Improved Measurement of the 1s2s $^1S_0 - 1s2p$ 3P_1 Interval in Helium-like Silicon

Edmund G. Myersa, Thomas R. DeVorea and David N. Crosbyb

a Physics Department, Florida State University, Tallahassee, FL 32306-4350, USA
b Clarendon Laboratory, University of Oxford, OX1-3PU, UK

To provide a high precision test of two-electron atomic theory at $Z\alpha \sim 0.1$ we have remeasured the 1s2s $^1S_0 - 1s2p$ 3P_1 interval in Si$^{12+}$ [2]. Our result is $7230.585(6)$ cm$^{-1}$ and improves on our previous measurement [2] by a factor of 30. Helium-like ions in the 1s2s 1S_0 state were produced by foil stripping a 29 MeV silicon ion beam. The ion beam was merged with the standing wave in a high-finesse laser power-build-up cavity and transitions to the 1s2p 3P_1 level were detected by observing the subsequent x-ray decay to the ground-state. Uncertainty due to the doppler shift was greatly reduced by alternately inducing transitions, at nearly the same beam velocity, using the co- and counter-propagating waves in the build-up cavity when excited by single-frequency lasers at 1319 nm and 1450 nm, respectively.