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THE SIGNATURE OF THE SHAPOVALOV FORM ON
IRREDUCIBLE VERMA MODULES

WAI LING YEE

Abstract. A Verma module may admit an invariant Hermitian form, which

is unique up to a real scalar when it exists. Suitably normalized, it is known
as the Shapovalov form. The collection of highest weights decomposes under

the affine Weyl group action into alcoves. The signature of the Shapovalov

form for an irreducible Verma module depends only on the alcove in which the
highest weight lies. We develop a formula for this signature, depending on the

combinatorial structure of the affine Weyl group.

Classifying the irreducible unitary representations of a real reductive group
is equivalent to the algebraic problem of classifying the Harish-Chandra mod-

ules admitting a positive definite invariant Hermitian form. Finding a formula

for the signature of the Shapovalov form is a related problem which may be a
necessary first step in such a classification.

1. Introduction

1.1. Unitarizability and invariant Hermitian forms. Classically, the funda-
mental concept of Fourier analysis was that an essentially arbitrary function could
be expanded as a linear combination of exponentials. The more recent development
of ideas in group theory has illuminated the dependence of results in Fourier anal-
ysis on group-theoretic concepts, resulting in the movement from Euclidean spaces
to the more general setting of locally compact groups. Results such as the Peter-
Weyl Theorem give us a means of decomposing function spaces of a compact group
G into an orthogonal direct sum of subspaces expressed in terms of characters of
irreducible unitary representations of G. Equipped with this decomposition and
knowledge of these simpler subspaces, one can reformulate problems in analysis in
more tractable settings. Quantum mechanics is another source of problems con-
nected to unitary representations. Because of its implications for many different
areas of mathematics and physics, the study of unitary representations has been an
active area of research.

The irreducible unitary representations of an abelian group are one dimensional
(characters). In the case of a locally compact abelian group, Pontrjagin showed
that the unitary dual (the set of equivalence classes of irreducible unitary represen-
tations) Ĝu, furnished with pointwise multiplication of characters as the product,
has the structure of a locally compact abelian group. In this situation, the unitary
dual has the additional property that its unitary dual is G.
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Investigation of the non-abelian case began with the study of compact groups.
In the 1920s, Weyl described the irreducible unitary representations of a compact,
connected Lie group. For a locally compact group, (for example, a real or complex
reductive group), the problem of describing the unitary dual remains unsolved, with
the exception of some special cases.

In the interests of classifying the irreducible unitary representations, we wish to
study a broader family of representations: those which admit an invariant Hermitian
form. Unitarity of a representation amounts to the existence of a positive definite
invariant Hermitian form on the underlying vector space, hence our objective will
be, in particular, to investigate the signatures of invariant Hermitian forms and to
understand how positivity can fail.

1.2. Historical background. Let G be a real reductive Lie group and let K be a
maximal compact subgroup of G. Let g0 and k0 be the corresponding Lie algebras,
and let g and k be their complexifications. A Harish-Chandra module M is a
complex vector space which is:

a) a (g,K)-module:
M has compatible actions by g and K, and every m ∈ M lies in a finite-
dimensional K-invariant subspace

b) admissible:
the i-isotypic subspace of M is finite-dimensional for every irreducible uni-
tary representation i of K

c) finitely generated over U(g).

To an admissible representation (π, V ) of G, we associate in a natural way a Harish-
Chandra module VK−finite, known as the Harish-Chandra module of V . We define
VK−finite, the set of K-finite vectors, to be the set of vectors which lie in a finite
dimensional K-invariant subspace of V .

For irreducible unitary representations, infinitesimal equivalence (the Harish-
Chandra modules are isomorphic) implies unitary equivalence. Furthermore, for
any irreducible Harish-Chandra module M with a positive definite invariant Her-
mitian form, one can construct an irreducible unitary representation (π, V ) so that
M is the Harish-Chandra module of V . (See [10].) It follows that classifying the
irreducible unitary representations of G is equivalent to the algebraic problem of
classifying the Harish-Chandra modules admitting a positive definite invariant Her-
mitian form.

Verma modules may admit an invariant Hermitian form, which is unique up
to multiplication by a real scalar when it exists. Suitably normalized, this Her-
mitian form is called the Shapovalov form. Finding a formula for the signature
of the Shapovalov form is a related problem which may be a necessary first step
in classifying the Harish-Chandra modules admitting a positive definite invariant
Hermitian form. The Shapovalov form on M(λ) exists for λ in a subspace of h∗,
where h is a maximally compact Cartan subalgebra. This will be discussed further
in Section 2. Previously, Nolan Wallach computed the signature of the Shapovalov
form for a region corresponding roughly to the intersection of that subspace with
the negative Weyl chamber (a computation which we extend in this paper). In the
following, we will describe its implications for the unitarizability of (g,K)-modules.
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In lectures at the Institute for Advanced Studies in 1978, Zuckerman introduced
an algebraic method of constructing all admissible (g,K)-modules using homologi-
cal algebra machinery known as cohomological induction. (See [8].)

Let L be a θ-stable Levi subgroup of G with corresponding complexified Lie alge-
bra l, and let q = l⊕u be a parabolic subalgebra of g. Observe that representations
of l can be extended to representations of q by allowing u to act trivially.

Let C(g, k) be the category of (g, k)-modules. Consider the induction functor

indg,l∩k
q,l∩k(Z) = U(g)⊗U(q) Z

from C(q, l ∩ k) to C(g, l ∩ k). This functor, when applied to Z = Cλ ⊗ V where
λ ∈ z(l)∗ and V is an (l, L ∩K)-module, produces what are known as generalized
Verma modules. When applied to Z = Cλ in the special case where our parabolic
subalgebra is a Borel subalgebra, it produces the Verma module of highest weight
λ.

