On Fromm-Hill integral

Chun Li and Zong-Chao Yan

University of New Brunswick Canada

University of Windsor, PSAS 2008

Outline

- Motivation
- Remiddi-Pachucki-Puchalski method
- The closed form derived by Fromm and Hill
- The future work

Motivation

For few-body systems,

$$H = H_0 + H_{rel} + H_{QED} + \cdots$$

with H_0 a non-relativistic Hamiltonian and some corrections.

From Rayleigh-Ritz variational principle, we have a generalized eigenvalue problem

$$\begin{aligned} & \underline{H_0 c} = \lambda \underline{O c}, \\ & \overline{H_{0ij}} = \langle \psi_i | H_0 | \psi_j \rangle, \\ & O_{ij} = \langle \psi_i | \psi_j \rangle, \end{aligned}$$

ie, we solve the eigenvalue problem for H_0 first.

Hylleraas-type wave functions are always chosen to be trial basis.

The basic integral

$$J(n_{1}, n_{2}, n_{3}, n_{12}, n_{23}, n_{31}; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{12}, \alpha_{23}, \alpha_{31})$$

$$= \int r_{1}^{n_{1}-1} r_{2}^{n_{2}-1} r_{3}^{n_{3}-1} r_{12}^{n_{12}-1} r_{23}^{n_{23}-1} r_{31}^{n_{31}-1}$$

$$\times \exp(-\alpha_{1} r_{1} - \alpha_{2} r_{2} - \alpha_{3} r_{3} - \alpha_{12} r_{12} - \alpha_{23} r_{23} - \alpha_{31} r_{31})$$

$$\times d^{3} \mathbf{r}_{1} d^{3} \mathbf{r}_{2} d^{3} \mathbf{r}_{3}.$$
(1)

The generating integral

$$I(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{12}, \alpha_{23}, \alpha_{31}) = \int \frac{\exp(-\alpha_{1}r_{1} - \alpha_{2}r_{2} - \alpha_{3}r_{3} - \alpha_{12}r_{12} - \alpha_{23}r_{23} - \alpha_{31}r_{31})}{r_{1}r_{2}r_{3}r_{12}r_{23}r_{31}} (2) \times d^{3}\mathbf{r}_{1}d^{3}\mathbf{r}_{2}d^{3}\mathbf{r}_{3}.$$

"Generating" means that (1) can be derived from (2) by differentiation:

$$J(n_{1}, n_{2}, n_{3}, n_{12}, n_{23}, n_{31}; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{12}, \alpha_{23}, \alpha_{31})$$

$$= \left(-\frac{\partial}{\partial \alpha_{1}}\right)^{n_{1}} \left(-\frac{\partial}{\partial \alpha_{2}}\right)^{n_{2}} \left(-\frac{\partial}{\partial \alpha_{3}}\right)^{n_{3}} \left(-\frac{\partial}{\partial \alpha_{12}}\right)^{n_{12}}$$

$$\times \left(-\frac{\partial}{\partial \alpha_{23}}\right)^{n_{23}} \left(-\frac{\partial}{\partial \alpha_{31}}\right)^{n_{31}} I(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{12}, \alpha_{23}, \alpha_{31})$$
(3)

- Nonrelativistic case: the integers n₁, n₂, n₃, n₁₂, n₂₃ and n₃₁ are all nonnegative.
- Leading relativistic corrections: some of the integers are equal to -1.
- QED corrections, etc.

Remiddi-Pachucki-Puchalski method

Setting $\alpha_{\mu\nu}=$ 0, the basic integral (1) is simplified to

$$\tilde{J}(n_{1}, n_{2}, n_{3}, n_{12}, n_{23}, n_{31}; \alpha_{1}, \alpha_{2}, \alpha_{3})
= \int r_{1}^{n_{1}-1} r_{2}^{n_{2}-1} r_{3}^{n_{3}-1} r_{12}^{n_{12}-1} r_{23}^{n_{23}-1} r_{31}^{n_{31}-1}
\times \exp(-\alpha_{1} r_{1} - \alpha_{2} r_{2} - \alpha_{3} r_{3}) d^{3} \mathbf{r}_{1} d^{3} \mathbf{r}_{2} d^{3} \mathbf{r}_{3}.$$
(4)

