Frequency Mesurementes of ³He 2³P Hyperfine Structure

CNR-Istituto Nazionale di Ottica Applicata

European Laboratory for Non-linear Spectroscopy

Dipartimento di Fisica. Università di Firenze

Firenze-Italy

Pablo Cancio Pastor

³He structure at 1083nm

³He Nuclear Spin $I = \frac{1}{2}$ \blacksquare Hyperfine structure

(Morton et al. Can. J. Phys, 82, 835 (2005

OFCS-assisted Precision spectroscopy in He

X Albsorbsteefreejuenurgtsoanspeatnsscopy iR la-Quetastablekted DEGS

Systematical effects: light-induced-mechanical shift

atomic beam direction (z) low transverse velocity $(v_x < v_0)$ U(x) $\delta < 0$ $\delta > 0$ high transverse velocity $(v_x > v_0)$ $F_x \propto \delta v_x$

 $\delta > 0$ Doppler heating

 $\delta < 0$ Doppler cooling

in both cases:

blue shift of observed line-center

F. Minardi, et al., PRA 60, 4164 (1999)

It depends strongly of the effective interaction time which is less for the open optical -pump transitions

OFCS-assisted multi-resonant He spectroscopy

New present experiment

× Simultaneous frequency measurements of optical transitions and microwave splittings (HFS, FS and IS)

 \times V and Λ coherences and Ramsey fringes spectroscopy

Characterization of OFCS-assisted multi-resonant He spectroscopy

Δv (MHz)

10

0

20

Measurement number

30

40

50

4

Count

8

measurement of the frequency difference 10.04 Measurements • 9.9996 (13) MHz 10.03 10.02 10.01 10.00 9.99 9.98 9.97 9.96

Both lasers resonant with the

same transition

frequency difference is 10MHz at 1 kHz uncertainty

Measuring 2³P HFS

The accuracy must be controlled by measuring transitions whose difference is the well known $2^{3}S_{1,3/2}$ - $2^{3}S_{1,1/2}$ HFS (S.D. Rosner and F.M. Pipkin, *PRA* 1, 157 (1970))

Measuring 2 ³ P HFS								
HFS splitting	$\begin{array}{c} 2^{3}S_{1,3/2} - 2^{3}S_{1,1/2} \\ \Delta \nu_{S} \text{ (kHz)} \end{array}$		$\begin{array}{c} 2^{3}P_{1,1/2} - 2^{3}P_{0,1/2} \\ \Delta \nu_{P,01} \text{ (kHz)} \end{array}$		$\begin{array}{c} 2^{3}P_{2,5/2} - 2^{3}P_{1,1/2} \\ \Delta \nu_{P,21} \ (\text{kHz}) \end{array}$		$\begin{array}{c} 2^{3}P_{2,5/2} - 2^{3}P_{0,1/2} \\ \Delta \nu_{P,20} \text{ (kHz)} \end{array}$	
	$v_1 - v_2$	$v_4 - v_8$	$v_1 - v_4$	$v_2 - v_8$	$v_4 - v_7$	$v_7 - v_8 + \Delta v_S$	$v_1 - v_7$	$v_2 - v_7 + \Delta v_8$
Mean value	6739692,5 (3,9)	6739673,6 (4,1)	28092871,6 (3,2)	28092852,7 (4,7)	6292871,8 (3,8)	6292899,4 (4,0)	34385743,4 (3,0)	34385752,0 (4,4)
MS + LS + 2 nd DS	7 (1,4)	30 (1,4)	20 (1,4)	43 (1,4)	140 (1,4)	133 (1,4)	120 (1,4)	90 (1,4)
Final frequency	6739699,5 (4,8)	6739703,6 (4,8)	28092891,6 (4,1)	28092895,7 (5,4)	6293011,8 (4,6)	6293032,,4 (4,7)	34385863,4 (4,0)	34385842,0 (5,2)
Previous Exp.	6739701,17 7 (16)	6739701,17 7 (16)	28092892 (20)	28092892 (20)	6292906 (20)	6292906 (20)	34385798 (20)	34385798 (20)
Difference	1,7 (4,8)	-2,4 (4,8)	0,4 (20,4)	-3,7 (20,7)	-105,8 (20,5)	-126,4 (20,5)	-65,4 (20,4)	-44,0 (20,6)
Theory	67370 (60)	673970 (60)	28092869 (60)	28092869 (60)	6293071 (60)	6293071 (60)	34385940 (60)	34385940 (60)
Difference	0,5 (85,0)	-3,6 (85,0)	-22,6 (85.0)	-26,7 (85,0)	60,8 (85,0)	39,4(85,0)	77,4 (85,0)	98.0 (85,0)

