Progress in Calculation of Three-Loop Radiative-Recoil Corrections to HFS in Muonium

Michael Eides ¹ and Valery Shelyuto ²

¹Department of Physics and Astronomy, University of Kentucky, USA

²D. I. Mendeleev Institute of Metrology, St.Petersburg, Russia

July 23, 2008

Outline

Hyperfine Splitting in Muonium Three-Loop Radiative Recoil Corrections Single-Logarithm and Nonlogarithmic Contributions Conclusions

Hyperfine Splitting in Muonium

Three-Loop Radiative Recoil Corrections

Single-Logarithm and Nonlogarithmic Contributions Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Conclusions

(D) (**(**) + (**() + () + ((**

Experiment and Theory

Experiment and Theory

Experiment (Liu et al, 1999):

Experiment and Theory

Experiment (Liu et al, 1999):

$\Delta E_{HFS}^{ex}(Mu) = 4\ 463\ 302.776\ (51)\ kHz$

Experiment and Theory

Experiment (Liu et al, 1999):

$\Delta E_{HFS}^{ex}(Mu) = 4\ 463\ 302.776\ (51)\ kHz$

Experiment and Theory

Experiment (Liu et al, 1999):

$\Delta E_{HFS}^{ex}(Mu) = 4 463 302.776 (51) \text{ kHz}$

Theory:

Eides, Shelyuto RadRec Corrections to HFS

Experiment and Theory

Experiment (Liu et al, 1999):

$\Delta E_{HFS}^{ex}(Mu) = 4 \ 463 \ 302.776 \ (51) \ \text{kHz}$

Theory:

$\Delta E_{HFS}^{th}(Mu) = 4\ 463\ 302.904\ (518)\ (30)\ (70)\ kHz$

Experiment and Theory

Experiment (Liu et al, 1999):

 $\Delta E_{HFS}^{ex}(Mu) = 4 \ 463 \ 302.776 \ (51) \ \text{kHz}$

Theory:

 $\Delta E_{HFS}^{th}(Mu) = 4\ 463\ 302.904\ (518)\ (30)\ (70)\ kHz$

▶ 1st error is due to experimental error m_e/m_μ

Experiment and Theory

Experiment (Liu et al, 1999):

 $\Delta E_{HFS}^{ex}(Mu) = 4 \ 463 \ 302.776 \ (51) \ \text{kHz}$

Theory:

 $\Delta E_{HFS}^{th}(Mu) = 4\ 463\ 302.904\ (518)\ (30)\ (70)\ kHz$

- ▶ 1st error is due to experimental error m_e/m_μ
- 2nd error is due to error of α

Experiment and Theory

Experiment (Liu et al, 1999):

 $\Delta E_{HFS}^{ex}(Mu) = 4 \ 463 \ 302.776 \ (51) \ \text{kHz}$

Theory:

 $\Delta E_{HFS}^{th}(Mu) = 4\ 463\ 302.904\ (518)\ (30)\ (70)\ kHz$

- ▶ 1st error is due to experimental error m_e/m_μ
- 2nd error is due to error of α
- 3d error is due to HFS theory

(D) (A) (A) (A)

Experiment and Theory

Experiment (Liu et al, 1999):

 $\Delta E_{HFS}^{ex}(Mu) = 4 \ 463 \ 302.776 \ (51) \ \text{kHz}$

Theory:

 $\Delta E_{HFS}^{th}(Mu) = 4\ 463\ 302.904\ (518)\ (30)\ (70)\ kHz$

- ▶ 1st error is due to experimental error m_e/m_μ
- 2nd error is due to error of α
- 3d error is due to HFS theory

(D) (A) (A) (A)

Need for Better Theory

Ξ

Need for Better Theory

Eides, Shelyuto RadRec Corrections to HFS

・ロット () ・ ・ ビット ビット

Need for Better Theory

 $\frac{m_{\mu}}{m_{e}}$ from HFS:

$$\frac{m_{\mu}}{m_{e}} = 206.768\ 282\ 9\ (23)\ (14)\ (32)$$

(D) (0) (2) (2) (2)