Consider the following "generating" integral,

$$\tilde{I}(\alpha_{1}, \alpha_{2}, \alpha_{3}) = \int \frac{\exp(-\alpha_{1}r_{1} - \alpha_{2}r_{2} - \alpha_{3}r_{3})}{r_{1}r_{2}r_{3}r_{12}r_{23}r_{31}} d^{3}\mathbf{r}_{1}d^{3}\mathbf{r}_{2}d^{3}\mathbf{r}_{3}.$$
(5)

E. Remiddi (PRA,**44**,9(1991)) derived a closed-form formula of the above integral

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ②

$$\begin{split} &\tilde{\textit{I}}(\alpha_{1},\alpha_{2},\alpha_{3}) \\ &= \frac{32\pi^{3}}{\alpha_{1}\alpha_{2}\alpha_{3}} \bigg\{ \ln \big[\frac{\alpha_{1} + \alpha_{2}}{\alpha_{3}} \big] \ln \big[\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{\alpha_{1} + \alpha_{2}} \big] - \text{Li}_{2} \big[- \frac{\alpha_{3}}{\alpha_{1} + \alpha_{2}} \big] \\ &- \text{Li}_{2} \Big[1 - \frac{\alpha_{3}}{\alpha_{1} + \alpha_{2}} \Big] + \ln \big[\frac{\alpha_{3} + \alpha_{1}}{\alpha_{2}} \big] \ln \big[\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{\alpha_{3} + \alpha_{1}} \big] \\ &- \text{Li}_{2} \Big[- \frac{\alpha_{2}}{\alpha_{3} + \alpha_{1}} \Big] - \text{Li}_{2} \Big[1 - \frac{\alpha_{2}}{\alpha_{3} + \alpha_{3}} \Big] \\ &+ \ln \big[\frac{\alpha_{2} + \alpha_{3}}{\alpha_{1}} \big] \ln \big[\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{\alpha_{2} + \alpha_{3}} \big] \\ &- \text{Li}_{2} \Big[- \frac{\alpha_{1}}{\alpha_{2} + \alpha_{3}} \Big] - \text{Li}_{2} \Big[1 - \frac{\alpha_{1}}{\alpha_{2} + \alpha_{3}} \Big] \bigg\}. \end{split}$$

The closed-form result for the integral (4) with $n_1 = 1$, $n_2 = 1$, $n_3 = 1$, $n_{12} = 2$, $n_{23} = 0$ and $n_{31} = 2$ was also derived in Remiddi's paper.

With the closed-form expression for $\tilde{I}(\alpha_1, \alpha_2, \alpha_3)$, one can easily derive that

$$\tilde{J}(n_1, n_2, n_3, 0, 0, 0) = \left(-\frac{\partial}{\partial \alpha_1}\right)^{n_1} \left(-\frac{\partial}{\partial \alpha_2}\right)^{n_2} \left(-\frac{\partial}{\partial \alpha_3}\right)^{n_3} \times \tilde{I}(\alpha_1, \alpha_2, \alpha_3).$$
(6)

Now a series of questions arise:

- Can it produce the expression for the general integral $\tilde{J}(n_1, n_2, n_3, n_{12}, n_{23}, n_{31})$ with n_{12}, n_{23}, n_{31} being arbitrary nonnegative integers?
- And how?

$$\tilde{J}(n_{1}, n_{2}, n_{3} + 1, n_{12}, n_{23}, n_{31})
= \frac{1}{\alpha_{1}\alpha_{2}\alpha_{3}} \left\{ (n_{23} - 1)n_{23}n_{1}\tilde{J}(n_{1} - 1, n_{2} + 1, n_{3}, n_{12}, n_{23} - 2, n_{31})
+ (n_{31} - 1)n_{31}n_{2}\tilde{J}(n_{1} + 1, n_{2} - 1, n_{3}, n_{12}, n_{23}, n_{31} - 2)
- (n_{12} - 1)n_{12}n_{1}\tilde{J}(n_{1} - 1, n_{2} - 1, n_{3}, n_{12}, n_{23}, n_{31}) + \cdots \right\}.$$
(7)

