The hyperfine structure of the hydrogen molecular ion

James Babb

ITAMP

Harvard-Smithsonian Center for Astrophysics PSAS'08

Outline

- Hyperfine structure (hfs) in H vs H_2^+
- Measurements of hfs in H_2^+
- Calculations of hfs
- Deuterium molecular ion D_2^+
- Future

Progress in H_2^+ precision work

- 3-body Schrödinger equation
- Born-Oppenheimer fixed (clamped) nuclei
- Adiabatic
- Nonadiabatic
- Full variational (Yan, Drake, Korobov, ...)
- Relativistic: Dirac. Breit-Pauli $O(\alpha^2)$ Ry
- Radiative $O(\alpha^3)$ Ry
- And higher

Hyperfine interaction

- Studied over many decades
- Original motivation astrophysical
- Similar to hydrogen molecule, however...
- H_2 is diamagnetic, while H_2^+ is paramagnetic.

H (atom)

$$1 \, {}^{2}S_{1/2} \quad I = \frac{1}{2}; \ F = 1 \to 0$$

Experiment $\Delta \nu_{hfs} = 1420.4057517667(9)$ Hellwig et al. 1970 CfA

Theory

Let's see...

H (atom)

Main effect: $\mathbf{I} \cdot \mathbf{S}$

 $\Delta \nu_{hfs} = 1420.4057517667(9)$

Electron motion→current density→mag. field Proton has magnetic moment $\vec{\mu} = \mu_N g_N \mathbf{I}$

 $\Delta \nu_{\rm Fermi} = \frac{8}{3} \pi g_e \mu_0 g_N \mu_N \langle \delta(\mathbf{r}) \rangle$ = 1422.808 MHz

H (atom)

$$\Delta \nu_{hfs} = 1420.4057517667(9)$$

Other corrections

Finite mass of proton: introduces a factor

$$(\frac{1}{1+\frac{m_e}{M_p}})^3$$

Inclusion gives 1420.486 MHz

Still more... with QED 1420.45199(14) Best theory 1420.405(2) MHz Experimental data

- Dehmelt group ca. 1960's, 3 kHz level. RF Paul trap. v≥4
- Carrington group, highly excited *v* states. Beam apparatus.
- Fu, Hessels, Lundeen 1992, 20-30 kHz. Rydberg hydrogen molecule, *v*=1
- Osterwalder, Wüest, Merkt, Jungen, 2004. Rydberg hydrogen molecule. 300 kHz. v=1

hfs Hamiltonian

$$H_2 = {}^{1}\Sigma_g^{+} v = 0, N = 1, F = |\mathbf{I} + \mathbf{N}|, S = 0$$

 H_2^{+} Recall, presence of electron spin (paramagnetic) ${}^{2}\Sigma_{g}^{+} v = 0, N = 1, F_2, F, S = \frac{1}{2}$ $H_{hfs} = (b_{1F} - \frac{1}{3}c)\mathbf{I} \cdot \mathbf{S} + cI_zS_z + d\mathbf{S} \cdot \mathbf{N} + f\mathbf{I} \cdot \mathbf{N}$

Mass effect in H_2^+

- Studied adiabatic approximation.
- Fermi contact, for example, results come out about 600 kHz larger than fit to expt.
- Include action of nuclear kinetic energy on electronic wave function ∇_R^2
- "Nonadiabatic effects"

hfs Hamiltonian

Frequencies

- Korobov *et al.* to 1-2 kHz with expt. (For v=0, N=1, Korobov *et al.* agree with our previous to within 8 kHz, for Fermi 2 kHz.).
- Remaining discrepancies, certain transitions, about 80 kHz, spin-flip. $O(\alpha^4 Ry \frac{m_e}{M_n})$

Deuteron static electric quadrupole moment

Nuclear physics experiment

 $^{208}\mathrm{Pb} + d \rightarrow ^{208}\mathrm{Pb} + d$

 $Q = 0.282 \pm 0.019 \times 10^{-26} \mathrm{cm}^2$ Kammeraad, Knutson 85

Molecular physics

- Measurements possible
- Enters hfs through eqQ and couples nuclear spin and molecular rotation
- Diamagnetic system "purest". E.g. Code and Ramsey (1974) measured to 25 Hz.

Calculations many electrons

For D_2 , calculations of

$$q\sim \langle \frac{1}{R^3}-\sum_i \frac{3\cos^2\theta_i-1}{r_i^3} \; \rangle$$

sum over all electrons Reid,Vaida 1974; Bishop,Cheung 1978 $Q = 0.2860 \pm 0.0015 \times 10^{-26} \text{cm}^2$

Another molecule: LiD (need q) $Q = 0.29 \times 10^{-26} \text{cm}^2$ Freeman et al. 1975; Kirby Docken,Freeman 1974

Ions?

- Why not HD⁺
- Calculations by Bakalov, Korobov, and Schiller 2006, 10 kHz effect.
- Why not D_2^+ ?

D_2^{+}

- One measurement of ground state hfs (Cruse, Jungen, Merkt, 08) using Rydberg D₂
- Hfs to 300 kHz.
- Present includes nonadiabatic.

Level position (F,G)	Present	CJM`08
(5/2,3/2)	80.597	80.3(3)
(3/2,3/2)	70.319	70.9(3)
(1/2,3/2)	47.878	47.2(4)
(1/2,1/2)	-136.436	-137.2(4)
(3/2,1/2)	-146.94	-146.3(4)

Anti-H2+

Dehmelt, 1988

antiproton plasma in a r.f. trap. Currently most promising for atomic antimatter physics is the antiparticle of the molecular hydrogen ion H_2^+ , with rich r.f. and infrared spectra. In a Paul r.f. trap, loaded with a plasma of many LCR-cooled positrons and a few antiprotons, synthesis and confinement of it and possibly even a singly charged polymolecular antihydrogen cluster seem feasible today. The forbidden microwave and infrared spectra of an individual diatomic molecular ion of antihydrogen might then be measured to a revolutionary resolution, and be compared to those of the normal molecular ion.

Anti-H2+

Physica Scripta. Vol. T59, 423, 1995

Economic Synthesis and Precision Spectroscopy of Anti-Molecular Hydrogen lons in Paul Trap

Hans Dehmelt

Department of Physics, FM-15, University of Washington, Seattle, WA, U.S.A.

Abstract

Estimates of operating parameters of a Paul trap suitable for synthesis and spectroscopy of anti-molecular hydrogen ions are presented. The trap may employ a 2-frequency trapping voltage. Transportable cryogenic Paul traps for the long-time storage of positrons and antiprotons may make such experiments possible in an average university lab in the not too distant future.

It may be possible [1] to produce simple charged antimatter molecules from positrons confined in a Paul rf quadrupole trap and antiprotons contained simultaneously [2] by the space charge of the positrons. The trap with the

Molecular ions

- Other systems: H_2D^+ and D_2H^+
- Asvany, Schlemmer (2008, Köln): 20 kHz.
 Expt
- Theory about 50 MHz away.
- Future sympathetic cooling
- If you find two nuclei too few,

Conclusions

- Theoretical work on H₂⁺ in good shape thanks to Korobov and collaborators
- More experimental data needed
- D₂⁺ still largely unexplored experimentally, though paramagnetism limits precision
- What about anti-matter molecular ions?