Let the functor Γ : C(g, l ∩ k) → C(g, k) be such that Γ(V ) is the set of k-finite
vectors of V . The functor Γ is covariant and left exact. As C(g, l ∩ k) has enough
injectives, we can form the Zuckerman functors: Γj : C(g, l∩ k) → C(g, k), where Γj

is the jth derived functor of Γ.
By composing the induction functor with the Zuckerman functors Γj , we obtain

cohomological induction functors which take (l, l ∩ k)-modules to (g, k)-modules.
In [2], Enright and Wallach show for admissible V ∈ C(g, l ∩ k) and m equal to

the dimension of the compact part of u that Γj(V h) '
(
Γ2m−j(V )

)h, where the
superscript h denotes Hermitian dual . In particular, if V admits a non-degenerate
invariant Hermitian form so that V h ' V , then Γm(V ) ' (Γm(V ))h. Thus Γm(V )
also admits a non-degenerate invariant Hermitian form.

Subsequently in [12], Wallach lifts information concerning the signature of the
invariant Hermitian form on V ∈ C(l, l ∩ k) to the invariant Hermitian form on
the generalized Verma module indg,l∩k

q,l∩k(Cλ ⊗ V ) (known as the Shapovalov form,
which we will describe further in the following subsection). Finally, he lifts that
information, using knowledge of the isomorphism Γm(X) ' (Γm(X))h, to the form
on the cohomologically induced (g, k)-module Γm

(
indg,l∩k

q,l∩k(Cλ ⊗ V )
)
. He concludes

that if the form on V is positive definite and λ lies in a particular region bounded
by hyperplanes, which we shall call the Wallach region, then the (g, k)-module
produced is also unitarizable.

In this paper, we extend the formula for the signature of the Shapovalov form
beyond the Wallach region. We compute the signature of the Shapovalov form
for all irreducible Verma modules which admit an invariant Hermitian form. The
formula is stated in Theorem 6.12.

Acknowledgements. The material in this paper is the result of thesis work su-
pervised by David A. Vogan Jr. at the Massachusetts Institute of Technology. I am
deeply grateful and fortunate to have had his guidance and support. I would also
like to thank Pavel Etingof for bringing the paper [9] to my attention.

2. An introduction to the Shapovalov form

We will use the following notation:
• g0 denotes a real semisimple Lie algebra
• θ is a Cartan involution of g0
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• g0 = k0 ⊕ p0 is the Cartan decomposition corresponding to θ
• h0 = t0 ⊕ a0 is a θ-stable Cartan subalgebra and corresponding Cartan

decomposition
We drop the subscript 0 to denote complexification. We let B(·, ·) denote the Killing
form, which is a symmetric, invariant, non-degenerate bilinear form on g. We let
(·, ·) denote the symmetric bilinear form on h∗ induced by B.

Definition 2.1. A Hermitian form 〈·, ·〉 on a g-module V is invariant if it satisfies

〈Xv, w〉+
〈
v, X̄w

〉
= 0

for every X ∈ g and every v, w ∈ V , where X̄ denotes the complex conjugate of X
with respect to the real form g0.

We wish to define the Hermitian dual of a representation of g. In order to do so,
we first define the conjugate representation:

Definition 2.2. Given a representation (π, V ), we define the conjugate repre-
sentation (π̄, V̄ ) as follows: the vector space V̄ is the same vector space as V ,
but with the following definition of multiplication by a complex scalar: z ·̄v = z̄ · v
where by · and ·̄ we mean scalar multiplication in V and V̄ , respectively. We define
π̄(X) = π(X̄) for all X ∈ g, where conjugation is with respect to the real form g0.

Observe that every weight µ of V under π gives rise to a weight µ̄ of V̄ under π̄,
where µ̄(H) = µ(H̄) for every H ∈ h.

Definition 2.3. The Hermitian dual of the representation (π, V ) is (πh, V h),
the conjugate representation of the contragredient representation of (π, V ).

If V is the direct sum of weight spaces Vµ for µ ∈ I, then V h is the direct product
of weight spaces V h

−µ̄ for µ ∈ I.

Theorem 2.4. An irreducible representation (π, V ) admits a non-degenerate in-
variant Hermitian form if and only if (π, V ) is isomorphic to a subrepresentation
of its Hermitian dual.

Definition 2.5. In the case where (π, V ) is the Verma module M(λ) with gen-
erator vλ, the Shapovalov form, which we will denote by 〈·, ·〉λ, is the invariant
Hermitian form for which 〈vλ, vλ〉λ = 1.

According to the previous theorem, in order to determine when the Shapovalov
form exists, we wish to determine when a Verma module embeds in its Hermitian
dual.

Pick some positive system of roots ∆+(g, h) and let b be the corresponding Borel
subalgebra and n its nilradical. The production functor is defined by

prog
b(V ) = Homb(U(g), V ),

where V is a b-module. We have indg
b(V )h ' prog

b̄
(V h) (Lemma 5.13, [11]).

We conclude that the Hermitian dual of the Verma module M(λ) = indg
b(Cλ)

is prog

b̄
(Ch

λ) = Homb̄(U(g), C−λ̄). Now Homb̄(U(g), C−λ̄) has the same weights as
U(g)

⊗
b̄op C−λ̄. We conclude from universality properties of Verma modules that

the Verma module U(g)
⊗

b̄op C−λ̄ embeds into the Hermitian dual of M(λ). From
this, we conclude that M(λ) admits an invariant Hermitian form if −λ̄ = λ and
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∆+(g, h) = ∆−(g, h). Observe that we must have b ∩ b̄ = h. In the following, we
will determine for which h and λ these conditions are satisfied.

Assume that h0 is θ-stable. For a θ-stable Cartan subalgebra h0 of g0 with
Cartan decomposition h0 = t0 ⊕ a0, a root α ∈ ∆(g, h) is imaginary valued on t0
and real valued on a0. A root α is imaginary if it vanishes on a0 and real if it
vanishes on t0. If α has support on both t0 and a0, then it is complex.

We define θα by (θα)(H) = α(θ−1H) for every H ∈ h. If Xα ∈ gα, then

[H, θXα] = θ([θ−1H,Xα]) = α(θ−1H)θXα = (θα)(H)θXα.

Therefore if α is a root, then θα is a root. We have θgα = gθα.

We define ᾱ by ᾱ(H) = α(H̄) for every H ∈ h. As ·̄ is involutive and since
[X̄, Ȳ ] = [X, Y ], arguing as for θ, we conclude that ᾱ is a root if α is a root. Also,
ḡα = gᾱ. Note that ᾱ = α if and only if α is real, and ᾱ = −α if and only if α is
imaginary.

