Proton structure corrections to electronic and muonic hydrogen hyperfine splitting

Carl E. Carlson, William and Mary

PSAS 2008, Windsor, Ontario, 2

work done with Vahagn Nazaryan and Keith Griffioen PRL 96, 163001 (2006) and 0805.2603 [atom-ph]

- Subject: hyperfine splitting line in ordinary and muonic hydrogen
- Mainly worry about one correction, that involves proton structure and hence nuclear/particle physics
- Outline
 - Introduction
 - Description of calculation
 - Results
 - Conclusions

 Well known: spin-dependent interaction gives hyperfine splitting in hydrogen ground state (and in other states).

• Splitting known to 13 figures in frequency units,

 $E_{hfs}(e^-p) = 1\ 420.405\ 751\ 766\ 7\ (9)\ MHz$

• Goal: Calculate hfs to part per million (ppm)

 Lowest order calculation often pesented in NR quantum mechanics course:

$$E_F^p = \frac{8\alpha^3 m_r^3}{3\pi} \mu_B \mu_p = \frac{16\alpha^2}{3} \frac{\mu_p}{\mu_B} \frac{R_\infty}{\left(1 + m_e/m_p\right)^3}$$

• Convention: put in actual measured μ_p for proton, and Bohr magneton μ_B for electron.

 Constants well enough known to allow part in 10⁸ calculation of "Fermi energy."

$$E_F^p = \frac{8\alpha^3 m_r^3}{3\pi} \mu_B \mu_p = \frac{16\alpha^2}{3} \frac{\mu_p}{\mu_B} \frac{R_\infty}{\left(1 + m_e/m_p\right)^3}$$

- R_{∞} is Rydberg constant in Hertz (6.6 ppt)
- m_e/m_p known to ppb
- α known to 1/2 ppb
- μ_p/μ_B known to 10 ppb
- Hence E_F^p calculated to 10 ppb

• Re: part per million (ppm) goal,

- Challenge ...
- New physics?
 - Note: Hints of new physics in B-meson physics (BEACH 2008: Conference on Hyperons, Charm, and Beauty Hadrons)
- Pure QED systems (e.g., muonium) easily allow this and better. Problem is hadronic corrections --- proton structure.

corrections codified

 $E_{\rm hfs}(\ell^- p) = \left(1 + \Delta_{\rm QED} + \Delta_{\rm hvp}^p + \Delta_{\mu \rm vp}^p + \Delta_{\rm weak}^p + \Delta_{\rm S}^p\right) E_F$

- Δ_{QED} : pure QED, well calculated
- Δ_{hvp} , $\Delta_{\mu vp}$, Δ_{weak} : some vacuum polarization terms and Z-boson exchange: small, not a problem
- $\Delta_{\rm S} = \Delta_{\rm Z} + \Delta_{\rm R} + \Delta_{\rm pol}$
 - Proton structure dependent
 - Zemach, recoil, & polarizability terms
 - all 2-photon exchange

Introduction (cont.)

- Δ_s (total) will be about 40 ppm, so need ca. 2% accuracy
- What we do
 - Use data from electron scattering to measure proton structure
 - Use above measurements to calculate proton structure effects on hydrogen hyperfine splitting (hhfs)
- What we don't do
 - We don't start from scratch, using QCD Lagrangian, or facsimile, to calculate proton structure correction. Not yet possible to reach target precision.
 - Cf., Excellent chiral Lagrangian calculation by Pineda (2003) gets about 2/3 target Δ_s ; or about 13 ppm accuracy
 - Also see preceding talk by Buchmann

Calculation of proton structure corrections

• Proton size about 10⁻⁵ Ångström---enough to notice

But not in lowest order:

- Photon sees whole proton: structure plays no role
- Hence not learned in "freshman" QM

Calculation: Two-photon exchange

- short wavelength photon sees inside proton---need details on proton structure
- Inter-proton intermediate state may or may not still be a proton

more professionally ...

 Lower part of diagram is forward Compton scattering amplitude:

q

Want spin dependent part, which is antisymmetric,

$$T^{A}_{\mu\nu} = \frac{i}{m_{p}\nu} \epsilon_{\mu\nu\alpha\beta} q^{\alpha} \left[\left(H_{1}(\nu,q^{2}) + H_{2}(\nu,q^{2}) \right) S^{\beta} - H_{2}(\nu,q^{2}) \frac{S \cdot q \ p^{\beta}}{p \cdot q} \right]$$

- S^{β} is proton spin vector
- $H_{1,2}$ are functions of photon lab energy v and photon "mass" Q^2

Optical theorem

Im {forward scattering amplitude} \propto total cross section

- RHS is cross section for $e + p \rightarrow e' + X$
- Measured at SLAC, DESY, JLab, Mainz,

Optical theorem (cont.)