Ξ

Need for Better Theory

 $\frac{m_{\mu}}{m_{e}}$ from HFS:

$$\frac{m_{\mu}}{m_{e}} = 206.768\ 282\ 9\ (23)\ (14)\ (32)$$

1st error is due to HFS experimental error

4 (1) + 4 (2) (2) + 4 (2) +

Need for Better Theory

 $\frac{m_{\mu}}{m_{e}}$ from HFS:

$$\frac{m_{\mu}}{m_{e}} = 206.768\ 282\ 9\ (23)\ (14)\ (32)$$

- 1st error is due to HFS experimental error
- 2nd error is due to error of α

Need for Better Theory

 $\frac{m_{\mu}}{m_{e}}$ from HFS:

$$\frac{m_{\mu}}{m_{e}} = 206.768\ 282\ 9\ (23)\ (14)\ (32)$$

- 1st error is due to HFS experimental error
- 2nd error is due to error of α
- 3d error is due to uncertainty of HFS theory

4 **D** + 4**D** + 4 **D** + 4 **D** + 4

Need for Better Theory

 $\frac{m_{\mu}}{m_{e}}$ from HFS:

$$\frac{m_{\mu}}{m_{e}} = 206.768\ 282\ 9\ (23)\ (14)\ (32)$$

- 1st error is due to HFS experimental error
- 2nd error is due to error of α
- 3d error is due to uncertainty of HFS theory

4 **D** + 4**D** + 4 **D** + 4 **D** + 4

Need for Better Theory

 $\frac{m_{\mu}}{m_{e}}$ from HFS:

$$\frac{m_{\mu}}{m_{e}} = 206.768\ 282\ 9\ (23)\ (14)\ (32)$$

- 1st error is due to HFS experimental error
- 2nd error is due to error of α
- 3d error is due to uncertainty of HFS theory

All corrections of order 1-10 Hz should be calculated

Need for Better Theory

 $\frac{m_{\mu}}{m_{e}}$ from HFS:

$$\frac{m_{\mu}}{m_{e}} = 206.768\ 282\ 9\ (23)\ (14)\ (32)$$

- 1st error is due to HFS experimental error
- 2nd error is due to error of α
- 3d error is due to uncertainty of HFS theory

All corrections of order 1-10 Hz should be calculated Largest Unknown Contributions

Need for Better Theory

 $\frac{m_{\mu}}{m_{e}}$ from HFS:

$$\frac{m_{\mu}}{m_{e}} = 206.768\ 282\ 9\ (23)\ (14)\ (32)$$

- 1st error is due to HFS experimental error
- 2nd error is due to error of α
- 3d error is due to uncertainty of HFS theory

All corrections of order 1-10 Hz should be calculated Largest Unknown Contributions

 Single-logarithmic and nonlogarithmic radiative-recoil corrections of order α²(Zα)(m/M)Ẽ_F

Need for Better Theory

 $\frac{m_{\mu}}{m_{e}}$ from HFS:

$$\frac{m_{\mu}}{m_{e}} = 206.768\ 282\ 9\ (23)\ (14)\ (32)$$

- 1st error is due to HFS experimental error
- 2nd error is due to error of α
- 3d error is due to uncertainty of HFS theory

All corrections of order 1-10 Hz should be calculated Largest Unknown Contributions

- Single-logarithmic and nonlogarithmic radiative-recoil corrections of order α²(Zα)(m/M)Ẽ_F
- Nonlogarithmic contributions of order (Zα)³(m/M)E_F

(D) (A) (A) (A)

Need for Better Theory

 $\frac{m_{\mu}}{m_e}$ from HFS:

$$\frac{m_{\mu}}{m_{e}} = 206.768\ 282\ 9\ (23)\ (14)\ (32)$$

- 1st error is due to HFS experimental error
- 2nd error is due to error of α
- 3d error is due to uncertainty of HFS theory

All corrections of order 1-10 Hz should be calculated Largest Unknown Contributions