In fact, θα and ᾱ are related by θα = −ᾱ as α is imaginary valued on t0 and
real valued on a0.

Since θα = α for imaginary α, therefore θgα = gα, whence gα = gα ∩ k⊕ gα ∩ p.
As gα is one-dimensional, either gα = gα ∩ k or gα = gα ∩ p. We call an imaginary
root α compact if gα ⊂ k and noncompact if gα ⊂ p.

We define Bθ(·, ·) = −B(·, θ·). As B is symmetric and invariant and as θ is an
involutive automorphism of g, Bθ is symmetric. Since k and p are the eigenspaces
corresponding to the eigenvalues 1 and −1 of θ, respectively, we conclude that k and
p are orthogonal with respect to B. The decomposition h = t⊕a is both direct and
orthogonal, hence h∗ = t∗ ⊕ a∗ is an orthogonal decomposition of h∗ with respect
to the non-degenerate symmetric bilinear form induced by B. For every α ∈ h∗,
we let α = αt + αa be the decomposition of α under this direct sum. Note that
α|t = αt|t, α|a = αa|a, and αt and αa are orthogonal.

A Cartan subalgebra h is maximally compact or fundamental if the compact
part has largest possible dimension. In this case, there are no real roots, whence
every root has non-trivial restriction to t (see Proposition 6.70 of [7]). Suppose h
is maximally compact. If Xα ∈ gα where α is complex, then θα = αt − αa and α
have the same restriction to t. The vectors Xα + θXα ∈ k and Xα − θXα ∈ p both
have t-weight αt. If α ∈ ∆(k, t) arises from the imaginary root β ∈ ∆(g, h), then
β is the only root restricting to α. If α arises from a complex root β, then β and
θβ are the only roots restricting to α. We may think of ∆(g, h) as ∆(k, t)t∆(p, t),
where ∆(k, t) and ∆(p, t) overlap in the part coming from complex roots. Therefore
we may think of the compact roots as ∆(k, t) and the noncompact roots as ∆(p, t).

Lemma 2.6. We have ∆+(g, h) = ∆−(g, h) for some appropriate choice of ∆+(g, h)
if and only if every α ∈ ∆(g, h) has non-trivial restriction to t (i.e. h is maximally
compact).

Proof. ⇒: This direction is clear as we cannot have ᾱ = α, and so none of the roots
are real.
⇐: Conversely, if h is maximally compact, then t is a Cartan subalgebra of k.

We know that k is a reductive Lie subalgebra and every α ∈ ∆(k, t) is the restriction
of some β ∈ ∆(g, h) to t. Choose a positive system ∆+(k, t) for ∆(k, t) defined by
some regular element rk ∈ t∗. We can arrange for rk to be regular with respect
to the root system ∆(g, h) also as every α ∈ ∆(g, h) has non-zero restriction to
t. We define ∆+(g, h) to be the positive system of ∆(g, h) corresponding to rk.
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Since (α, rk) = (α|t, rk), we conclude that ∆+(g, h) is compatible with ∆+(k, t): if
α ∈ ∆+(g, h) and α|t ∈ ∆(k, t), then α|t ∈ ∆+(k, t). Furthermore, as ᾱ = −αt +αa,
we see that we have ∆+(g, h) = ∆−(g, h). �

Remark 2.7. We may also write ∆+(g, h) = ∆−(g, h) as θ∆+(g, h) = ∆+(g, h).

We may satisfy the condition −λ̄ = λ by selecting λ to be imaginary–that is, it
takes imaginary values on t0 ⊕ a0. In conclusion,

Proposition 2.8. Let b = h ⊕ n be a Borel subalgebra of g. If h = b ∩ b̄, h is
maximally compact, λ is imaginary, and the positive system ∆+(g, h) corresponding
to b is θ-stable, then the Verma module M(λ) = U(g)

⊗
U(b) Cλ admits a non-

degenerate invariant Hermitian form.

Henceforth, we work in the setting where a non-degenerate invariant Hermitian
form on a given Verma module exists. In this case, how does one construct the
Shapovalov form?

For X ∈ g, let X∗ = −X̄ and extend the map X 7→ X∗ to an involutive
antiautomorphism of U(g) by 1∗ = 1 and (xy)∗ = y∗x∗ for every x, y ∈ U(g). We
have U(g) = U(h)⊕ (U(g)n + nopU(g)) from the triangular decomposition of U(g).
Let p be the projection of U(g) onto U(h) under this direct sum.

For x, y ∈ U(g), by invariance, 〈xvλ, yvλ〉λ = 〈y∗xvλ, vλ〉λ . Since n acts on vλ by
zero, therefore 〈U(g)nvλ, vλ〉λ = 0. As any element of U(g)vλ is a sum of vectors of
weight no more than λ, it follows that any element of nopU(g)vλ is a sum of vectors
of weight strictly less than λ. By invariance, 〈nopU(g)vλ, vλ〉λ = 0. We conclude
that

〈xvλ, yvλ〉λ = 〈p(y∗x)vλ, vλ〉λ = λ(p(y∗x)) 〈vλ, vλ〉λ = λ(p(y∗x)).
We see from this construction that an invariant Hermitian form on a Verma module
is unique up to multiplication by a real scalar.

Let v and w be vectors of weight λ− µ and λ− ν, respectively. Since

〈Hv,w〉λ = −
〈
v, H̄w

〉
λ

‖ ‖
(λ− µ)(H) 〈v, w〉λ −(λ̄− ν̄)(H) 〈v, w〉λ = (λ + ν̄)(H) 〈v, w〉λ ,

we conclude that 〈v, w〉λ = 0 if µ 6= −ν̄ = θν. The Shapovalov form pairs the λ−µ
weight space with the λ−θµ weight space. Since the dimension of each weight space
of M(λ) is finite, therefore by restricting our attention to each weight space and
the weight space to which it is paired individually, we may discuss the signature
and the determinant of the Shapovalov form. For the purpose of such a discussion,
we study the classical Shapovalov form.

