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For few-body systems,
H = Ho + Hrei + Hoep + - - -

with Hy a non-relativistic Hamiltonian and some corrections.

From Rayleigh-Ritz variational principle, we have a generalized
eigenvalue problem

ig = )‘@a
Hojj = (wilHolwj),
Oj = Wilyy),

ie, we solve the eigenvalue problem for Hy first.

Hylleraas-type wave functions are always chosen to be trial
basis.



The basic integral

J(n1, N2, N3, Nig, No3, Na1; v, g, a3, (12, i3, (431)

_ n1—1 FI2—1 n371 n12—1 I72371 I73171
_/r1 ™ 137 " Iz I3 (1)

X exp(—aqr — aolf — agly — aqafia — a3l — a31/31)
X d3r1 d3r2d3r3.

The generating integral

(1, ap, a3, 12, a3, v31)
_/ exp(—aqr — asfa — aglfy — ol — 3l — (31 131) @)
rrar3rara3rag

X d3r1 d3r2d3r3.



"Generating" means that (1) can be derived from (2) by
differentiation:

J(nq, N, N3, N2, Npg, N31; iy, iz, 0, a2, 23, 031 )

~(50) (- 5) (o) (- )™ @)
x (— 3523)%( — 8531>n31 I(arq, a2, a3, 012, (123, 31)

@ Nonrelativistic case: the integers ny, no, n3, nq2, Nog and
nsy are all nonnegative.

@ Leading relativistic corrections: some of the integers are
equal to -1.

@ QED corrections, etc.



Remiddi-Pachucki-Puchalski method

Setting o, = 0, the basic integral (1) is simplified to

J(n1, o, N3, Ny2, N3, N3q; oy, g, 3)
. n—1,m—1 _mn—1 _nio—1 _noz—1 ng1—1
_/r1 R I37 N T I (4)

X exp(—a1 H — ool — a3r3)d3r1 d3r2d3r3.

Consider the following "generating” integral,

(o, a2, a3)
B / exp(—aqr — asla — agf3)
rrarsr2raafay

(%)

d3r1d3r2d3r3.

E. Remiddi (PRA,44,9(1991)) derived a closed-form formula of
the above integral
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The closed-form result for the integral (4) with ny =1, n, =1,
ns =1, N2 =2, nog = 0 and n3; = 2 was also derived in
Remiddi’s paper.



With the closed-form expression for 7(a1 , (g, ai3), ONE can
easily derive that

:/(fh,nz,ns,O,O,O):(_821)”1<_8(32)”2(_823>n3 o

x I(ay, a2, a3).

Now a series of questions arise:
@ Can it produce the expression for the general integral

J(ny, no, N3, Ny2, Nog, N31) With ny2, no3, N3¢ being arbitrary
nonnegative integers?

@ And how?




J(ny,no,n3 +1,n42, Np3, Naq)

1

= {(nzs — Vnggnid(ny — 1, n2 4+ 1,03, N2, Moz — 2, N31)
aqopos

+ (n3y — 1)n3ynpd(ny + 1, — 1, N3, Mz, a3, N31 — 2)

— (M2 — 1)manyd(ny — 1,02 — 1,3, Mz, Nog, Ngq) + -+ - }

(7)

Two other recursions for J(ny + 1, o, N, Ny, Moz, N31) and

J(n1, no + 1, n3, ny2, Nog, N31) can be obtained by symmetry.




J(0,0,0, M2 + 2, N3, n3q)
_ 1+”12{ 1 [Mg

(0,0,0,n12 + 2, np3, N3¢ — 2)

2 CM? 1+ no
+ (M2 + Nog +2n31)J(0,0,0, Mz, Moz, N31)
(31— 1)n31 ~

J(0,0,0,n12 +2,No3,N31 —2) + - -
15 ag ( 12 23, N31 — 2)

Two other recursions for J(0,0,0, ny2, N3 + 2, n31) and

J(0,0,0, nyg, noz, N34 + 2) can be obtained by symmetry.



