

Experimental measurement of the Helium $2^{3}P_{1} - 1^{1}S_{0}$ transition rate

R.G. Dall, K.G.H. Baldwin, L.J. Byron and A.G. Truscott,

Australian Research Council Centre of Excellence for Quantum-Atom Optics (ACQAO), Australian National University

Australian Research Council Centre of Excellence for Quantum-Atom Optics

ACQAO

Metastable Helium Atom Optics

- He $2^{3}S_{1}$ (He*) is the longest lived (~8000s) atomic metastable state yet measured. See -
 - "Metastable helium: Atom optics with nano-grenades", K.G.H. Baldwin, Contemporary Physics **46**, 105 (2005).
- We first developed a "bright" He* beam line for *cold* atom studies
 - Electron He* collisions
 - Atom lithography
 - Atom guiding in hollow fibres
- We now have a He* BEC apparatus for *ultracold* atom and BEC studies
 - Atom laser studies
 - Quantum statistical effects
 - Atomic physics He* lifetimes

He* BEC Facility

He* BEC Experiments: 2D spatial profile

 $T > T_c$

 $T < T_c$

MCP and phosphor 2-D detector

 $T \sim 0.3T_c$

He* atomic physics: decay rates

- He 2³S₁ is the longest metastable atomic lifetime yet measured
 - Moos & Woodworth (1975) 9000 s <u>+</u> 30%
 - magnetic dipole (M1) transition
 - ~ 8000 s predicted lifetime
- He 2³P₂ decay to 1¹S₀ has yet to be measured
 - magnetic quadrupole (M2)
 - \sim 3 s predicted decay time
- He $2^{3}P_{1}$ decay to $1^{1}S_{0}$ measured here for the first time
 - electric dipole (E1) intercombination transition
 - ~ 5.7 ms predicted decay time

$2^{3}P_{1} - 1^{1}S_{0}$ decay rate

CURRENT EXPERIMENTAL/THEORETICAL STATUS

Theoretical Calculations		
Reference	Transition Rate (s ⁻¹)	Lifetime (ms)
R. Elton, Astro. Journal, 148, 573 (1967)	160.00	6.25
G.W.F. Drake, Astro. Journal, 157, 459 (1969)	180.18	5.55
G.W.F. Drake, J. Phys. B 9, L169 (1976)	176.40	5.67
W.R. Johnson et al., Adv. At. Mol. Opt. Phys. 35, 255		
(1995)	175.70	5.69
G.Lach & K.Pachucki, Phys.Rev.A 64, 042510 (2001)	177.5771	5.6314

Unpublished Experimental Measurements		
Reference	Transition Rate (s ⁻¹)	Lifetime (ms)
H.Y.S. Tang and W. Happer, Bull. Am. Phys. Soc.		
17 (4), 476 (1972)	30 ² Γ ₁ ² 200	$5^{2} \tau_{1}^{2} 3 3.3$
Institut doptique, Orsay - thesis by Julie Poupard	62 ± 14	16 ± 4
(2000)		
Trapped Atoms - 2 data processing methods	59 ± 14	17 ± 4
Free Atoms (factor of 2 error)	182	5.5
	100	10

J 2³P₁ - 1¹S₀ isoelectronic sequence

• Atomic energy levels known to 1 in 10¹¹ (cw) or 1 in 10⁸ (pulsed)

• But decay rates only known to few %

For this transition in
He, theories differ by
1% (similar uncertainty)

• Until now, in the Helike $2^{3}P_{1}$ - $1^{1}S_{0}$ isoelectronic sequence, there has been no measurement for He

Experiment: He $2^{3}P_{1}$ lifetime

- Trap He* atoms with P2 light
- Release atoms and turn on weak P1 light to measure fluorescence
- Then saturate P1 light to yield P1 population fraction
- Re-load MOT and measure ions from Penning collisions α N_{He}*
- Then switch off loading and allow to decay for ~16s until dominated by single body background collisions
- Turn off P2 light and turn on P1
- Repeat with no P1 light and remove background single body decay by ratioing

Experiment: P1 population fraction

ACQAO

Experiment: Trap decay curves

$2^{3}P_{1}$ - $1^{1}S_{0}$ decay rate to test QED

• This is the first experimental measurement for the He $2^{3}P_{2}$ - $1^{1}S_{0}$ transition PRL **100**, 023001 (2008)