There is a unique involutive automorphism σ of g such that

σ(Xi) = Yi, σ(Yi) = Xi, σ(Hi) = Hi

where the Xi, Yi,Hi are the canonical generators of g. It induces an involutive
automorphism of U(g), which we will also denote by σ. We know that

p(σ(x)) = p(x) ∀x ∈ U(g)

(see [6]). The classical Shapovalov form, which we denote by (·, ·)S , is defined by

(xvλ, yvλ)S = λ(p(σ(x)y)) ∀x, y ∈ U(g).

It is symmetric, bilinear, and (M(λ)λ−µ,M(λ)λ−ν)S = 0 if µ 6= ν.
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A theorem of Shapovalov states that the determinant of the classical Shapovalov
form on the λ− µ weight space is∏

α∈∆+(g,h)

∞∏
n=1

((λ + ρ, α∨)− n)P (µ−nα)

up to multiplication by a scalar. Here, P denotes Kostant’s partition function.
Comparing the formula 〈xvλ, yvλ〉λ = λ(p(y∗x)) to the formula for the classical

Shapovalov form (xvλ, yvλ)S = λ(p(σ(x)y)) = λ(p(σ(y)x)), we see that when µ
is imaginary, the determinant of a matrix representing 〈·, ·〉λ on the λ − µ weight
space differs from the classical formula above by the determinant of a change of
basis matrix. When µ is complex so that the λ − µ and λ − θµ weight spaces are
paired, we see that the form 〈·, ·〉λ on M(λ)λ−µ + M(λ)λ−θµ can be represented by
a matrix of the form

λ− µ
λ− θµ

(
0 A
Āt 0

)
where A and Āt differ from matrices representing the classical Shapovalov form
on the λ − θµ and λ − µ weight spaces, respectively, by multiplication by change
of basis matrices. Thus the determinant of this matrix, up to multiplication by a
scalar, is ∏

α∈∆+(g,h)

∞∏
n=1

((λ + ρ, α∨)− n)P (µ−nα) ((λ + ρ, α∨)− n)P (θµ−nα)
.

Unfortunately, when the subspace under consideration has dimension greater than
one, a formula for the determinant is insufficient for the purposes of computing the
signature.

The radical of the Shapovalov form is the unique maximal submodule of M(λ),
hence the form is non-degenerate precisely for the irreducible Verma modules. The
Shapovalov determinant formula indicates precisely where the Shapovalov form is
degenerate, and consequently where M(λ) is reducible: on the affine hyperplanes
Hα,n := {λ + ρ | (λ + ρ, α∨) = n} where α is a positive root and n is a positive
integer. We conclude that in any connected set of purely imaginary λ avoiding
these reducibility hyperplanes, as the Shapovalov form never becomes degenerate,
the signature corresponding to some fixed µ remains constant.

The largest of such regions, which we name the Wallach region, is the inter-
section of the negative open half spaces(⋂

α∈Π

H−
α,1

)⋂
H−eα,1

with ih∗0, where α̃∨ is the highest coroot, Π the set of simple roots corresponding
to our choice of ∆+, and H−

β,n = {λ + ρ | (λ + ρ, β∨) < n}.
In [12], Wallach shows for fixed imaginary µ that the diagonal entries in a matrix

associated to the Shapovalov form 〈·, ·〉λ+tξ and the λ + tξ − µ weight space have
higher degree in t than the off-diagonal entries. Thus, choosing λ and ξ appropri-
ately so that λ+ tξ lies in the Wallach region for all t ≥ 0, an asymptotic argument
which examines the signs of the diagonal entries for large t yields a formula for the
signature of the Shapovalov form within the entire Wallach region.
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Definition 2.9. Denote the signature of the Shapovalov form on the λ − µ and
λ − (−µ̄) weight space(s) of M(λ) by (p({µ,−µ̄}), q({µ,−µ̄})). The signature
character of 〈·, ·〉λ is

chsM(λ) =
∑

{µ,−µ̄}⊂Λ+
r

(p({µ,−µ̄})− q({µ,−µ̄})) eλ−µ−µ̄
2

where Λ+
r denotes the positive root lattice.

Here we make the observation that if µ ∈ Λ+
r is complex, then the Shapo-

valov form pairs the two distinct weight spaces M(λ)λ−µ and M(λ)λ−(−µ̄) so that
p({µ,−µ̄}) and q({µ,−µ̄}) are equal. In other words, p({µ,−µ̄})− q({µ,−µ̄}) = 0.
Thus we may write the signature character as

chsM(λ) =
∑

µ∈Λ+
r

µ imaginary

(p(µ)− q(µ)) eλ−µ.

Theorem 2.10. (Wallach,[12]) Suppose λ|a0 ≡ 0. The signature character of M(λ)
for λ + ρ in the Wallach region is

chsM(λ) =
eλ∏

α∈∆+(p,t)

(
1− e−α

) ∏
α∈∆+(k,t)

(
1 + e−α

) .
This is a rewording of a special case of Lemma 2.3 of [12]. Here, in translating

from the language of Section 2 of [12] to our language, we choose H to correspond to
irk. Then q = b, l = h, u = n, un =

⊕
α∈∆+(p,t)

gα, uk =
⊕

α∈∆+(k,t)

gα, ∆(un) = ∆(p, t),

and ∆(uk) = ∆(k, t). The system of positive roots Φ+ for (l ∩ k, t) is empty, and
therefore the Weyl group Wl∩k is trivial, ρl∩k = 0, and Dl∩k = 1. We choose V to
be the trivial representation. Therefore Dl∩kchs(V ) = 1.

Observe that the formula for the signature character makes sense due to our
results concerning pairings of non-imaginary weight spaces and our characterization
of the roots corresponding to a maximally compact Cartan subalgebra.

Our goal is to extend Wallach’s result (Theorem 2.10) to all irreducible Verma
modules which carry an invariant Hermitian form. The strategy is as follows:

Suppose λ + ρ lies in the hyperplane Hα,n, where α is a positive root and n is
a positive integer, but for all other positive roots β, (λ + ρ, β∨) is not an integer.
Then for non-zero ξ and for non-zero t in a neighbourhood of 0, 〈·, ·〉λ+tξ has radical
{0}. Since 〈·, ·〉λ has radical isomorphic to the irreducible Verma module M(λ−nα),
the signature character must change by plus or minus twice the signature character
of 〈·, ·〉λ−nα across Hα,n. (This will be discussed more rigorously in Section 3.)