Two other recursions for $\tilde{J}(n_1 + 1, n_2, n_3, n_{12}, n_{23}, n_{31})$ and $\tilde{J}(n_1, n_2 + 1, n_3, n_{12}, n_{23}, n_{31})$ can be obtained by symmetry.

$$\tilde{J}(0,0,0,n_{12}+2,n_{23},n_{31}) = \frac{1+n_{12}}{2} \left\{ \frac{1}{\alpha_1^2} \left[\frac{(n_{31}-1)n_{31}}{1+n_{12}} \tilde{J}(0,0,0,n_{12}+2,n_{23},n_{31}-2) \right. \right. \\
\left. + (n_{12}+n_{23}+2n_{31}) \tilde{J}(0,0,0,n_{12},n_{23},n_{31}) \right. \\
\left. + \frac{(n_{31}-1)n_{31}}{1+n_{23}} \tilde{J}(0,0,0,n_{12}+2,n_{23},n_{31}-2) + \cdots \right] \\
\left. + \frac{1}{\alpha_2^2} \left[\cdots \right] - \frac{\alpha_3^2}{\alpha_1^2 \alpha_2^2} \left[\cdots \right] \right\}.$$
(8)

Two other recursions for $\tilde{J}(0,0,0,n_{12},n_{23}+2,n_{31})$ and $\tilde{J}(0,0,0,n_{12},n_{23},n_{31}+2)$ can be obtained by symmetry.

Using the recursions given above, the boundary terms and some other conditions, one can evaluate the integral $\tilde{J}(n_1, n_2, n_3, n_{12}, n_{23}, n_{31})$ analytically.

(M. Puchalski, K. Pachucki and E. Remiddi, PRA **70**, 032502 (2004))

Furthermore, by introducing and developing some numerical methods, some evaluations for relativistic corrections are obtained.

(K. Pachucki et al, PRA **71**, 032514 (2005); K. Puchalski et al, PRA **73**, 022503 (2006))

Fromm-Hill integral

An analytic expression for the generating integral (2) is given by (D. M. Fromm and R. N. Hill, PRA **36**, 3(1987))

$$I(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{12},\alpha_{23},\alpha_{31}) = \frac{16\pi^{3}}{\sigma} \left[\sum_{j=1}^{3} u(\beta_{0}^{(0)}\beta_{0}^{(j)}) + \sum_{j=0}^{3} \sum_{k=0}^{3} v(\gamma_{k}^{(j)}/\sigma) \right],$$
(9)

where $u(z) = \operatorname{Li}_2(z) - \operatorname{Li}_2(1/z)$ and

$$v(z) = \frac{1}{2} \text{Li}_2 \left[\frac{1}{2} (1 - z) \right] + \frac{1}{4} \ln^2 \left[\frac{1}{2} (1 + z) \right]$$
$$- \frac{1}{2} \text{Li}_2 \left[\frac{1}{2} (1 + z) \right] - \frac{1}{4} \ln^2 \left[\frac{1}{2} (1 - z) \right]$$

with $Li_2(z)$ the dilogarithm function, defined by

$$\text{Li}_2(z) = -\int_0^z \xi^{-1} \ln(1-\xi) d\xi.$$

The quantity σ is the square root of a homogeneous six-degree polynomial in the α 's:

$$\begin{split} \sigma &= \left[\alpha_1^2 \alpha_{23}^2 (\alpha_1^2 - \alpha_2^2 - \alpha_3^2 - \alpha_{12}^2 + \alpha_{23}^2 - \alpha_{31}^2) \right. \\ &+ \alpha_2^2 \alpha_{31}^2 (-\alpha_1^2 + \alpha_2^2 - \alpha_3^2 - \alpha_{12}^2 - \alpha_{23}^2 + \alpha_{31}^2) \\ &+ \alpha_3^2 \alpha_{12}^2 (-\alpha_1^2 - \alpha_2^2 + \alpha_3^2 + \alpha_{12}^2 - \alpha_{23}^2 - \alpha_{31}^2) \\ &+ \alpha_1^2 \alpha_2^2 \alpha_3^2 + \alpha_1^2 \alpha_{12}^2 \alpha_{31}^2 + \alpha_2^2 \alpha_{23}^2 \alpha_{12}^2 + \alpha_3^2 \alpha_{31}^2 \alpha_{23}^2 \right]^{1/2}. \end{split}$$