• Standard definitions for Im parts of $H_{1,2}$:

$$\operatorname{Im} H_{1}(\nu, q^{2}) = \frac{1}{\nu} g_{1}(\nu, q^{2})$$
$$\operatorname{Im} H_{2}(\nu, q^{2}) = \frac{m_{p}}{\nu^{2}} g_{2}(\nu, q^{2})$$

- Problem: can measure g_i, but that means we only know Im H, but we need all of H.
- Solution: dispersion relations, or the Cauchy integral theorem

$$H_1(\nu_1, q^2) = \frac{1}{\pi} \int_{\nu_{th}^2}^{\infty} d\nu \frac{\operatorname{Im} H_1(\nu, q^2)}{\nu^2 - \nu_1^2} + \text{elastic part}$$

Elastic part

 The part of the total cross section that has only final state proton, i.e., is elastic scattering

• Vertex (real p') given by $\Gamma_{\mu} = \gamma_{\mu}F_{1}(q^{2}) + \frac{i}{2m_{p}}\sigma_{\mu\nu}q^{\nu}F_{2}(q^{2})$ where $F_{1}(q^{2}), F_{2}(q^{2})$ are measured in elastic scattering

Gives the original NR Zemach term + the recoil term

• Often
$$G_M = F_1 + F_2; \ G_E = F_1 - \frac{q^2}{4m_p^2} F_2$$

Most recent useful experiment for $g_{1,2}$ (from JLab)

- Jefferson Lab (Newport News, VA, USA) experiment EG1 measured spin-dependent inelastic electronproton scattering
- Q² > 0.045 GeV² (earlier SLAC expt. had Q² > 0.15 GeV²)
- gave results in terms of structure functions gi
- for reference,

Aerial view of accelerator and experimental halls

$$\frac{d\sigma_{\rightarrow\rightarrow}}{dE'\,d\Omega} - \frac{d\sigma_{\rightarrow\leftarrow}}{dE'\,d\Omega} = \frac{8\alpha^2 E'}{m_p Q^2 E} \left(\frac{E + E'\cos\theta}{m_p \nu}g_1 + \frac{Q^2}{m_p \nu^2}g_2\right)$$
$$\frac{d\sigma_{\rightarrow\uparrow}}{dE'\,d\Omega} - \frac{d\sigma_{\rightarrow\downarrow}}{dE'\,d\Omega} = \frac{8\alpha^2 E'^2}{m_p^2 Q^2 E\nu}\sin\theta \left(g_1 - \frac{2E}{\nu}g_2\right)$$

Formulaic results for parts of Δ_s

• NR part of elastic contribution: Zemach term

$$\Delta_Z = \frac{8\alpha m_r}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left[G_E(Q^2) \frac{G_M(Q^2)}{1+\kappa_p} - 1 \right] \equiv -2\alpha m_r r_Z$$

• Charles Zemach, 1956

More formula results

• Recoil term: relativistic part of elastic contrib.

$$\begin{split} \Delta_R^p &= \frac{2\alpha m_r}{\pi m_p^2} \int_0^\infty dQ \, F_2(Q^2) \frac{G_M(Q^2)}{1+\kappa_p} \\ &+ \frac{\alpha m_\ell m_p}{2(1+\kappa_p)\pi(m_p^2 - m_\ell^2)} \Biggl\{ \int_0^\infty \frac{dQ^2}{Q^2} \left(\frac{\beta_1(\tau_p) - 4\sqrt{\tau_p}}{\tau_p} - \frac{\beta_1(\tau_\ell) - 4\sqrt{\tau_\ell}}{\tau_\ell} \right) F_1(Q^2) G_M(Q^2) \\ &+ 3 \int_0^\infty \frac{dQ^2}{Q^2} \left(\beta_2(\tau_p) - \beta_2(\tau_\ell) \right) F_2(Q^2) G_M(Q^2) \Biggr\} \\ &- \frac{\alpha m_\ell}{2(1+\kappa_p)\pi m_p} \int_0^\infty \frac{dQ^2}{Q^2} \, \beta_1(\tau_\ell) F_2^2(Q^2) \end{split}$$