Using the recursions given above, the boundary terms and
some other conditions, one can evaluate the integral

J(m, 2, n3, ny2, N2z, n31) analytically.

(M. Puchalski, K. Pachucki and E. Remiddi, PRA 70, 032502
(2004))

Furthermore, by introducing and developing some numerical
methods, some evaluations for relativistic corrections are
obtained.

(K. Pachucki et al, PRA 71, 032514 (2005); K. Puchalski et al,
PRA 73, 022503 (2006))




Fromm-Hill integral

An analytic expression for the generating integral (2) is given by
(D. M. Fromm and R. N. Hill, PRA 36, 3(1987))

(1,00, a3, 12, a3, 0131)

a3 . 3 3 ,
_ 18 [zuwg%gmzzvwﬁﬂ/o)} ©)

g
=1 j=0 k=0

where u(z) = Liz(z) — Liz(1/z) and
1o 1 571
v(z) =5Liz [5(1 - z)} +4n [5(1 v z)}
1 .11 1 571
with Li(z) the dilogarithm function, defined by

Lia(z) =~ [ € (1 - €)de



The quantity ¢ is the square root of a homogeneous six-degree
polynomial in the a’s:

_[22.2 2 2 2 2 2
o = [afags(af — a5 — a5 — af, + agy — agy)

2 2 2, 2 2 2 2 2
+ aga3¢(—af + a3 — a3 — afy — agz + ag)
2 2 2 2, 2, 2 2 2
+ agafa(—af — asz + a3 + afy — ag3 — ag)
1/2
200 292 2 2 0 o 2 2 2
T ajo0s + ajaqpagy + axan3ap + 04304310423}

The 7,((/) (k,j=0,1,2,3) are homogeneous third-degree
polynomials in the «’s, and ﬂ,((/) is defined by

B = 0 =)/ +4),



Caution 1;:

The functions v and v are
multiple valued,

the formula (9) holds only

if the branches of them are
chosen correctly.




Function | Branch points
In(z) 0, o0
Lig(Z) 1, oo
u(z) 0, 1, o
v(2) 1, -1, o

If the branch cut for the logarithm is taken to run from 0 to oo
along the negative real axis and the principal branch is chosen
as

In(z) =In|z| + iarg(z), —m < arg(z) <,

then the branch cuts and the principal branches for Lix(z), u(z)
and v(z) are determined.



The singularities of the expression (9) may occur at
o =0,

(v (J))Z_U =0 for k,j=0,1,2,3

and
’y,((k)+’y,(()—0 for k #0.

There are 20 cases should be considered!

@ True sigularities VS. Cancelling singularities




Luckily, the situations for singularities may be reduced to

oc=0,

—a1 4+ as +az =0,
a1 —as+ a3 =0,
a1 +az —az =0,

—a1 + a2 +azy =0,
ay —agz +az =0,

ay + a2 —agy =0,




—ag + agz + a2 =0,
ap — ap3 + a2 =0,
ap + gz — a2 =0,

and

—ag + agq +apz =0,
az —agt + a3 =0,

ag + azq — asg = 0.




Three obstacles appear when applying the closed-form formula
(9) to generate the basic integral
J(n1, N2, N3, M2, Nog, N3y iy, 2, 3, g2, 123, 31 )

@ determine the correct branches of v and v

@ remove the canceling singularities analytically

o differentiate over the o’s, especially at the canceling
singularities




The corresponding solving methods:

@ Branch tracking

@ Use some analytic techniques

@ Develop a new recursive relations for the differentials




e Branch tracking

Consider the path (1,1, 1

;1,40 0)(0 < A < 1) which runs from
SRP (1,1,1,1,1,1) to AR 1,1,0,0

A
P(1, ,0).
The correct expression for / around SRP is given by

I(1,1,1,\, A, )) =1673(1 — 3)\%)~1/2
x [v(z1(N) +3v(22(N)) + 3v(23(N))
+9v(za(N)) + Bu(z5(N))]

with the choices of the principal branches of v and v and the
square root being positive imaginary.