Roughly, by taking a suitable path from λ to the Wallach region and keeping
track of changes as we cross reducibility hyperplanes, we arrive at an expression
for the signature of 〈·, ·〉λ in terms of the signature in the Wallach region. We shall
describe this more concretely in Section 4.

3. The Jantzen filtration

Given a finite-dimensional complex vector space E and an analytic family 〈·, ·〉t
of Hermitian forms defined on E for t ∈ (−δ, δ) so that 〈·, ·〉t is non-degenerate for
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t 6= 0 and degenerate for t = 0, we define the Jantzen filtration of E as follows:

E = E0 ⊃ E1 ⊃ · · · ⊃ EN = {0}

where e ∈ En for n ≥ 0 if there exists an analytic function fe : (−ε, ε) → E for
some ε > 0 such that

(1) fe(0) = e
(2) 〈fe(t), e′〉t vanishes to order at least n at t = 0 for any e′ ∈ E.

For e, e′ ∈ En, define

〈e, e′〉n = lim
t→0

1
tn
〈fe(t), fe′(t)〉t

which is independent of choice of fe and fe′ . We have the following results (see
Section 3 of [11]):

Theorem 3.1. (Vogan, [11]) The form 〈·, ·〉n on En is Hermitian with radical
En+1, and therefore it induces a non-degenerate Hermitian form on En/En+1,
which we also denote 〈·, ·〉n. Let (pn, qn) be the signature of 〈·, ·〉n, (p, q) be the
signature of 〈·, ·〉t for t ∈ (0, δ), and (p′, q′) be the signature of 〈·, ·〉t for t ∈ (−δ, 0).
Then

p = p′ +
∑

n odd

pn −
∑

n odd

qn

q = q′ +
∑

n odd

qn −
∑

n odd

pn.

For the remainder of this section, let λt : (−ε, ε) → ih∗0 be an analytic map
satisfying the following conditions:

(1) For some positive root α and positive integer n, λ0 ∈ Hα,n.
(2) λ0 6∈ Hβ,m for β 6= α, θα, α + θα and m an integer.
(3) For t 6= 0, λt is imaginary (so the Shapovalov form exists) but does not lie

in any hyperplanes of the form Hβ,m where β is a root and m is an integer.
We may view M(λt) as realized on a fixed vector space V for every t in (−ε, ε) via

M(λt) = U(g)
⊗

U(b) Cλt
= U(nop) ⊗ Cλt

. From now on, we will identify V with
U(nop) and the −µ weight space of U(nop) with the λt − µ weight space of M(λt)
without further comment. Since 〈xvλt , yvλt〉λt

= λt(p(y∗x)) for x, y ∈ U(g), there-
fore 〈·, ·〉λt

is an analytic family of Hermitian forms on V . The Jantzen filtration
of V is

V = V0 ⊃ V1 ⊃ · · · ⊃ VN = {0}
where Vj is defined as Ej was, with the additional stipulation that fe take values
in a fixed finite-dimensional subspace of V . As before, we define a Hermitian form
〈·, ·〉j on Vj with radical Vj+1. We remark that the chain of subspaces is indeed
finite as each Vj is invariant under g and M(λ0) has finite length.

As we have an h-invariant orthogonal decomposition of V into finite dimensional
subspaces with respect to the Shapovalov form, we may view 〈·, ·〉λt

as a collection
of analytic families of Hermitian forms on each finite dimensional weight space
(or pair of weight spaces) of V . From orthogonality, we may further conclude
that for e ∈ M(λt)λt−µ, we may take fe to have values in M(λt)λt−µ. Therefore
the Jantzen filtration of V gives us Jantzen filtrations of each finite dimensional
subspace in our orthogonal decomposition of V , and Theorem 3.1 holds for each
of these subspaces. For µ imaginary, let (p(µ), q(µ)) be the signature of 〈·, ·〉λt

on
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M(λt)λt−µ for t ∈ (0, ε) and (p′(µ), q′(µ)) be the signature for t ∈ (−ε, 0). Let
(pj(µ), qj(µ) be the signature of 〈·, ·〉j on the −µ weight space of Vj/Vj+1. Then

p = p′ +
∑

j odd

pj −
∑

j odd

qj

q = q′ +
∑

j odd

qj −
∑

j odd

pj

as before.
In determining the Jantzen filtration of V corresponding to 〈·, ·〉λt

, g-invariance of
the different levels of the filtration establishes strong restrictions on the possible val-
ues of the Vj . (We note that for what follows, we may also use the Kazhdan-Lusztig
Conjecture to obtain the Jantzen filtration, but that gives us more information than
we need.) We have two cases:
Case 1: α is imaginary and Hα,n the only reducibility hyperplane containing λ0.

By our choice of λ0, M(λ0) has only one non-trivial submodule: M(λ0 − nα).
Its multiplicity must be one as M(λ − nα) is a free U(nop)-module by choice of λ
(see Theorem 7.6.6 of [1]). Therefore our Jantzen filtration must be

M(λ0) ⊃ M(λ0 − nα) ⊃ · · · ⊃ M(λ0 − nα) = VN ⊃ {0}.

According to the Shapovalov determinant formula, up to multiplication by a scalar,
the determinant of the form 〈·, ·〉λt

on the λt − nα weight space is

∞∏
m=1

∏
β∈∆+(g,h)

((λt + ρ, β∨)−m)P (nα−mβ).

The only factor which is zero when t = 0 is the factor corresponding to β = α and
m = n. Since P (0) = 1, as we go from t > 0 to t < 0, the determinant changes
sign. Therefore N must be odd and (pN , qN ) or (qN , pN ) must be the signature of
the Shapovalov form on M(λ0 − nα). Thus:

Proposition 3.2. In the setup of this section, suppose α is imaginary. If t1 ∈ (0, ε)
and t2 ∈ (−ε, 0), then

chsM(λt1) = eλt1−λt2 · chsM(λt2)± 2eλt1−λ0chsM(λ0 − nα)

= eλt1−λt2 · chsM(λt2)± 2chsM(λt1 − nα).