• $\beta_{1,2}$ soon defined; $\tau_i = Q^2/4m_i^2$

- Bodwin & Yennie 1988; Faustov et al. 1970
- Memorize the last term

Polarizability (inelastic) terms

$$\Delta_{\text{pol}} = \frac{\alpha m_{\ell}}{2(1+\kappa_p)\pi m_p} (\Delta_1 + \Delta_2)$$

the prefactor is about 1/4 ppm for electrons,

$$\Delta_{1} = \int_{0}^{\infty} \frac{dQ^{2}}{Q^{2}} \left\{ \beta_{1}(\tau_{\ell}) F_{2}^{2}(Q^{2}) + \frac{8m_{p}^{2}}{Q^{2}} \int_{0}^{x_{th}} dx \, \frac{x^{2}\beta_{1}(\tau) - (m_{\ell}^{2}/m_{p}^{2})\beta_{1}(\tau_{\ell})}{x^{2} - m_{\ell}^{2}/m_{p}^{2}} g_{1}(x,Q^{2}) \right\}$$

$$\Delta_2 = -24m_p^2 \int_0^\infty \frac{dQ^2}{Q^4} \int_0^{x_{th}} dx \, \frac{x^2 \left[\beta_2(\tau) - \beta_2(\tau_\ell)\right]}{x^2 - m_\ell^2 / m_p^2} \, g_2(x, Q^2)$$

with

$$\begin{aligned} \tau &= \nu^2 / Q^2 \\ \beta_1(\tau) &= -3\tau + 2\tau^2 + 2(2-\tau)\sqrt{\tau(\tau+1)} \\ \beta_2(\tau) &= 1 + 2\tau - 2\sqrt{\tau(\tau+1)} \end{aligned}$$

- Massless lepton: Drell and Sullivan and others, 1960 and early 1970s
- Massive lepton: Faustov, Cherednikova, and Martynenko, 2003; Us, 2008.

Comments

- Formulas (esp. for electron case) old.
- New since 2000:
 - Data good enough to give non-zero Δ_{pol}
- New since 2006:
 - Final data from JLab EG1 expt. published systematic errors! (Prok et al., 0802.2232)
 - New low-Q² G_E data from Mainz (J. Bernauer, unpub., shown at conferences, e.g. Walcher, ECT*, May 2008)
- BTW: where did the inelastic (?) F₂² term come from?
 (It makes Δ_{pol} finite in the massless lepton limit.)
- Leads to rant: Do not take Apol and recoil corrections from different sources (without checking compatability).

Results for Δ_{pol} 2008

Term	Q^2 (GeV ²)	From	Value w/AMT F_2
Δ_1	[0, 0.0452]	$F_2 \& g_1$	1.35(0.22)(0.87) ()
	[0.0452, 20]	F_2	7.54 () (0.23) ()
		81	-0.14(0.21)(1.78)(0.68)
	[20, ∞]	F_2	0.00 () (0.00) ()
		81	0.11 () () (0.01)
total Δ_1			8.85(0.30)(2.67)(0.70)
Δ_2	[0, 0.0452]	82	-0.22 () () (0.22)
	[0.0452, 20]	82	-0.35 () () (0.35)
	[20 <i>,</i> ∞]	82	0.00 () () (0.00)
total Δ_2			-0.57 () () (0.57)
$\Delta_1 + \Delta_2$			8.28(0.30)(2.67)(0.90)
$\Delta_{\rm pol}~(\rm ppm)$			1.88(0.07)(0.60)(0.20)

- errors (statistical)(systematic from data)(modeling)
- AMT = Form factors fit by Arrington, Melnitchouk, Tjon (2007)
- Quote polarizability correction as 1.88 ± 0.64 ppm
- compatible with Faustov-Martynenko.

Results for Δ_{pol} 2008 --- muonic hydrogen

Term	Q^2 (GeV ²)	From	Value w/AMT F_2
Δ_1	[0, 0.0452]	F_2 and g_1	0.86(0.17)(0.67) ()
	[0.0452, 20]	F_2	6.77 () (0.21) ()
		81	0.18(0.18)(1.62)(0.64)
	[20, ∞]	F_2	0.00 () (0.00) ()
		81	0.11 () () (0.01)
total Δ_1			7.92(0.25)(2.30)(0.66)
Δ_2	[0, 0.0452]	82	-0.12 () () (0.12)
	[0.0452, 20]	82	-0.29 () () (0.29)
	[20, ∞]	82	-0.00 () () (0.00)
total Δ_2			-0.41 () () (0.41)
$\Delta_1 + \Delta_2$			7.51(0.25)(2.30)(0.77)
$\Delta_{\rm pol}$ (ppm)			351.(12.)(107.)(36.)

