Spectroscopy of lithium ions at 34 % of the speed of light with sub-Doppler linewidth: *Towards a test of time dilation*

C. Novotny^a, B. Bernhardt^b, D. Bing^c, C. Geppert^d, G. Gwinner^e, T. W. Hänsch^b, R.

Holzwarth^b, G. Huber^a, S. Karpuk^a, H.-J. Kluge^d, T. Kühl^d, W. Nörtershäuser^{a,d}, S.

 $\label{eq:constraint} {\rm Reinhardt}^{b,c},\,{\rm G.~Saathoff}^b,\,{\rm D.~Schwalm}^c,\,{\rm M.~Steck}^d,\,{\rm T.~Udem}^b,\,{\rm and~A.~Wolf}^c.$

^a Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany

^b Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany

^c Max-Planck-Institut für Kernphysik, D-69029 Heidelberg, Germany

^d Gesellschaft für Schwerionenforschung, D-64291 Darmstadt, Germany

^e University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada

We report on an experiment towards a test of time dilation for the theory of Special Relativity (SR). To this end, metastable ⁷Li⁺ ions with a velocity (w) of 34 % of the speed of light (c) were stored in the Experimental Storage Ring at the Gesellschaft für Schwerionenforschung Darmstadt. This ion species offers a strong dipole transition in the optical regime ($\lambda_0 = 548.5$ nm) and a level scheme where spectroscopy with sub-Doppler linewidths is possible. In the experiment, lasers are aligned parallel- and antiparallel with respect to the ions' motion and fulfill the resonance conditions with the transitions for A-type spectroscopy. For the moving ion, the excitation frequencies $\nu_{p,a}$ in the laboratory reference frame are shifted with respect to the rest frequencies $\nu_{1,2}$ by $\nu_{p,a} = \nu_{1,2} \cdot \gamma \cdot (1 \pm \beta)$ where $\beta = w/c$. Multiplication of the two equations leads to $\nu_1 \cdot \nu_2 = \nu_a \cdot \nu_p$, if SR holds (i.e. $\gamma = (1 - \beta^2)^{-(1/2)}$). In kinematic test theories [1],[2] deviations of SR are described by velocity-dependent test functions that can be expanded in powers of β^2 . These lead i.a. to a slightly modified time dilation factor of $\gamma = \gamma_{SR} \cdot (1 + 2 \cdot \delta \alpha \cdot \beta^2 + (\delta \alpha + 2 \cdot \delta \alpha_2) \cdot \beta^4 + ...)$ where $\delta \alpha$, $\delta \alpha_2$ are test parameters that allow to quantify the deviations [3]. Previous experiments were either restricted to comparably low velocities (e.g. the precursor storage ring tests [4]) and thus limited to first-order deviations described by $\delta \alpha$; or, if the particle velocity allows for higher-order tests, the experiments suffered from poor frequency resolution [5]. We present a first step towards high precision experiments at high velocity and find time dilation to be consistent with the theory of SR to an upper bound of $|\delta \alpha_2| < 9 \times 10^{-6}$ for deviations to the order β^4 . This means an improvement by a factor of 30 compared to [5].

- [1] H. P. Robertson, Rev. Mod. Phys. **21** (1949) 378.
- [2] R. Mansouri and R. U. Sexl, Gen. Relativ. Gravit. 8 (1977) 497, 515 and 809.
- [3] C. Will, Phys. Rev. D, **45** (1992) 403.
- [4] G. Saathoff *et al.*, Phys. Rev. Lett. **91** (2003) 190403-1. and S. Reinhardt *et al.*, Nature Phys. **3** (2007) 861.
- [5] D. W. MacArthur *et al.*, Phys. Rev. Lett. **56** (1986) 282.