Test of Lorentz Invariance with a ${}^{3}\text{He}/{}^{129}\text{Xe}$ co-magnetometer

C. Gemmel^a, S. Bäßler^c, M. Burghoff^b, W. Heil^a, W. Kilian^b, S. Knappe-Grüneberg^b, C. Ludwig^a, W. Müller^b, A. Schnabel^b, F. Seifert^b, Y. Sobolev^a and L. Trahms^b

^a Johannes Gutenberg-Universität Mainz, Mainz, Germany

^b Physikalisch-Technische-Bundesanstalt, Berlin, Germany

^c University of Virginia, Charlottesville, USA

In the framework of the so-called Standard Model Extension (SME) [1], Lorentz- and CPT violating terms should cause measurable effects in high-precision experiments at low energies. One test is to look for a periodic variation of the Larmor precession frequency of polarized noble gas atoms (³He, ¹²⁹Xe) during a sidereal day as the laboratory reference frame rotates with respect to a relic background field which permeates the universe and points in a preferred direction in space-time. In our setup we use co-located, nuclear spin polarized ³He and ¹²⁹Xe atoms and measure their free spin precession frequencies around a homogeneous magnetic guiding field of about 400 nT using LT_C SQUID detectors which have a sensitivity of $\approx 3 \text{ fT}/\sqrt{\text{Hz}}$. The whole apparatus is housed in a magnetically shielded room at the Physikalisch Technische Bundesanstalt (PTB) in Berlin [2]. To search for these effects or to give new upper limits, long transverse spin-relaxation times $(T_2^* \approx \mathcal{O}(day))$ are mandatory as well as very good signal-to-noise ratios (SNR). The latter requirement is fulfilled since the field of the precessing spins in the spherical sample cells reaches some tenths of pT at SQUID position, resulting in a SNR of > 1000. In order to reach a long T_2^* , one has to work in the so-called motional narrowing regime [3] at low gas pressures (p $\approx \mathcal{O}(\text{mbar})$) and low magnetic fields ($\approx \mu T$), where spin-dephasing due to field gradients is strongly suppressed [4] and T_2^* is dominated mainly by wall relaxation and relaxation due to the formation of Van-der-Waals molecules (only for ¹²⁹Xe). For the ${}^{3}\text{He}/{}^{129}\text{Xe}$ co-magnetometer, T₂^{*} times of up to 4 hours for ${}^{129}\text{Xe}$ and 25 hours for ${}^{3}\text{He}$ were measured.

In the talk we report on our measurement results from October 2007. The status of data analysis is discussed and a comparison is made with ${}^{3}\text{He}/{}^{129}\text{Xe}$ Zeeman maser experiments [5], which bound violations of CPT and Lorentz symmetry of the neutron (Schmidt model) at the 10^{-31} GeV level.

- [1] V.A. Kostelecký and C.D. Lane, Phys. Rev. D, 60, 11 (1999).
- [2] J. Bork *et al.*, Biomag2000, 970-973 (2000).
- [3] G.D. Cates *et al.*, Phys. Rev. A 37, 8 (1998).
- [4] W. Kilian *et al.*, Eur. Phys. J. D 42, 197202 (2007).
- [5] D. Bear *et al.*, Phys. Rev. Lett. 85, 5038 5041 (2000)