Case 2: α is complex (so λ0 is contained in both Hα,n,Hθα,n, and also in Hα+θα,2n

if α + θα is a root).
We know that M(λ0−nα) is a submodule of M(λ0) as (λ0+ρ, α∨) = n. As λ0 and

ρ are imaginary, therefore (λ0 + ρ,−ᾱ∨) = −(λ̄0 + ρ̄, α∨) = (λ0 + ρ, α∨) = n̄ = n,
whence M(λ0 − n(−ᾱ)) must also be a submodule of M(λ0).

Key to describing the Jantzen filtration in this case is the usage of results of Bern-
stein, Gelfand, and Gelfand, described in [1]. Let J(λ) denote the unique largest
submodule of M(λ) and L(λ) = M(λ)/J(λ) the corresponding simple quotient.

Proposition 3.3. (Proposition 7.6.1, [1]) The Verma module M(λ) has a Jordan-
Hölder series and every simple subquotient of M(λ) is isomorphic to L(µ) for some
µ belonging to W · (λ + ρ) ∩ (λ + ρ− Λ+

r )− ρ.

Beware that the notation in [1] includes a shift by ρ.
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Theorem 3.4. (Theorem 7.6.6, [1]) For µ, λ ∈ h∗,

dim Hom(M(µ),M(λ)) ≤ 1.

Theorem 3.5. (Bernstein-Gelfand-Gelfand, Theorem 7.6.23 of [1]) For λ, µ ∈ h∗,

M(µ) ⊂ M(λ) ⇐⇒ ∃α1, · · · , αm ∈ ∆+(g, h) such that
λ + ρ ≥ sα1(λ + ρ) ≥ · · · ≥ sαm · · · sα1(λ + ρ) = µ + ρ.

Remark 3.6. The above conditions are equivalent to µ + ρ ∈ W (λ + ρ) and µ ≤ λ
in the case where g is type A2 (see Remark 7.8.10, [1]).

If α and −ᾱ = θα are orthogonal: We have (λ0 − nα + ρ, (θα)∨) = (λ0 +
ρ, (θα)∨) = n. By symmetry and our discussion above, we have the following
containment of Verma modules:

M(λ0)
� �

M(λ0 − nα) M(λ0 − nθα)
� �

M(λ0 − n(α + θα))

.

Note that L(λ0) is in the 0th level of the Jantzen filtration since the radical of
〈·, ·〉λ0

is the unique largest submodule of M(λ0). As each copy of L(λ0 − nα) is
paired with a copy of L(λ0 − nθα), the pair makes no contribution to the change
in signature character as t changes sign, whether or not it is contained in an even
or odd level of the filtration. Thus only L(λ0 − n(α + θα)) = M(λ0 − n(α + θα))
may make a contribution to the change in signature character. By Theorems 3.4
and 3.5, the multiplicity of L(λ0 − n(α + θα)) is one.

Up to multiplication by a scalar, the determinant of a matrix representing 〈·, ·〉λt

on the λt − n(α + θα) weight space of M(λt) is
∞∏

m=1

∏
β∈∆+(g,h)

((λt + ρ, β∨)−m)P (n(α+θα)−mβ).

The only factors which are zero when t = 0 are those corresponding to the pairs
(α, n) and (θα, n) as α + θα is not a root. Observe that P (nα) = P (nθα) as θ is a
bijection from ∆+(g, h) to itself. Combining this with (λt+ρ, α∨) = (λt+ρ, (θα)∨),
we see that the determinant does not change as t changes from positive to negative.
In other words, L(λ0−n(α+θα)) must be contained in an even level of the filtration.
We have:

Proposition 3.7. In the setup of this section, suppose α is complex and α and θα
are orthogonal. Then for t1 ∈ (0, ε) and t2 ∈ (−ε, 0),

chsM(λt1) = eλt1−λt2 · chsM(λt2).

If α and −ᾱ = θα are not orthogonal: Now α and −ᾱ = θα have the same
length. If α and θα are not orthogonal, then either (α, (θα)∨) = ±1 or (θα, α∨) =
±1, whence either α + θα or α − θα is a root. Observe that α and θα have the
same height as θ applied to an expression for α as a sum of indecomposable roots
gives an expression for θα as a sum of indecomposable roots (we will see such an
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argument again in Section 6). We conclude that α − θα cannot be a root. Thus
α + θα must be a root and α and θα generate a subroot system of type A2. Now

(λ0 + ρ, α∨) = (λ0 + ρ, (θα)∨) = n
⇒ (λ0 + ρ, (α + θα)∨) = (λ0 + ρ, α∨) + (λ0 + ρ, (θα)∨) = 2n.

It follows that M(λ0 − 2n(α + θα)) is a submodule of M(λ0). From

(λ0 − nα + ρ, (θα)∨) = 2n (λ0 − nα− 2nθα + ρ, α∨) = n

(λ0 − nα + ρ, (α + θα)∨) = n (λ0 − nα− 2nθα + ρ, (θα)∨) = 0

and from symmetry, we observe the following containment of Verma modules:

M(λ0)
� �

M(λ0 − nα) M(λ0 − nθα)
� �

M(λ0 − nα) ∩M(λ0 − nθα)
� �

M(λ0 − nα− 2nθα) M(λ0 − 2nα− nθα)
� �

M(λ0 − 2n(α + θα))

As in the subcase where α and θα are orthogonal, the only composition factor which
may make a contribution to the change in signature character as t changes sign is
L(λ0 − 2n(α + θα)) = M(λ0 − 2n(α + θα)), and its multiplicity is one.

We study the determinant of 〈·, ·〉λt
on the λt−2n(α+θα) weight space of M(λt):

∞∏
m=1

∏
β∈∆+(g,h)

((λt + ρ, β∨)−m)P (2n(α+θα)−mβ).

The pairs (β, m) for which the corresponding factor is zero at t = 0 are (α, n),
(θα, n), and (α + θα, 2n). Again, since (λt + ρ, α) = (λt + ρ, θα), P (nα + 2nθα)
and P (2nα + nθα) are equal, and P (0) = 1, therefore L(λ0 − 2n(α + θα)) must be
contained in an odd level of the filtration. We obtain:

Proposition 3.8. In the setup of this section, suppose α is complex and α and θα
are not orthogonal so that α + θα is an imaginary root. Then for t1 ∈ (0, ε) and
t2 ∈ (−ε, 0),

chsM(λt1) = eλt1−λt2 · chsM(λt2)± 2chsM(λt1 − n(α + θα)).