Overall results for ordinary hydrogen 2008

Quantity $(E_{\rm hfs}(e^-p)/E_F^p) - 1$	value (ppm) 1 103.48	uncertainty (ppm) 0.01
$\frac{\Delta_{\text{QED}}}{\Delta_{\mu\nup}^{p} + \Delta_{\text{hvp}}^{p} + \Delta_{\text{weak}}^{p}}$	1 136.19 0.14	0.00
$\Delta_{\mu\nu p} + \Delta_{h\nu p} + \Delta_{weak}$ Δ_Z (using AMT)	-41.43	0.44
Δ_R^p (using AMT)	5.85	0.07
Δ_{pol} (this work, using AMT)	1.88	0.64
Total	1102.63	0.78
Deficit	0.85	0.78

Ending and outlook

• Our 2008 result using 2001 EG1 data (final data out in '08, Prok et al., 0802.2232):

 $\Delta_{\text{pol}} = 1.88 \pm 0.64 \text{ ppm}$

Table of non-zero results

Authors	$\Delta_{\sf pol}$ (ppm)
Faustov & Martynenko (2002)	1.4 ± 0.6
Us (2006)	1.3 ± 0.3
Faustov, Gorbacheva, & Martynenko (2006)	2.2 ± 0.8
Us (2008)	1.88 ± 0.64

- (Faustov et al. don't use JLab data)
- Sum of all corrections now just under 1 ppm, or about 1 standard deviation, from data

Outlook

- Have come a long way since my 1987 QM course notes claim that best calculations had 30 ppm accuracy.
- Some diffidence: there was a 1988 paper that claimed 1 ppm calculations were possible
- More accuracy ?
 - Uncertainties in Zemach term not now trivial. Low Q² elastic FF important. New data from Mainz. And better analysis of existing data may be possible.
 - Largest uncertainty is from systematic error in g₁.
 Already exists unanalyzed EG4 data (Q² > 0.015 GeV²).
 - Hfs less sensitive to g₂, but there are proposals for better g₂ measurements at JLab (e.g., "Semi-SANE").

Outlook

 Current best charge radius measurements come from Lamb shift, error 1% vs. 2% from electron scattering. Experiment "imminent" to do <u>muonic</u> hydrogen Lamb shift, with possible 0.1% accurate charge radius!

End

Just in case

Hydrogen energy levels

Extent of galaxies, seen in 21 cm radio light

- NGC 5102, LocalVolume HI Survey
- Radio observations laid
 over optical photo
- 3X bigger in radio light

Velocity of H-gas, seen with 21 cm line

DDO 154, Carignan et al.

 Numbers give velocities, in km/sec, from Doppler shift

or rotation curve

Sample rotation curve

150 v (km/sec) predicted from visible matter only 0 10r (kpc) 2030 Ũ

The visible NGC 3198

- Long history.
- Zemach (1956) calculates hfs from elastic contributions in terms of proton form factors.
- Iddings (1965), Drell and Sullivan (1967), deRafael (1971) calculate inelastic (polarizability) contribution to hydrogen hfs.
- Faustov and Martynenko (2002), using SLAC data, estimate numerically the polarizability contribution to hydrogen hfs. First to get result inconsistent with zero.
- Friar and Sick (2004) determine the Zemach radius [to be defined] using world form factor data.
- Dupays et al. (2003), Volotka et al. (2005), Brodsky et al. (2005) infer Zemach radius from hfs data using polarizability results of Faustov and Martynenko.
- Inconsistencies between last two called for a review of corrections.
- Newer data from JLab, esp. at lower Q², crucial for this purpose.

Final indelicate point

- Can we use the dispersion relation? Depends.
- E.g., do elastic box calculation

Pole at value of photon energy that makes the intermediate proton "real":

$$\nu = Q^2 / (2m_p)$$

FIP

 Inelastic case similar. If total mass of intermediate state is W, pole at

$$\nu = (W^2 - m_p^2 + Q^2 / (2m_p))$$

 W is continuously varying from threshold & up. Hence H₁ has elastic pole in v plus cut,

 $\text{Im } v^2$

 v^2

.....

Re v^2

pole/cut structure of H_1 in complex v^2 -plane

- In using Cauchy formula, pole and cut have been kept
- Infinite contour discarded: Legitimate if function falls to zero fast enough
- Fails for H₁^{el} alone, but we are dealing with composite particle
- QED models say it is o.k.
- Regge models say it is o.k.