Previous Experiments: J.D. Prestageet al. PRL 50, 828 (1983)

Theory: Morton et al. Can. J. Phys, 82, 835 (2005)

Coherent Electromagnetic Induced Transparency (EIT) The population of E_a and E_b states is coherently coupled by the phase-coherent co-propagate laser fields

 Λ Scheme \rightarrow Dark resonance

V Scheme \rightarrow EIT

•Resonance frequency $\Delta v = v_2 - v_1 \rightarrow To$ measure splittings

- Co-propagating lasers
 <u>No meccanical-light shifts</u>
- •Doppler effect scales with $\Delta v \rightarrow Smaller 2^{nd}$ Doppler shift

OFCS-assisted EIT He spectroscopy

Both lasers together interact with the atoms in forwardbackward configuration

To minimize 1st order Doppler and residual recoil

Pump laser accurately detuned from the line center

To avoid frequency shift from the saturation dip

Measuring 2³S HFS with EIT ³He spectroscopy

Measuring 2³P HFS with EIT ³He spectroscopy

Measuring 2³P HF Shifts

Preliminary results for optical transitions

Transition	$2^{3}S_{1,3/2} \rightarrow 2^{3}P_{0,1/2}$ ν_{1} (kHz)	$2^{3}S_{1,1/2} \rightarrow 2^{3}P_{0,1/2}$ ν_{2} (kHz)	$2^{3}S_{1,3/2} \rightarrow 2^{3}P_{1,1/2}$ ν_{4} (kHz)	$2^{3}S_{1,3/2} \rightarrow 2^{3}P_{2,5/2}$ ν_{7} (kHz)	$2^{3}S_{1,1/2} \rightarrow 2^{3}P_{1,1/2}$ ν_{8} (kHz)
Mean value	276732997227,2 (1,6)	276726257534,7 (3,6)	276704904355,6 (2,8)	276698611483.8 (2,6)	276698164682.0 (3)
MS + LS + 2 nd DS	-60 (1)	-67 (1)	-80 (1)	-200 (1)	-110 (1)
1 st DS	(1,4)	(1,4)	(1,4)	(1,4)	(1,4)
Residual Zeeman shift	(0,47)	(0,93)	(0,23)	(0,14)	(0,23)
OFS accuarcy	(0,3)	(0,3)	(0,3)	(0,3)	(0,3)
Final frequency	276732997167,2 (2,4)	276726257467,7 (4,1)	276704904275,6 (3,3)	276698611283,8 (3,1)	276698164572,0 (3,5)

Preliminary results for 2 ³ P _{0,1/2} and 2 ³ P _{1,1/2} HF shifts						
Present work	³ He Transition (MHz)	$2^{3}S_{1,3/2} \rightarrow 2^{3}P_{0,1/2}$ 276732997.1672 (24)	$\begin{array}{c} 2^{3}S_{1,3/2} \rightarrow 2^{3}P_{1,1/2} \\ 276704904.2756 (33) \end{array}$			
	³ He 2S _{1,3/2} HF shift (MHz)	-2246.5873	-2246.5873	← Measured		
Our measurement	⁴ He Transition (MHz)	$\begin{array}{c} 2^{3}S_{1} \rightarrow 2^{3}P_{0} \\ 276764094.7039 \ (24) \end{array}$	$\begin{array}{c} 2^{3}S_{1} \rightarrow 2^{3}P_{1} \\ 276734477.7525 \ (20) \end{array}$			
	³ He - ⁴ He IS (MHz)	33668.075 (1)	33667.8 (1)	Theory		
	³ He 2 ³ P HF shift (MHz)	323.9510 (35)	1847.7358 (40)			
	Prev. Measu. (MHz) Difference (kHz)	323.9503 (12) -0.7 (3.6)				
	Theory (MHz) Difference (kHz)	323.954 (1) 3 (4)	1847.761 (1) 25.2 (4.1)			