• The value for He anchors the $2^{3}P_{2} - 1^{1}S_{0}$ isoelectronic sequence

• Uncertainty is less than for most measurements in the sequence

The future: He $2^{3}S_{1}$, $2^{3}P_{2}$ lifetime

He $2^{3}S_{1}$, $2^{3}P_{2}$ lifetime experiment

- Aim to measure the XUV emission from $\sim 10^8$ ultracold He* atoms released from the magnetic trap
- Filter radiation > 70nm
- Need only to measure the ratio of $2^{3}S_{1}$ and $2^{3}P_{2}$ count rate to $2^{3}P_{1}$ count rate
- Use the 2³P₁ decay rate measured in our first experiment as a calibration
- Don't need to measure the absolute number of atoms

$2^{3}P_{2}$ - $1^{1}S_{0}$ decay rate

CURRENT EXPERIMENTAL/THEORETICAL STATUS

I neoretical Calculations		
Reference	Transition Rate (s ⁻¹)	Lifetime (s)
G.W.F. Drake, Astro. Journal, 158, 1199-1203, (1969)	0.446	2.24
R.H. Garstang, Astro. Journal, 148, 579-584, (1967)	0.220	4.54
R.H. Garstang, Astro. Journal, 148, 579-584, (1967)	0.327	3.06
C.D. Lin et al., Phys. Rev. A, 15(1), 154-161, (1977)	0.394	2.54
G.Lach and K.Pachucki, Phys.Rev.A 64, 042510 (2001)	0.327	3.06

Unpublished Experimental Measurements

Reference	Transition Rate (s ⁻¹)	Lifetime (s)
Orsay Thesis by Julie Poupard (2000)	0.28 ± 0.07	3.6 ± 0.9
(determined by the Γ_2/Γ_1 branching ratio)		

ACQAO

$2^{3}P_{2}$ - $1^{1}S_{0}$ decay rate

- For the $2^{3}P_{2}$ $1^{1}S_{0}$ transition there is no He experimental measurement
- Most recent predicted decay time ~ 3 s

$2^{3}S_{1}$ - $1^{1}S_{0}$ decay rate

CURRENT EXPERIMENTAL/THEORETICAL STATE

Theoretical Calculations		
Reference	Transition Rate (s ⁻¹)	Lifetime (s)
G.W.F. Drake, Phys. Rev. A 3, 908 (1971)	1.272E-04	7861
G. Feinberg et al. Phys. Rev. Lett. 26, 681	1.200E-04	8333
(1971)		
W.R. Johnson et al., Adv. At. Mol. Opt. Phys.	1.266E-04	7899
35 , 255 (1995)		
G. Lach and K. Pachucki, Phys. Rev. A 64,		
042510 (2001)	1.272426E-04	7859

Experimental Measurements

Reference	Transition Rate (s ⁻¹)	Lifetime (s)
H.W. Moos and J.R. Woodworth, Phys. Rev.	2.35E-04 with factor	4260
Lett. 30 , 775 (1973)	of three error	
H.W. Moos and J.R. Woodworth, Phys. Rev. A	1.10E-04 with	9090
12 , 2455 (1975)	30% error	

$2^{3}S_{1}$ - $1^{1}S_{0}$ decay rate

• Only measurement (Moos and Woodworth, 1975) in a discharge source gave $\sim 9,000$ s with 30% uncertainty

• Most recent predicted decay time ~ 7,900 s

ACQAO He* BEC experiment

Ultracold Precision Physics

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Blue Lake, Snowy Mountains, Australia, 2004

The future: He $2^{3}S_{1}$, $2^{3}P_{2}$ lifetime

- Theory predicts the following decays:
 - $2^{3}S_{1} \sim 7860s$ via M1 transition
 - $2^{3}P_{2} \sim 3s$ via M2 transition

Decay via radiation at ~ 60nm (~ 20eV)

- Aim to measure the XUV emission from ~ 10⁸ ultracold He* atoms released from the magnetic trap
- Need only to measure the ratio of 2³S₁, 2³P₂ intensity to 2³P₁ intensity, and use the P1 decay rate measured in our first experiment as a calibration

Energy singlets triplets KBr coated Channel Electron Multip²[§]Per_o filter 2^1S_0 60nm photons $2^{3}S_{1}$ $1^{1}S$