- Single-logarithmic and nonlogarithmic radiative-recoil corrections of order α²(Zα)(m/M)Ẽ_F
- Nonlogarithmic contributions of order (Zα)³(m/M)E_F
- Nonlogarithmic contributions of order α(Zα)²(m/M)E_F

Need for Better Theory

 $\frac{m_{\mu}}{m_e}$ from HFS:

$$\frac{m_{\mu}}{m_{e}} = 206.768\ 282\ 9\ (23)\ (14)\ (32)$$

- 1st error is due to HFS experimental error
- 2nd error is due to error of α
- 3d error is due to uncertainty of HFS theory

All corrections of order 1-10 Hz should be calculated Largest Unknown Contributions

- Single-logarithmic and nonlogarithmic radiative-recoil corrections of order α²(Zα)(m/M)Ẽ_F
- Nonlogarithmic contributions of order (Zα)³(m/M)E_F
- Nonlogarithmic contributions of order α(Zα)²(m/M)E_F

Logarithmic Enhancement

• □ • • ○
• □ • • ○

Ξ

Logarithmic Enhancement

Radiative-recoil corrections of order $\alpha^3(m/M)E_F$ are logarithmically enhanced

4 (1) + 4 (2) (2) + 4 (2) +

Logarithmic Enhancement

Radiative-recoil corrections of order $\alpha^3(m/M)E_F$ are logarithmically enhanced

$$\left(c_1 \ln^3 \frac{M}{m} + c_1 \ln^2 \frac{M}{m} + c_3 \ln \frac{M}{m} + c_4\right) \frac{\alpha^2(Z\alpha)}{\pi^3} E_F$$

4 (1) + 4 (2) (2) + 4 (2) +

Logarithmic Enhancement

Radiative-recoil corrections of order $\alpha^3(m/M)E_F$ are logarithmically enhanced

$$\left(c_1 \ln^3 \frac{M}{m} + c_1 \ln^2 \frac{M}{m} + c_3 \ln \frac{M}{m} + c_4\right) \frac{\alpha^2(Z\alpha)}{\pi^3} E_F$$

Log cube term is the easiest

$$\Delta E = \left(-\frac{4}{3}\ln^3\frac{M}{m}\right)\frac{\alpha^2(Z\alpha)}{\pi^3}\frac{m}{M}E_F$$

(D) (A) (C) (C)

Logarithmic Enhancement

Radiative-recoil corrections of order $\alpha^3(m/M)E_F$ are logarithmically enhanced

$$\left(c_1\ln^3\frac{M}{m}+c_1\ln^2\frac{M}{m}+c_3\ln\frac{M}{m}+c_4\right)\frac{\alpha^2(Z\alpha)}{\pi^3}E_F$$

Log cube term is the easiest

$$\Delta E = \left(-\frac{4}{3}\ln^3\frac{M}{m}\right)\frac{\alpha^2(Z\alpha)}{\pi^3}\frac{m}{M}E_F$$

seal.eps

Log Squared Terms

Many diagrams contribute to log squared contrbution

Log Squared Terms

Many diagrams contribute to log squared contrbution

Log Squared Terms

Many diagrams contribute to log squared contrbution

Log Squared Terms

(D) (A) (A) (A)

Ξ

Log Squared Terms

Eides, Shelyuto RadRec Corrections to HFS

イロ・ イク・イモ・ モモ・ モ

Log Squared Terms

Eides, Shelyuto RadRec Corrections to HFS

・ロット (日) ・ (日) ・ (日) ・

Ξ
Log Squared Terms

Eides, Shelyuto RadRec Corrections to HFS

・ロト (個) ・モト (日) 一日 -

Log Squared Terms

Eides, Shelyuto RadRec Corrections to HFS

seal.eps

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

> seal.eps २००२ २०४२ २२ २३२ २३ २०२.२२

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

4 (1) + 4 (2) (2) + 4 (2) +

Proliferation of Diagrams

 Next task is to calculate all single-logarithmic and nonlogarithmic radiative recoil contributions