The $\gamma_k^{(j)}$ (k, j = 0, 1, 2, 3) are homogeneous third-degree polynomials in the α 's, and $\beta_k^{(j)}$ is defined by

$$\beta_k^{(j)} = (\sigma - \gamma_k^{(j)})/(\sigma + \gamma_k^{(j)}).$$

Caution 1:

The functions *u* and *v* are multiple valued, the formula (9) holds only if the branches of them are chosen correctly.

Function	Branch points	
In(z)	0, ∞	
Li ₂ (z)	1, ∞	
u(z)	0, 1, ∞	
V(Z)	1, −1, ∞	

If the branch cut for the logarithm is taken to run from 0 to ∞ along the negative real axis and the principal branch is chosen as

$$ln(z) = ln |z| + i arg(z), \qquad -\pi < arg(z) < \pi,$$

then the branch cuts and the principal branches for $\text{Li}_2(z)$, u(z) and v(z) are determined.

The singularities of the expression (9) may occur at

$$\sigma=0,$$

$$(\gamma_k^{(j)})^2-\sigma^2=0 \quad \text{for} \quad k,j=0,1,2,3$$

$$\gamma_k^{(k)}+\gamma_k^{(0)}=0 \quad \text{for} \quad k\neq 0.$$

There are 20 cases should be considered!

and

True sigularities
 VS. Cancelling singularities

Luckily, the situations for singularities may be reduced to

$$\sigma = 0,$$

$$\begin{cases}
-\alpha_1 + \alpha_2 + \alpha_3 = 0, \\
\alpha_1 - \alpha_2 + \alpha_3 = 0, \\
\alpha_1 + \alpha_2 - \alpha_3 = 0,
\end{cases}$$

$$\begin{cases}
-\alpha_1 + \alpha_{12} + \alpha_{31} = 0, \\
\alpha_1 - \alpha_{12} + \alpha_{31} = 0, \\
\alpha_1 + \alpha_{12} - \alpha_{21} = 0.
\end{cases}$$

$$\begin{cases} -\alpha_2 + \alpha_{23} + \alpha_{12} = 0, \\ \alpha_2 - \alpha_{23} + \alpha_{12} = 0, \\ \alpha_2 + \alpha_{23} - \alpha_{12} = 0, \end{cases}$$

and

$$\begin{cases} -\alpha_3 + \alpha_{31} + \alpha_{23} = 0, \\ \alpha_3 - \alpha_{31} + \alpha_{23} = 0, \\ \alpha_3 + \alpha_{31} - \alpha_{23} = 0. \end{cases}$$

Three obstacles appear when applying the closed-form formula (9) to generate the basic integral $J(n_1, n_2, n_3, n_{12}, n_{23}, n_{31}; \alpha_1, \alpha_2, \alpha_3, \alpha_{12}, \alpha_{23}, \alpha_{31})$:

- determine the correct branches of u and v
- remove the canceling singularities analytically
- differentiate over the α 's, especially at the canceling singularities

The corresponding solving methods:

- Branch tracking
- Use some analytic techniques
- Develop a new recursive relations for the differentials

Branch tracking

Consider the path $(1, 1, 1, \lambda, \lambda, \lambda)(0 \le \lambda \le 1)$ which runs from SRP (1, 1, 1, 1, 1, 1) to ARP (1, 1, 1, 0, 0, 0).

The correct expression for *I* around SRP is given by

$$I(1, 1, 1, \lambda, \lambda, \lambda) = 16\pi^{3}(1 - 3\lambda^{2})^{-1/2} \times \left[v(z_{1}(\lambda)) + 3v(z_{2}(\lambda)) + 3v(z_{3}(\lambda)) + 9v(z_{4}(\lambda)) + 3u(z_{5}(\lambda))\right]$$

with the choices of the principal branches of u and v and the square root being positive imaginary.