Previous Experiments: D. Shiner et al., *PRL*. **74**, 3553 (1995) Theory: Morton *et al*. Can. J. Phys, **82**, 835 (2005)

Conclusions

• OFCS-assisted precision spectroscopy of ³He $2^{3}S \rightarrow 2^{3}P$ transitions and HF $2^{3}S$ and $2^{3}P$ splittings was simultaneously performed. Preliminary results are accuracy limited by statistics and Mechanical-shift corrections.

• HFS measurements by OFCS-assisted EIT spectroscopy were performed. The method is promising when residual pump-transfer population background will be cancelled. EIT spectroscopy with cold He can help to this issue.

• Preliminary values of $2^2P_{0,1/2}$, $2^3P_{1,1/2}$ HF shifts were determined by using frequency measurements of the optical transitions.

Helium team

INOA-CNR + LENS

P. Cancio PastorG. GiusfrediP. De Natale

LENS + Università di Firenze L. Consolino

M. Inguscio

Financial support

CIGMA project (European Science Foundation and CNR) Precision spectroscopy with combs project (Ente Cassa di Risparmio di Firenze)

Why Precision spectr	roscopy of heli	um?
Simplest calculable t	nree body atomic	system
$H_{at} = H_{nr} +$	$H_{\rm rel} + H_{\rm QED}$	
E - E + AE		
$E = E_{nr} + (\Delta E_{rel,QED})$	Contribution	Magnitude
$E = E_{nr} + (\Delta E_{rel,QED})$	Contribution Nonrelativistic energy	Magnitude Z ²
$E = E_{nr} + (\Delta E_{rel,QED})$	Contribution Nonrelativistic energy Mass polarization	Magnitude Z^2 $Z^2 \mu/M$ $Z^2 (m/M)^2$
$E = E_{nr} + (\Delta E_{rel,QED})$ Calculated <i>E</i> accuracies 10 ⁻⁸ -10 ⁻⁹ for the	Contribution Nonrelativistic energy Mass polarization Second-order mass polarization Relativistic corrections	$\begin{array}{c} \text{Magnitude} \\ \\ Z^2 \\ Z^2 \mu/M \\ Z^2 (\mu/M)^2 \\ Z^4 \alpha^2 \end{array}$
$E = E_{nr} + (\Delta E_{rel,QED})$ Calculated <i>E</i> accuracies 10 ⁻⁸ -10 ⁻⁹ for the lower Rydberg levels	Contribution Nonrelativistic energy Mass polarization Second-order mass polarization Relativistic corrections Relativistic recoil	$\begin{array}{c} \text{Magnitude} \\ \\ Z^2 \\ Z^2 \mu/M \\ Z^2 (\mu/M)^2 \\ Z^4 \alpha^2 \\ Z^4 \alpha^2 \mu/M \end{array}$
$E = E_{nr} + (\Delta E_{rel,QED})$ Calculated <i>E</i> accuracies 10 ⁻⁸ -10 ⁻⁹ for the lower Rydberg levels	Contribution Nonrelativistic energy Mass polarization Second-order mass polarization Relativistic corrections Relativistic recoil Anomalous magnetic moment	Magnitude Z^2 $Z^2 \mu/M$ $Z^2 (\mu/M)^2$ $Z^4 \alpha^2$ $Z^4 \alpha^2 \mu/M$ $Z^4 \alpha^3$
$E = E_{nr} + (\Delta E_{rel,QED})$ Calculated <i>E</i> accuracies 10 ⁻⁸ -10 ⁻⁹ for the lower Rydberg levels	Contribution Nonrelativistic energy Mass polarization Second-order mass polarization Relativistic corrections Relativistic recoil Anomalous magnetic moment Lamb shift	Magnitude Z^2 $Z^2 \mu/M$ $Z^2 (\mu/M)^2$ $Z^4 \alpha^2$ $Z^4 \alpha^2 \mu/M$ $Z^4 \alpha^3$ $Z^4 \alpha^3 \ln \alpha + \cdots$

test of bounded two electron QED theory by measuring Lamb Shifts of Helium levels