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Proliferation of Diagrams

- Next task is to calculate all single-logarithmic and nonlogarithmic radiative recoil contributions
- All three-loop diagrams with radiative insertions in the diagrams with two-photon exchanges give contributions

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Proliferation of Diagrams

- Next task is to calculate all single-logarithmic and nonlogarithmic radiative recoil contributions
- All three-loop diagrams with radiative insertions in the diagrams with two-photon exchanges give contributions

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (0) (2) (2) (2)

Proliferation of Diagrams

- Next task is to calculate all single-logarithmic and nonlogarithmic radiative recoil contributions
- All three-loop diagrams with radiative insertions in the diagrams with two-photon exchanges give contributions

As a rule subleading terms are large and hard to extract

Eides, Shelyuto RadRec Corrections to HFS

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (0) (2) (2) (2)

One-Loop Polarizations

Heavy (muon and hadron) loops now also contribute!

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhchaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (0) (2) (2) (2)

One-Loop Polarizations

Heavy (muon and hadron) loops now also contribute!

$$\Delta E = \left[-\left(\frac{2\pi^2}{3} + \frac{25}{9}\right) \ln \frac{M}{m} - \frac{4\pi^2}{9} - \frac{535}{108} \right] \frac{\alpha^2 (Z\alpha)}{\pi^3} \frac{M}{M} E_F$$

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhchaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (D) (D) (E) (E)

One-Loop Polarizations

Heavy (muon and hadron) loops now also contribute!

$$\Delta E = \left[-\left(\frac{2\pi^2}{3} + \frac{25}{9}\right) \ln \frac{M}{m} - \frac{4\pi^2}{9} - \frac{535}{108} \right] \frac{\alpha^2(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

One-Loop Polarizations

Heavy (muon and hadron) loops now also contribute!

$$\Delta E = \left[-\left(\frac{2\pi^2}{3} + \frac{25}{9}\right) \ln \frac{M}{m} - \frac{4\pi^2}{9} - \frac{535}{108} \right] \frac{\alpha^2(Z\alpha)}{\pi^3} \frac{M}{M} E_F$$

$$\left\langle \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right\rangle + 2 \left\langle \begin{array}{c} & \\ & \\ & \\ \end{array} \right\rangle$$

Eides, Shelyuto

RadRec Corrections to HFS

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

One-Loop Polarizations

Heavy (muon and hadron) loops now also contribute!

$$\Delta E = \left[-\left(\frac{2\pi^2}{3} + \frac{25}{9}\right) \ln \frac{M}{m} - \frac{4\pi^2}{9} - \frac{535}{108} \right] \frac{\alpha^2(Z\alpha)}{\pi^3} \frac{M}{M} E_F$$

$$\left\langle \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right\rangle + 2 \left\langle \begin{array}{c} & \\ & \\ & \\ \end{array} \right\rangle$$

Eides, Shelyuto

RadRec Corrections to HFS

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatior Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Mixed Heavy and Light Loops

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Mixed Heavy and Light Loops

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Mixed Heavy and Light Loops

$$\Delta E = \left[\left(\frac{2\pi^2}{3} - \frac{20}{9} \right) \ln \frac{M}{m} + \frac{\pi^2}{3} - \frac{53}{9} \right] \frac{\alpha^2 (Z\alpha)}{\pi^3} \frac{M}{M} E_F$$

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Mixed Heavy and Light Loops

$$\Delta E = \left[\left(\frac{2\pi^2}{3} - \frac{20}{9} \right) \ln \frac{M}{m} + \frac{\pi^2}{3} - \frac{53}{9} \right] \frac{\alpha^2 (Z\alpha)}{\pi^3} \frac{M}{M} E_F$$

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Mixed Heavy and Light Loops

$$\Delta E = \left[\left(\frac{2\pi^2}{3} - \frac{20}{9} \right) \ln \frac{M}{m} + \frac{\pi^2}{3} - \frac{53}{9} \right] \frac{\alpha^2 (Z\alpha)}{\pi^3} \frac{M}{M} E_F$$