Over the straight-line path from $\lambda=1$ to $\lambda=0$, there are two canceling singular points at $\lambda=\frac{1}{\sqrt{3}}$ and $\lambda=\frac{1}{2}$, so the following modified path will be used in the tracking

$$\lambda = x, 1 \ge x \ge \frac{1}{\sqrt{3}} + \delta,$$

$$\lambda = \frac{1}{\sqrt{3}} + \delta e^{i\theta}, -\pi \le \theta \le 0,$$

$$\lambda = x, \frac{1}{\sqrt{3}} - \delta \ge x \ge \frac{1}{2} + \delta,$$

$$\lambda = \frac{1}{2} + \delta e^{i\theta}, -\pi \le \theta \le 0,$$

$$\lambda = x, \frac{1}{2} - \delta \ge x \ge 0,$$

where δ is a small positive real number.

After the complicated tracking, we find the correct expression of *I* at ARP

$$I(1, 1, 1, \lambda, \lambda, \lambda)$$

$$= 16\pi^{3}(1 - 3\lambda^{2})^{-1/2} \lim_{\epsilon \to 0_{+}} \left\{ -\pi^{2} - i\pi \ln \left[\frac{1 + z_{1}(\lambda)}{1 - z_{1}(\lambda)} \right] + v(z_{1}(\lambda)) + 3v(z_{2}(\lambda) - i\epsilon) + 3v(z_{3}(\lambda) + i\epsilon) + 9v(z_{4}(\lambda)) + 3u(z_{5}(\lambda)) \right\}$$

with also the choices of the principal branches of u and v, and the square root now, changing to be positive real.

Hence the value of $I(\alpha_1, \alpha_2, \alpha_3, \alpha_{12}, \alpha_{23}, \alpha_{31})$ in the neighborhood of ARP is given by

$$\begin{split} I(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{12}, \alpha_{23}, \alpha_{31}) \\ &= \frac{16\pi^{3}}{\sigma} \lim_{\epsilon \to 0_{+}} \left\{ -\pi^{2} - i\pi \ln \left[\frac{1 + \gamma_{0}^{(0)}/\sigma}{1 - \gamma_{0}^{(0)}/\sigma} \right] + \sum_{j=1}^{3} u(\beta_{0}^{(0)}\beta_{0}^{(j)}) \right. \\ &+ v(\gamma_{0}^{(0)}/\sigma) + \sum_{j=1}^{3} v(\gamma_{j}^{(j)}/\sigma - i\epsilon) + \sum_{j=1}^{3} v(\gamma_{0}^{(j)}/\sigma + i\epsilon) \\ &+ \sum_{j=0}^{3} \sum_{\substack{k=1 \\ k \neq j}}^{3} v(\gamma_{k}^{(j)}/\sigma) \right\}. \end{split}$$

We consider the general case, which tracks from the SRP (1,1,1,1,1) to an arbitrary one $(\alpha_1,\alpha_2,\alpha_3,\alpha_{12},\alpha_{23},\alpha_{31})$:

- Step 1: Consider the path $((\alpha_1 1)\lambda + 1, 1, 1, 1, 1, 1)$, where λ runs from $\lambda = 0$ to $\lambda = 1$ and this means we track from (1, 1, 1, 1, 1, 1) to $(\alpha_1, 1, 1, 1, 1, 1)$.
- Step 2: Consider the path $(\alpha_1, (\alpha_2 1)\lambda + 1, 1, 1, 1, 1), ...$

:

• Step 6: Consider the path $(\alpha_1, \alpha_2, \alpha_3, \alpha_{12}, \alpha_{23}, (\alpha_{31} - 1)\lambda + 1)$, which means tracking from $(\alpha_1, \alpha_2, \alpha_3, \alpha_{12}, \alpha_{23}, 1)$ to $(\alpha_1, \alpha_2, \alpha_3, \alpha_{12}, \alpha_{23}, \alpha_{31})$.

We should point out here that, using some mathematical techniques can simplify the whole tracking process to some extent. But it is still incredibly complicated.

