	Probing Power Shift	0 kHz	15 kHz
	Zeeman Shift	30 kHz	45 kHz
	Nuclear Mass	15 kHz	1 kHz
	TOTAL	35 kHz	63 kHz
Corrections	Recoil Effect	+110(0) kHz	+165(0) kHz
	Nuclear Polarization	-14(3) kHz	-2(1) kHz

TITAN Penning Trap @ TRIUMF, V. L. Ryjkov et al., PRL 101, 012501 (2008)

⁶He & ⁸He RMS Charge Radii

	⁶ He	⁸ He
Field Shift, MHz	-1.464(34)	-1.026(63)
RMS R _{CH} , fm	2.072(9)	1.961(16)
Total Uncertainty	0.4 %	0.9 %
- Statistical	0.1 %	0.6 %
- Trap Systematics	0.3 %	0.6 %
- Mass Systematics	0.1 %	0.0 %
- He-4: 1.681(4) fm	0.1 %	0.1 %

$$\langle r^2 \rangle_{\rm pp} = \langle r^2 \rangle_{\rm ch} - \langle R_{\rm p}^2 \rangle - \frac{3}{4M_{\rm p}^2} - \frac{N}{Z} \langle R_{\rm n}^2 \rangle$$

- $\delta_{\rm SO}$ - *MEC*

- P. Mueller *et al.*, PRL **99**, 252501 (2007)
- + V. L. Ryjkov et al., PRL **101**, 012501 (2008): He-8 mass
- + I. Sick PRC 77, 041302(R) (2008): He-4 Charge Radius
- $< R_P^2 > = 0.766(12) \text{ fm}^2$ $< R_N^2 > = -0.120(5) \text{ fm}^2$

⁶He & ⁸He RMS Point Proton and Matter Radii

Nuclear Radii, fm

RMS Charge Radii [:] ⁴He - ⁶He - ⁸He

1.681(4) fm 2.072(9) fm 1.961(16) fm

Thank You!

⁶He Collaboration

P. Mueller, L.-B. Wang, K. Bailey, J.P. Greene, D. Henderson, R.J. Holt, R. Janssens, C.L. Jiang, Z.-T. Lu, T. O'Conner, R.C. Pardo, K.E. Rehm, J.P. Schiffer, X.D. Tang - *Physics Division, Argonne National Laboratory, USA* G. W. F. Drake - *University of Windsor, Windsor, Canada*

⁸He Collaboration

P. Mueller, K. Bailey, R. J. Holt, R. V. F. Janssens, Z.-T. Lu, T. P. O'Connor, I. Sulai - Physics Division, Argonne National Laboratory, USA; M.-G. Saint Laurent, J.-Ch. Thomas, A.C.C. Villari et al.- GANIL, Caen, France G. W. F. Drake - University of Windsor, Windsor, Canada L.-B. Wang – Los Alamos National Laboratory, USA

Field (Volume) Shift

GFMC – What happens to the α -core?

AV18 + IL2 GFMC proton-proton distributions

Charge Radii of Light Isotopes by Laser Spectroscopy

NAL LABORATOP

GFMC – Binding Energy vs. Charge Radius

Gordon Drake, Phys. Scripta (1999)

E&M Probe of Nuclear Charge Distribution

$$\left(\frac{d\sigma}{d\Omega}\right)_{\exp} = \left(\frac{d\sigma}{d\Omega}\right)_{Mot} \cdot \left|F(q^2)\right|^2$$

$$F(q^2) = 1 - \frac{1}{6}q^2 < r^2 >_{charge} + \cdots$$
mean-square radius $< r^2 >= \int \rho(r) \cdot r^2 dv$
root-mean-square radius $\sqrt{< r^2 >}$

⁴He rms charge radius = 1.681(4) fm [I. Sick *PRC* 77, 041302(*R*) (2008)]

Conclusions & Outlook

Precision laser spectroscopy and atomic physics test precision nuclear structure calculations of light, neutron rich isotopes at the ~1% level

- The charge radii will improve with ...
 - new He-6/8 mass measurement in Penning trap @ TRIUMF in Dec. '07
 - Improved value for He-4 (I. Sick, priv. comm.)
- Measurement at the 0.1% level (~ 10 kHz) for He are feasible ... if warranted

⁶He & ⁸He Charge Radii

	⁶ He	⁸ He
Field Shift, MHz	-1.464(34)	-0.916(95)
RMS R _{CH} , fm	2.068(11)	1.929(26)
Total Uncertainty	0.5 %	1.3 %
- Statistical	0.1 %	0.6 %
- Trap Systematics	0.3 %	0.6 %
- Mass Systematics	0.2 %	1.0 %
- He-4: 1.676(8) fm	0.3 %	0.4 %

P. Mueller et al., PRL 99, 252501 (2007)

L.-B. Wang et al., PRL 93, 142501 (2004): 2.054(14) fm for He-6

⁶He & ⁸He Charge Radii

•He

Outline

- Neutron Halo Isotopes ^{6,8}He
- Charge Radii and Isotope Shift
- Atom Trapping of ^{6,8}He @ Argonne and GANIL
- ⁸He Larger or Smaller than ⁶He?

Hadronic Probe: Scattering of ⁶He & ⁸He Beams

E&M Probe of Nuclear Charge Distribution

$$\left(\frac{d\sigma}{d\Omega}\right)_{\exp} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left|F(q^2)\right|^2$$

$$F(q^2) = 1 - \frac{1}{6}q^2 < r^2 >_{charge} + \cdots$$

$$mean-square radius \quad < r^2 >= \int \rho(r) \cdot r^2 dv$$
root-mean-square radius $\sqrt{< r^2 >}$

⁴He rms charge radius = 1.676(8) fm [*I. Sick Phys Lett B (1982)*] Proton rms charge radius = 0.895(18) fm [*I. Sick Phys Lett B (2003)*]

June 14th Trip to Brittany

Field (Volume) Shift

Atomic Theory of Helium

Gordon W.F. Drake (Can. J. Phys 84, 83 2006)

- Non-relativistic wave functions from variational calculations
- Perturbation theory for relativistic corrections, QED, finite nuclear mass and nuclear charge radius
- QED terms "cancel" in isotope shift

Experimental confirmation

- Total transition frequency
- ⁴He Fine structure splitting
- ³He-⁴He Isotope shift + HFS
- F.S. Pavone et al., PRL 73, 42 (1994)
- P. Mueller et al., PRL 94, 133001 (2005)
- I. Sulai et al., in preparation

Atomic Isotope Shift