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Two-Loop Polarizations

Two-Loop Polarizations

Two-loop polarizations give

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatior Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Two-Loop Polarizations

Two-loop polarizations give

$$\Delta E = \left\{ -\left[6\zeta(3) + \frac{13}{4} \right] \ln \frac{M}{m} - \frac{97}{8}\zeta(3) - 16\text{Li}_4\left(\frac{1}{2}\right) + \frac{2\pi^2}{3}\ln^2 2 - \frac{2}{3}\ln^4 2 + \frac{5\pi^4}{36} - \frac{\pi^2}{4} + \frac{7}{16} \right\} \frac{\alpha^2(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Two-Loop Polarizations

Two-loop polarizations give

$$\Delta E = \left\{ -\left[6\zeta(3) + \frac{13}{4} \right] \ln \frac{M}{m} - \frac{97}{8}\zeta(3) - 16\text{Li}_4\left(\frac{1}{2}\right) + \frac{2\pi^2}{3}\ln^2 2 - \frac{2}{3}\ln^4 2 + \frac{5\pi^4}{36} - \frac{\pi^2}{4} + \frac{7}{16} \right\} \frac{\alpha^2(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Eides, Shelyuto

RadRec Corrections to HFS

Polarization Insertions in Exchanged Photons

One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Two-Loop Polarizations

Two-loop polarizations give

$$\Delta E = \left\{ -\left[6\zeta(3) + \frac{13}{4} \right] \ln \frac{M}{m} - \frac{97}{8}\zeta(3) - 16\text{Li}_4\left(\frac{1}{2}\right) + \frac{2\pi^2}{3}\ln^2 2 - \frac{2}{3}\ln^4 2 + \frac{5\pi^4}{36} - \frac{\pi^2}{4} + \frac{7}{16} \right\} \frac{\alpha^2(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Eides, Shelyuto

RadRec Corrections to HFS

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

> seal.eps 《티카 (遼카 (금카 (콤카 홈 - 이유))

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

1011100110110101010

Radiative Electron Factor and Electron Polarization

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Radiative Electron Factor and Electron Polarization

$$\Delta E = \left(\frac{22}{3}\ln\frac{M}{m} + 11.4178\right) \frac{\alpha^2(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Radiative Electron Factor and Electron Polarization

$$\Delta E = \left(\frac{22}{3}\ln\frac{M}{m} + 11.4178\right) \frac{\alpha^2(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Radiative Electron Factor and Electron Polarization

$$\Delta E = \left(\frac{22}{3}\ln\frac{M}{m} + 11.4178\right) \frac{\alpha^2(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (0) (2) (2) (2)

Radiative Electron Factor and Muon Polarization

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (A) (A) (A)

Radiative Electron Factor and Muon Polarization

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Radiative Electron Factor and Muon Polarization

$$\Delta E = \left(-\frac{5\pi^2}{12} + \frac{1}{18}\right) \frac{\alpha(Z^2\alpha)(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (0) (2) (2) (2)

Radiative Electron Factor and Muon Polarization

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (0) (2) (2) (2)

Radiative Electron Factor and Muon Polarization

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (0) (2) (2) (2)

Radiative Muon Factor and Muon Polarization

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (0) (2) (2) (2)

Radiative Muon Factor and Muon Polarization

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (D) (D) (E) (E)

Radiative Muon Factor and Muon Polarization

$$\Delta E = -1. 80176 \frac{(Z^2 \alpha)^2 (Z \alpha)}{\pi^3} \frac{m}{M} E_F$$
Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (A) (E) (E)

Radiative Muon Factor and Muon Polarization

Contribution of one-loop muon factor and one-loop muon polarization is nonlogarithmic

$$\Delta E = -1. 80176 \frac{(Z^2 \alpha)^2 (Z \alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (A) (E) (E)

Radiative Muon Factor and Muon Polarization

Contribution of one-loop muon factor and one-loop muon polarization is nonlogarithmic

$$\Delta E = -1. 80176 \frac{(Z^2 \alpha)^2 (Z \alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (0) (2) (2) (2)

Radiative Muon Factor and Electron Polarization

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (A) (E) (E)

