Positronium molecule

PSAS 2008 University of Windsor, July 26, 2008

Andrzej Czarnecki 🏾 🌞 University of Alberta

1951

Positronium, its ion, and the molecule

1981

Positronium atom Ion: theoretical prediction for the decay rate. Comparison with experiment. Molecule: spectrum. Dipole transition vs. annihilation.

2007

Positronium and its ion

Very similar to hydrogen, except

- no hadronic nucleus
- annihilation
- reduced mass reduced

$$m_e \rightarrow \frac{m_e}{2}$$

Two spin states: singlet (para-Ps) triplet (ortho-Ps)

Positronium ion: a new test of bound-state QED Predicted 1946 Wheeler **Observed 1981 Mills** $(\mathbf{1}\gamma) \mathbf{3}\gamma (\mathbf{5}\gamma)$ $2\gamma (4\gamma)$ Unique for the ion but very suppressed

New positronium-ion source at the FRM II reactor in Munich: measurements of branching ratios.

Theory of the Ps ion: the wavefunction

The wave function is not known analytically, but can be found using the variational method.

Example of a variational calculation

Test function:

$$\phi(r_1, r_2, r) = \exp\left[-k(r_1 + r_2)\right]$$
$$\frac{\langle \phi | H | \phi \rangle}{\langle \phi | \phi \rangle} \ge E$$

With this very simple ansatz we do find a positive *k* but the binding energy is smaller than for positronium. The ion would not be stable.

A better fit to the wavefunction

$$\phi(r_1, r_2, r) \sim \exp(-k_1r_1 - k_2r_2) + \exp(-k_2r_1 - k_1r_2)$$

One finds that $k_1 \sim 2k_2$

Drachman & Bhatia

We can picture the ion as a positronium "shell" and a loosely-bound electron. Now we can easily estimate the dominant decay channels.

For comparison: decays of positronium (atoms)

Recent measurement of the ion decay rate

63401 (2006)

PHYSICAL REVIEW LETTERS

Measurement of the Decay Rate of the Negative Ion of Positronium (Ps⁻)

Frank Fleischer,^{1,*} Kai Degreif,¹ Gerald Gwinner,^{1,†} Michael Lestinsky,¹ Vitaly Liechtenstein,² Florian Plenge,¹ and Dirk Schwalm¹

¹Max-Planck-Institut für Kernphysik, Heidelberg, Germany ²Kurchatov Institute, Moscow, Russia (Received 28 November 2005; published 13 February 2006)

A new determination of the decay rate of the negative ion of positronium (Ps⁻), using a beam-foil method and a stripping-based detection technique, is reported. The measured result of $\Gamma = 2.089(15) \text{ ns}^{-1}$ is a factor of 6 more precise than the previous experimental value of $\Gamma = 2.09(9) \text{ ns}^{-1}$, and is in excellent agreement with the theoretical value of $\Gamma = 2.086(6) \text{ ns}^{-1}$.

$$\Gamma_{exp} \left(Ps^{-} \right) = 2089 \left(15 \right) \mu s^{-1}$$

$$7 \cdot 10^{-3} \quad \text{(factor 4-5)} \quad \text{$$

Recent measurement of the ion decay rate

63401 (2006)

PHYSICAL REVIEW LETTERS

week 17 FEBRU

Measurement of the Decay Rate of the Negative Ion of Positronium (Ps⁻)

Frank Fleischer,^{1,*} Kai Degreif,¹ Gerald Gwinner,^{1,†} Michael Lestinsky,¹ Vitaly Liechtenstein,² Florian Plenge,¹ and Dirk Schwalm¹

> ¹Max-Planck-Institut für Kernphysik, Heidelberg, Germany ²Kurchatov Institute, Moscow, Russia (Received 28 November 2005; published 13 February 2006)

A new determination of the decay rate of the negative ion of positronium (Ps⁻), using a beam-foil method and a stripping-based detection technique, is reported. The measured result of $\Gamma = 2.089(15) \text{ ns}^{-1}$ is a factor of 6 more precise than the previous experimental value of $\Gamma = 2.09(9) \text{ ns}^{-1}$, and is in excellent agreement with the theoretical value of $\Gamma = 2.086(6) \text{ ns}^{-1}$.

$$\Gamma_{exp} \left(Ps^{-} \right) = 2089 \left(15 \right) \mu s^{-1}$$

$$7 \cdot 10^{-3}$$
(factor 4-5
improvement
expected)
We wanted to
improve this

Positronium ion decay: refinements

Corrections O(a)

single hard photon loops

Corrections O(a²); challenge: divergences $\rightarrow \ln \alpha$

soft $\begin{cases} O(k^2) \text{ corrections to the amplitude M} \\ Breit hamiltonian \rightarrow \text{correction to } \phi(r=0) \end{cases}$

hard

Short-distance two-loop photon exchange Real photon radiation

Decay rate prediction

+ corrections

$$\Gamma(\mathrm{Ps}^{-}) = 2\pi \frac{\alpha^5 m_e c^2}{\hbar} (1+C) \left\langle \delta^3(r_{12}) \right\rangle$$

$$\Gamma(Ps^{-}) = 2.087963(12)ns^{-1}$$

with M. Puchalski and S. Karshenboim PRL 99, 203401 (2007)