Remark 3.9. This is compatible with Proposition 3.2.

4. A preliminary formula for the signature character

In this and the subsequent section, we will assume that h is a compact Cartan
subalgebra–that is, h = t and a = 0. Then all roots are imaginary.

Definition 4.1. According to Theorem 2.10, there are constants cµ for µ ∈ Λ+
r so

that
R(λ) :=

∑
µ∈Λ+

r

cµeλ−µ

is the signature character of the Shapovalov form 〈·, ·〉λ when λ + ρ lies in the
Wallach region.
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Consider A0 = {λ + ρ | (λ + ρ, α∨) < 0 ∀α ∈ Π, (λ + ρ, α̃∨) > −1}, which we
call the fundamental alcove. Reflections through the walls of the fundamental
alcove generate the affine Weyl group, Wa. The action of the affine Weyl group
defines alcoves which have walls of the form Hα,n. (See [4].) Note that the signature
of the Shapovalov form does not change within each of these alcoves.

Definition 4.2. For an alcove A, there are constants cA
µ for µ ∈ Λ+

r such that

RA(λ) :=
∑

µ∈Λ+
r

cA
µ eλ−µ

is the signature character of the Shapovalov form 〈·, ·〉λ when λ + ρ lies in A.

Lemma 4.3. If wA0 and w′A0 are adjacent alcoves separated by the hyperplane
Hα,n, then

(4.1) RwA0(λ) = Rw′A0(λ) + 2ε(wA0, w
′A0)RwA0−nα(λ− nα)

where ε(wA0, w
′A0) is zero if Hα,n is not a reducibility hyperplane and plus or

minus one otherwise.

Proof. This is just Proposition 3.2. �

Remark 4.4. Calculating ε is difficult and will be the subject of the following section.

Remark 4.5. Observe that ε(wA0, w
′A0) = −ε(w′A0, wA0).

Recall that the reflections through the walls of A0 generate Wa. These reflections
are denoted by sα,0 for each simple root α and seα,−1. If we omit seα,−1, we generate
the Weyl group W as a subgroup of Wa. These generators are compatible with
reflection through the walls of the fundamental Weyl chamber C0, which we choose
to be the Weyl chamber which contains A0: C0 =

⋂
α∈Π

H−
α,0. Observe that for each

s ∈ W , sA0 lies in the Wallach region so that RsA0 = R.
We will define two maps · and ·̃ from the affine Weyl group to the Weyl group

as follows:
If w = ts where s is an element of the Weyl group and t is translation by an
element of the root lattice, then w = s. We let w̃ be such that wA0 lies in the Weyl
chamber w̃C0. Observe that · is a group homomorphism while ·̃ is not. Furthermore,
sα,n = sα. Observe that we can rewrite (4.1) as

RwA0(λ) = Rw′A0(λ) + 2ε(wA0, w
′A0)Rsα,0sα,nwA0(sα,0sα,nλ)

= Rw′A0(λ) + 2ε(wA0, w
′A0)Rsα,nw′A0(sα,nsα,nλ).(4.2)

For w in the affine Weyl group, let wA0 = C0
r1→ C1

r2→ · · · r`→ C` = w̃A0 be a
(not necessarily reduced) path from wA0 to w̃A0. Applying (4.2) ` times, we obtain

RwA0(λ) = R ewA0(λ) +
∑̀
j=1

ε(Cj−1, Cj)2RrjCj (rjrjλ)

= R(λ) + 2
∑̀
j=1

ε(Cj−1, Cj)RrjCj (rjrjλ).

Observe that a path from rjCj to rjC` is rjCj
rjrj+1rj−→ rjCj+1

rjrj+2rj−→ · · · rjr`rj−→ rjC`.
Applying induction on path length, we arrive at the following:
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Theorem 4.6. Recall R : λ 7→
∑

µ∈Λ+
r

cµeλ−µ and also RwA0 : λ 7→
∑

µ∈Λ+
r

cwA0
µ eλ−µ

which were defined to agree with the signature character of the Shapovalov form in
the Wallach region and in the alcove wA0, respectively.
Let wA0 = C0

r1→ C1
r2→ · · · r`→ C` = w̃A0 be a (not necessarily reduced) path from

wA0 to w̃A0. Then

RwA0(λ) =
∑

I={i1<···<ik}⊂{1,...,`}

ε(I)2|I|Rri1 ···rik
ewA0

(
ri1ri2 · · · rik

rik
rik−1 · · · ri1λ

)
=

∑
I={i1<···<ik}⊂{1,...,`}

ε(I)2|I|R
(
ri1ri2 · · · rik

rik
rik−1 · · · ri1λ

)
where ε(∅) = 1 and

ε(I) = ε(Ci1−1, Ci1)ε(ri1Ci2−1, ri1Ci2) · · · ε(ri1 · · · rik−1Cik−1, ri1 · · · rik−1Cik
).

We will determine ε(C,C ′) using the principle that in a closed loop, the changes
introduced by crossing reducibility hyperplanes must sum to zero. We know R by
Wallach’s work (Theorem 2.10). Theorem 4.6 will therefore give an explicit formula
for the signature character of the Shapovalov form on M(λ), where λ + ρ lies in
wA0. This solves the problem of calculating the signature for all irreducible Verma
modules which admit an invariant Hermitian form in the case where the Cartan
subalgebra h is compact.

5. Calculating ε

The strategy for computing ε is as follows:
• We show that for a fixed hyperplane Hα,n, the value of ε for crossing from

H+
α,n to H−

α,n depends only on the Weyl chamber to which the point of
crossing belongs.

• We consider irreducible rank 2 root systems generated by simple roots α1

and α2, and calculate the value of ε by calculating changes that occur at the
Weyl chamber walls. It is trivial to show by considering appropriate weight
vectors in the Verma module that ε for a hyperplane corresponding to a
simple root is constant and does not depend on Weyl chambers in any way.
However, we prove this in a manner that does not depend on simplicity of
the αi.