Radiative Muon Factor and Electron Polarization

Contribution of one-loop muon factor and one-loop electron polarization is linear in the large logarithm

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Radiative Muon Factor and Electron Polarization

Contribution of one-loop muon factor and one-loop electron polarization is linear in the large logarithm

$$\Delta E = \left[\left(6\,\zeta(3) - 4\pi^2 \ln 2 + \frac{13}{2} \right) \ln \frac{M}{m} + 24.32115 \right] \frac{\alpha(Z^2\alpha)(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (A) (2) (2)

Radiative Muon Factor and Electron Polarization

Contribution of one-loop muon factor and one-loop electron polarization is linear in the large logarithm

$$\Delta E = \left[\left(6\,\zeta(3) - 4\pi^2 \ln 2 + \frac{13}{2} \right) \ln \frac{M}{m} + 24.32115 \right] \frac{\alpha(Z^2\alpha)(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (A) (2) (2)

Radiative Muon Factor and Electron Polarization

Contribution of one-loop muon factor and one-loop electron polarization is linear in the large logarithm

$$\Delta E = \left[\left(6\,\zeta(3) - 4\pi^2 \ln 2 + \frac{13}{2} \right) \ln \frac{M}{m} + 24.32115 \right] \frac{\alpha(Z^2\alpha)(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

> seal.eps २००२ २०४२ २३२२३२२३ २३२२३

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Two One-Loop Fermion Factors

Diagrams with two fermion factors give only nonlogarithmic contribution

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (0) (2) (2) (2)

Two One-Loop Fermion Factors

Diagrams with two fermion factors give only nonlogarithmic contribution

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Two One-Loop Fermion Factors

Diagrams with two fermion factors give only nonlogarithmic contribution

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Two One-Loop Fermion Factors

Diagrams with two fermion factors give only nonlogarithmic contribution

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (A) (A) (A)

Two One-Loop Fermion Factors

Both fermion factors are gauge invariant

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (D) (D) (E) (E)

Two One-Loop Fermion Factors

Both fermion factors are gauge invariant

$$\Delta E = -\frac{3}{8} \frac{(Z\alpha)mM}{\pi} E_F \int \frac{d^4k}{i\pi^2(k^2 + i0)^2} \bigg[L^{(e)}_{\mu\nu}(k) + L^{(e)}_{\nu\mu}(-k) \bigg] L^{(\mu)}_{\mu\nu}(-k)$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(0) (0) (2) (2)

Two One-Loop Fermion Factors

Both fermion factors are gauge invariant

$$\Delta E = -\frac{3}{8} \frac{(Z\alpha)mM}{\pi} E_F \int \frac{d^4k}{i\pi^2(k^2 + i0)^2} \bigg[L^{(e)}_{\mu\nu}(k) + L^{(e)}_{\nu\mu}(-k) \bigg] L^{(\mu)}_{\mu\nu}(-k)$$

Result for these diagrams is obtained analytically

$$\Delta E = \left[-\frac{15}{8}\zeta(3) + \frac{15\pi^2}{4}\ln 2 + \frac{27\pi^2}{16} - \frac{147}{32} \right] \frac{\alpha(Z^2\alpha)(Z\alpha)}{\pi^3} \frac{m}{M} \widetilde{E}_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (D) (D) (E) (E)

Electron Polarization in Electron Factor

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (A) (2) (2)

Electron Polarization in Electron Factor

$$\Delta E = \left[\left(\pi^2 - \frac{53}{6} \right) \ln \frac{M}{m} + 7.081 \right] \frac{\alpha^2 (Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Electron Polarization in Electron Factor

Insertion of electron polarization in the electron factor produces single-logarithmic contribution

$$\Delta E = \left[\left(\pi^2 - \frac{53}{6} \right) \ln \frac{M}{m} + 7.081 \right] \frac{\alpha^2(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Electron Polarization in Electron Factor

Insertion of electron polarization in the electron factor produces single-logarithmic contribution

$$\Delta E = \left[\left(\pi^2 - \frac{53}{6} \right) \ln \frac{M}{m} + 7.081 \right] \frac{\alpha^2(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