Ratio of three- to two-photon annihilation

$$BR (Ps^{-} \rightarrow \gamma \gamma \gamma) \equiv \frac{\Gamma(Ps^{-} \rightarrow \gamma \gamma \gamma)}{\Gamma(Ps^{-})}$$

$$= \alpha \left[A^{3\gamma} + \alpha (B^{3\gamma} - AA^{3\gamma}) - \frac{7}{3} A^{3\gamma} \alpha^2 \ln \frac{1}{\alpha} + \dots \right]$$

 $= 0.002\,635\,8(8).$

Discovery of dipositronium 2007

Molecule formation kills long-lived positronia.

At higher temperature, fewer atoms on the surface, fewer molecules formed.

Indeed: at high-T, more long-lived positronia observed.

Cassidy & Mills, Nature 2007

Spectrum of the molecule Ps₂

A direct signal of the molecule: transition line.

A direct signal of the molecule: transition line.

Two questions about this transition:

What is its accurate energy?

How often does it appear (before annihilation)?

Results: arXiv:0810.0013 in press in PRL; with M. Puchalski

Energy levels: ground state and P-excitation

Wave function determined variationally, ^{M. Puchalski} using Coulomb potential;

Coordinate system for the positronium molecule

Relativistic corrections: perturbations. Annihilation dominates.

Interval P-S determined with 5 x 10⁻⁶ accuracy (slightly smaller than in Ps, "dielectric effect").

Competition: dipole transition vs. annihilation

S-state annihilates quite rapidly. Assume it consists of two weakly-interacting Ps atoms, with random spins:

There is a para-positronium pair with probability $2 \cdot \frac{1}{4} = \frac{1}{2}$

The decay rate:

$$\Gamma_{\rm S} \simeq \frac{1}{2} \cdot \frac{1}{\tau_{\rm pPs}} = \frac{1}{0.25 \,\rm ns}$$

P-state: half of this rate.

Competition: dipole transition vs. annihilation

Quiz: if an isolated P-excited Ps atom lives ~3.2 ns, what do we expect in Ps₂? Let's assume the atoms interact very weakly in the molecule.

Competition: dipole transition vs. annihilation

Quiz: if an isolated P-excited Ps atom lives ~3.2 ns, what do we expect in Ps₂? Let's assume the atoms interact very weakly in the molecule.

$$d_{\text{atom}} = \left\langle \mathbf{S} \left| \vec{d} \right| \mathbf{P} \right\rangle$$
$$d_{\text{molecule}} = \left\langle \mathbf{SS} \left| \vec{d} \right| \frac{\mathbf{PS} + \mathbf{PS}}{\sqrt{2}} \right\rangle = \sqrt{2} d_{\text{atom}}$$

Transition in the molecule is twice faster.
Branching ratio
$$BR(P \rightarrow S) = 19\% \sim \frac{\frac{1}{1.6}}{\frac{1}{1.6} + \frac{1}{0.5}}$$

with M. Puchalski

Summary

New states of positronium-like systems, ions and molecules: opportunity to test threeand four-body QED.

The Coulomb wave functions not known analytically for e⁺ e⁻ e⁻ and e⁺ e⁻ e⁺ e⁻.

Variational methods very accurate. O(alpha²) corrections computed for the ion decay rate and the Ps₂ P-S interval. Both are being measured.

Breakdown of corrections to the Ps ion width

Correction	Value
$\alpha A^{3\gamma}$	0.002 693 245
$\alpha A^{2\gamma}$	-0.005882770
$-2\alpha^2 \ln \alpha$	0.000 524 019
$\alpha^2 B^{4\gamma}$	0.000 001 480
$\alpha^2 B^{3\gamma}$	-0.000064352
$\alpha^2 B_{ m squared}$	0.000 008 652
$lpha^2 B_{ m hard}^{ m fin}$	-0.0002183(34)
$\alpha^2 B_{\mathrm{aa}}$	0.000 017 750
$\alpha^2 B_{ m H1}$	0.000 078 366
$\alpha^2 B_{\mathrm{H2}}$	0.000 541 484
$3\alpha^3 \ln^2 \alpha / (2\pi)$	-0.000004491
$2.5(2.5)\alpha^3\ln\alpha$	-0.0000048(48)
Total C	-0.0023097(59)

$$\Gamma(\mathrm{Ps}^{-}) = 2\pi \frac{\alpha^5 m_e c^2}{\hbar} (1+C) \left\langle \delta^3(r_{12}) \right\rangle$$