•Absolute frequencies of optical transitions known at 10⁻¹²

accuracy (P. Cancio et al. PRL 92, 023001-1 (2004), PRL 97, 139903 (2006))

•**FS splittings known at 1kHz accuracy** (T. Zelevinsky et al. *PRL* **95**, 203001 (2005), G. Giusfredi et al. *Can. J. Phys*, **83**, 301 (2005), M.C. George et al. *PRL* **87**, 173002-1(2001), C. Storry et al. *PRL* **84**, 3274(2000))

Outline

- He structure at 1083 nm: motivations
- ³He hyperfine fine structure (HFS): 2³P
 level present situation
- OFCS-assisted precision spectroscopy in He
- HFS measurements by frequency difference of optical transitions
- HFS measurements by Electromagnetic Induced Transparency (EIT) spectroscopy
- 2³P_{0,1/2}, 2³P_{1,1/2} hyperfine shift determinations
- Conclusions

Perspectives for He precision spectroscopy...

•Frequency measurements of other optical He transitions at the 10⁻¹² (or better) accuracy level

Other systematical effects

• Doppler Shift

1st order (residual): ~ 0.7 kHz

due to misalignement of cat-eye system

Zeeman shift (residual): < 0.1 kHz

μ-metal shield anti-helmoltz coils \longrightarrow magnetic field < 0.1 μ T

Applied to the measurement of absolute frequencies of CO_2 ro-vibrational transitions at 4.25 μ m

He transitions from Rydberg levels are in the visible-near IR

At present they can be measured with high precision (10⁻¹²-10⁻¹⁵) thanks to the Optical Frequency comb Synthesizer (OFS).

Fine structure of triplet P levels in ⁴He

G. Giusfredi et al., Can. J. Phys. 83(4), 301-310 (2005)

Determination of Fine Structure Constant

 v_{01} (meas.) - δv_{01} (QED> α^4) = $\alpha^2 \times 556\ 200\ 289.5\ MHz$

K. Pachucki and J. Sapirstein, J. Phys. B. 35,1783 (2002)

15ppb in $\alpha \longrightarrow 30$ ppb accuracy for v_{01} (1 kHz) and δv_{01}

Implications in α determination

From weighted-average $v_{01}(exp.) = 29\ 616.951\ 7\ (6)\ MHz$ and from recent calculation $\delta v_{01} = -1.47213(50)\ MHz$

 $\alpha^{-1}_{\text{HeFS}} = 137.0359873(18)$ (13ppb)

but...

 $\alpha^{-1}_{\text{HeFS}} - \alpha^{-1}_{02} =$

-90.9 ppb (≈ 7 σ !!!)

Implications in α determination

Problem: - discrepancy between theory and experiment (larger for v_{12})

Conclusion:

FS He measurements are a test of the He QED theory

"center of gravity" of $2^3S \rightarrow 2^3P$ transition

VOLUME 92, NUMBER 2

PHYSICAL REVIEW LETTERS

week ending 16 JANUARY 2004

Absolute Frequency Measurements of the $2^3S_1 \rightarrow 2^3P_{0,1,2}$ Atomic Helium Transitions around 1083 nm

P. Cancio Pastor,* G. Giusfredi, and P. De Natale Istituto Nazionale di Ottica Applicata (INOA), Largo E. Fermi 6, I-50125 Firenze, Italy

G. Hagel,[†] C. de Mauro, and M. Inguscio European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica, Universitá di Firenze, Via N. Carrara 1, 1-50019 Sesto Fiorentino, Italy (Received 28 April 2003; published 15 January 2004)

276 736 495 650.6(2.4) kHz

 8.7×10^{-12} (30 times better)

Wavelength measurement

276 736 495 580(70) kHz D. Shiner *et al.*, PRL **72**, 1802 (1994)

Hyperfine ³He transitions at 1083 nm

³He gas-recirculation system was implemented *simultaneous* ³He and ⁴He measurements