• □ • • • □ • • • Ξ • • Ξ • •

Muon Polarization in Electron Factor

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

4 (1) + 4 (2) (2) + 4 (2) +

Muon Polarization in Electron Factor

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Muon Polarization in Electron Factor

$$\Delta E = -1.304 \frac{\alpha(Z^2\alpha)(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Muon Polarization in Electron Factor

Insertion of muon polarization in the electron factor produces nonlogarithmic contribution

$$\Delta E = -1.304 \frac{\alpha(Z^2\alpha)(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Muon Polarization in Electron Factor

Insertion of muon polarization in the electron factor produces nonlogarithmic contribution

$$\Delta E = -1.304 \frac{\alpha(Z^2\alpha)(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

イロト イクト イヨト ト

Electron Polarization in Muon Factor

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (D) (D) (E) (E)

Electron Polarization in Muon Factor

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (A) (3) (3)

Electron Polarization in Muon Factor

$$\Delta E = \left[\left(3\zeta(3) - 2\pi^2 \ln 2 + \frac{13}{4} \right) \ln \frac{M}{m} + 12.227 \right] \frac{\alpha(Z^2\alpha)(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Electron Polarization in Muon Factor

$$\Delta E = \left[\left(3\zeta(3) - 2\pi^2 \ln 2 + \frac{13}{4} \right) \ln \frac{M}{m} + 12.227 \right] \frac{\alpha(Z^2\alpha)(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Electron Polarization in Muon Factor

$$\Delta E = \left[\left(3\zeta(3) - 2\pi^2 \ln 2 + \frac{13}{4} \right) \ln \frac{M}{m} + 12.227 \right] \frac{\alpha(Z^2\alpha)(Z\alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarization Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

イロト イクト イヨト ト

Muon Polarization in Muon Factor

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Muon Polarization in Muon Factor

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

(D) (A) (A) (A)

Muon Polarization in Muon Factor

$$\Delta E = -0.931 \frac{(Z^2 \alpha)^2 (Z \alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Muon Polarization in Muon Factor

$$\Delta E = - 0.931 \frac{(Z^2 \alpha)^2 (Z \alpha)}{\pi^3} \frac{m}{M} E_F$$

Polarization Insertions in Exchanged Photons One-Loop Fermion Factor and One-Loop Exhcnaged Polarizatio Radiative Photons in both Fermion Lines One-Loop Polarization Insertions in One-Loop Fermion Factors

Muon Polarization in Muon Factor

$$\Delta E = - 0.931 \frac{(Z^2 \alpha)^2 (Z \alpha)}{\pi^3} \frac{m}{M} E_F$$

Outline

Hyperfine Splitting in Muonium Three-Loop Radiative Recoil Corrections Single-Logarithm and Nonlogarithmic Contributions Conclusions

> seal.eps 서미지 4월 제 동국 제품 제품 이유증
Goals

Eides, Shelyuto RadRec Corrections to HFS

イロト イロ・イビン イビン

Ξ

Goals

Calculation of single-logarithmic and nonlogarithmic three-loop radiative-recoil corrections generated by the gauge invariant sets of diagrams with fermion factors with two radiative photons

(D) (0) (2) (2) (2)

Goals

- Calculation of single-logarithmic and nonlogarithmic three-loop radiative-recoil corrections generated by the gauge invariant sets of diagrams with fermion factors with two radiative photons
- Calculation of single-logarithmic and nonlogarithmic three-loop radiative-recoil corrections generated by the gauge invariant set of diagrams with light-by-light insertions in the exchanged photons

Goals

- Calculation of single-logarithmic and nonlogarithmic three-loop radiative-recoil corrections generated by the gauge invariant sets of diagrams with fermion factors with two radiative photons
- Calculation of single-logarithmic and nonlogarithmic three-loop radiative-recoil corrections generated by the gauge invariant set of diagrams with light-by-light insertions in the exchanged photons
- Work on these corrections is in progress now