For a point

$$(\alpha_1, \alpha_2, \alpha_3, \alpha_{12}, \alpha_{23}, \alpha_{31})$$

=(872, 78.08, 34.09, 12, 12.788, 10.34),

the correct expression of I around this point is

$$\begin{split} I(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{12},\alpha_{23},\alpha_{31}) \\ &= \frac{16\pi^{3}}{\sigma}\lim_{\epsilon \to 0_{+}} \left\{ \\ u(\beta_{0}^{(0)}\beta_{0}^{(1)} + i\epsilon) + u(\beta_{0}^{(0)}\beta_{0}^{(2)}) + u(\beta_{0}^{(0)}\beta_{0}^{(3)}) \\ &+ \sum_{j=0}^{1}\sum_{k=0}^{3} v(\gamma_{k}^{(j)}/\sigma) + v(\gamma_{0}^{(2)}/\sigma - i\epsilon) + v(\gamma_{1}^{(2)}/\sigma + i\epsilon) \\ &+ v(\gamma_{2}^{(2)}/\sigma + i\epsilon) + v(\gamma_{3}^{(2)}/\sigma + i\epsilon) + v(\gamma_{0}^{(3)}/\sigma + i\epsilon) \\ &+ v(\gamma_{1}^{(3)}/\sigma - i\epsilon) + v(\gamma_{2}^{(3)}/\sigma + i\epsilon) + v(\gamma_{3}^{(3)}/\sigma + i\epsilon) \end{split}$$

$$\begin{split} -i\pi \ln \left[\frac{1+\gamma_0^{(0)}/\sigma}{1-\gamma_0^{(0)}/\sigma} \right] + i\pi \ln \left[\frac{1+\gamma_1^{(0)}/\sigma}{1-\gamma_1^{(0)}/\sigma} \right] + 2i\pi \ln \left[\frac{1+\gamma_2^{(0)}/\sigma}{1-\gamma_2^{(0)}/\sigma} \right] \\ -i\pi \ln \left[\frac{1+\gamma_0^{(1)}/\sigma}{1-\gamma_0^{(1)}/\sigma} \right] + i\pi \ln \left[\frac{1+\gamma_2^{(1)}/\sigma}{1-\gamma_2^{(1)}/\sigma} \right] + i\pi \ln \left[\frac{1+\gamma_3^{(1)}/\sigma}{1-\gamma_3^{(1)}/\sigma} \right] \\ + i\pi \ln \left[\frac{1+\gamma_0^{(2)}/\sigma}{1-\gamma_0^{(2)}/\sigma} \right] + i\pi \ln \left[\frac{1+\gamma_2^{(2)}/\sigma}{1-\gamma_2^{(2)}/\sigma} \right] - i\pi \ln \left[\frac{1+\gamma_3^{(2)}/\sigma}{1-\gamma_3^{(2)}/\sigma} \right] \\ - i\pi \ln \left[\frac{1+\gamma_0^{(3)}/\sigma}{1-\gamma_0^{(3)}/\sigma} \right] - 2i\pi \ln \left[\frac{1+\gamma_3^{(2)}/\sigma}{1-\gamma_3^{(2)}/\sigma} \right] - \pi^2 \bigg\}, \end{split}$$

and

$$I(872, 78.08, 34.09, 12, 12.788, 10.34)$$

= $5.272897938711298 \times 10^{-4}$.

λ	$I(1,1,1,\lambda,\lambda,\lambda)$
0.05	$3.63236729624140 \times 10^2$
0.15	$2.59682121353657 \times 10^{2}$
0.25	$1.93536770465417 \times 10^{2}$
0.45	$1.17605235633348 \times 10^{2}$
0.70	7.08583266363307 × 10
0.95	$4.65491345483885 \times 10$
1.00	4.31360835924724 × 10

The future(ongoing) work

• To calculate $J(n_1, n_2, n_3, n_{12}, n_{23}, n_{31}; \alpha_1, \alpha_2, \alpha_3, \alpha_{12}, \alpha_{23}, \alpha_{31})$

The relativistic and QED corrections

The five-body problems

THANK YOU SO MUCH FOR YOUR ATTENTION!