Over the straight-line path from A = 1 to A = 0, there are two

canceling singular points at A\ = % and A = % so the following

modified path will be used in the tracking

A
A
A = x, - —6>x> 3+,
A
A

where ¢ is a small positive real number.




After the complicated tracking, we find the correct expression of
| at ARP

I(1,1,1,0, 0, 2)
—1673(1 — 3x2)~1/2 lim {—71‘2—/7T|n [71 J_FZ 83}
+ U(21(N) + 3V(22(N) — ie) + Bu(Z5(A) + ie)

+9v(z4(N)) + 3U(Zs(>\))}

with also the choices of the principal branches of v and v, and
the square root now, changing to be positive real.




Hence the value of I(a1 , o, 3, (¥{2, (023, a31) in the
neighborhood of ARP is given by

(o1, a2, a3, 12, i3, 31)

3 1 1A 3
_ 167 {—#—mln[ 0 /U}+§ u(8 )
1_70 j=1

o  e—04




We consider the general case, which tracks from the SRP
(1 , 1 s 1 , 1 s 1 , 1) to an arbitrary one (Oz1 , i, 03, (12, (x93, (31 )Z

@ Step 1: Consider the path ((y — 1)A+1,1,1,1,1,1),
where A runs from A = 0 to A = 1 and this means we track
from (1,1,1,1,1,1) to (4, 1,1,1,1,1).

@ Step 2: Consider the path (a4, (ap — 1)A+1,1,1,1,1), ...

@ Step 6: Consider the path
(aq, o, a3, g2, o, (a1 — 1)\ + 1), which means tracking
from (a1, az, a3, aq2, a23,1) to (aq, g, a3, asz, azs, ast).



We should point out here that, using some mathematical
techniques can simplify the whole tracking process to some
extent. But it is still incredibly complicated.

For a point

(a1, 02, a3, 12, (23, (31)
—(872,78.08,34.09,12,12.788, 10.34),

the correct expression of / around this point is




l(ay,0, a3, 12, g3, az1)

ﬂ lim
o €*>04r

u(By" By -+ fe) + u(Be B6”) + (5" 55)
1 3
+ 35 v /o) + v(sP fo — i) + V(1P o + i)
j=0 k=0
+v( é Vo +ie) + v(iD Jo +ie) + V(s Jo + ie)
+v(1¥ o —ie) + v(i$P Jo + ie) + v(D Jo + ie)




—imIn

—imlIn

+imln

—imlIn

and

-1 +’y(0)/

(0)

R
1+’y(1)/ .
Oy
'1+’y(()2)/0'
L4 —7(()2)/0-
'1+'y(()3)/0-
L4 —7(()3)/(7-

+imln

+imln

+imln

—2i7rln[

(14977 /0
1=y o
14+ o
= Ao
r —i—yéz)/a'
1= o

(0)

(1)
(1)

1+’y§2)/0
1 —7:(,)2)/0

+2i7r|n[

+i7r|n[1

—i7r|n[1

1—|—7§0)/0}
1 —*yéo)/a
1+7§1)/0}

—7;(;1)/0

Jrvéz)/a}

~v /o

| - =},

1(872,78.08,34.09,12,12.788,10.34)
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I(1,1,1, A, \, )

0.05

3.63236729624140 x 102

0.15

2.59682121353657 x 107

0.25

1.93536770465417 x 102

0.45

1.17605235633348 x 102

0.70

7.08583266363307 x 10

0.95

4.65491345483885 x 10

1.00

4.31360835924724 x 10




The future(ongoing) work

@ To calculate
J(ny, Np, N3, N2, Nog, Na3q; aiq, i, 3, 2, 23, 31 )

@ The relativistic and QED corrections

@ The five-body problems
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