• For an arbitrary positive root γ in a generic irreducible root system which
is not type G2, we develop a formula for ε inductively by replacing the αi

from the previous step with appropriate roots. Key in the induction is the
independence of our rank 2 arguments from the simplicity of the αi.

5.1. Dependence on Weyl chambers. We begin by refining Theorem 4.6: if we
take an arbitrary C`, the formula becomes

RwA0(λ) =
∑

I={i1<···<ik}⊂{1,...,`}

ε(I)2|I|Rri1 ···rik
C`
(
ri1ri2 · · · rik

rik
rik−1 · · · ri1λ

)
.

If we choose in particular C` = C0, we have

(5.1.1) RC0(λ) =
∑

I={i1<···<ik}
⊂{1,...,`}

ε(I)2|I|Rri1 ···rik
C0 (ri1 · · · rik

rik
· · · ri1λ) .
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For the following two subsections, our paths will have this property.

Proposition 5.1.1. Suppose α is a positive root and n ∈ Z+ and suppose Hα,n

separates adjacent alcoves wA0 and w′A0, with wA0 ⊂ H+
α,n and w′A0 ⊂ H−

α,n.
The value of ε(w,w′) depends only on Hα,n and on w̃.

Proof. We begin by proving the proposition for types A2 and B2 in the case where
wA0 = Ci and w′A0 = Ci+1 as described in the following figure.

Type A2 Type B2
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C = {C0, . . . , C7}

C0
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C4
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r6

C6

r7

C7

Hα1+2α2,m+n
r8Hα2,n

Figure 1. Classical rank 2 systems

As we may cover any hyperplane with overlapping translates of C, it suffices to
show that ε(Ci, Ci+1) + ε(Ci+`/2, Ci+1+`/2) = 0 for i = 0, 1, . . . , `/2 − 1 in these
rank 2 cases. To show this, we need the following result:

Lemma 5.1.2. Let C = {Ci}i=0,...,`−1 be a set of alcoves that lie in the interior of
some Weyl chamber and suppose the reflections {rj}j=1,··· ,k preserve C. If w and
v are elements of Wa generated by the rj, then

w−1w = v−1v ⇐⇒ w = v.

Proof. ⇒: By simple transitivity of the action of Wa on the alcoves, w−1w = v−1v
if and only if w−1wC = v−1vC for any alcove C. Choose in particular C = Ci. The
alcoves w−1wCi and v−1vCi belong to the same Weyl chamber as they are the same
alcove. As the rj ’s preserve C which lies in the interior of some Weyl chamber, wCi

and vCi belong to the same Weyl chamber sC0, say. Therefore the Weyl chamber
containing w−1wCi = v−1vCi may be expressed both as w−1sC0 and as v−1sC0. It
follows that w−1 = v−1, whence w = v. The other direction is trivial. �

We return to proving ε(Ci, Ci+1)+ε(Ci+`/2, Ci+1+`/2) = 0 for i = 0, 1, . . . , `/2−1
in our rank 2 cases.

Definition 5.1.3. For I = {i1 < · · · < ik}, we define wI = rik
rik−1 · · · ri1 .

We rewrite (5.1.1) as

(5.1.2)
∑

∅6=I⊂{1,...,`}

2|I|ε(I)RwI
−1C0

(
wI

−1wIλ
)

= 0.
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Definition 5.1.4. We will use Tµ to denote translation by −µ: Tµ(λ) = λ− µ.

Our rank 2 cases satisfy the conditions for Lemma 5.1.2. Using Lemma 5.1.2
and the partial ordering on Λr on (5.1.2), we obtain

(5.1.3)
∑

∅6=I⊂{1,...,`}
wI

−1wI=Tµ

2|I|ε(I) = 0

for every µ ∈ Λr.
Suppose µ = mα1. The subsets I such that |I| < 3 for which wI

−1wI = Tmα1

are I = {1}, {1 + `/2}. By considering equation (5.1.3) modulo 8, we obtain

ε(C0, C1) + ε(C`/2, C`/2+1) = 0,

which gives the desired result for Hα1,m. The same proof can be used for the other
hyperplanes. (Note that this proof works for type G2 also.)

To extend the proof of this proposition to the general case where ∆(g, h) is any
irreducible root system other than G2, we consider an arbitrary positive root α.
There exists some positive β distinct from α such that (α, β) 6= 0. Then α and β
generate a rank 2 root subsystem of type A2 or B2. Consider two-dimensional affine
planes of the form P = span{α, β}+µ0. We may choose µ0 to lie in the intersection
of the hyperplanes Hα,n and Hβ,m. The intersection of Hα,n and Hβ,m with P looks
like Figure 1, with the possible inclusion of additional affine hyperplanes.

Consider roots δ that do not belong to the subsystem generated by α and β. If δ is
orthogonal to α and to β, then P ⊂ Hδ,k if (µ0, δ

∨) = k, and P∩Hδ,k = ∅ otherwise.
We restrict our attention for now to the case where P has trivial intersection with
reducibility hyperplanes corresponding to roots orthogonal to α and to β. For a
root δ for which (δ, α) 6= 0 or (δ, β) 6= 0, Hδ,k intersects P in a line. Whenever we
have an intersection of reducibility hyperplanes in a point µ0 in P that does not
lie in any Weyl chamber wall, we may take the alcoves Ci and the reflections ri

to correspond to a circular path in P around µ0 of suitably small radius, and we
take C ⊃ {Ci} to be the set of alcoves containing µ0 in their boundaries, so that
ri preserves C. Then, the conditions of Lemma 5.1.2 are satisfied, so we may argue
as before and conclude that the signs corresponding to alcoves in the circular path
agree with the proposition.
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Figure 2. Some examples
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In the previous diagrams, solid lines correspond to roots in the subsystem gen-
erated by α and β; dotted lines correspond to various δ.

We partition a given Weyl chamber into regions by hyperplanes Hδ,k for positive
integers k and positive roots δ orthogonal to α and to β. We conclude from our
discussion above that for any pair of adjacent alcoves wA0 and w′A0 belonging
to a given region, the value of ε(wA0, w

′A0) is the same, provided the alcoves are
separated by Hα,n, wA0 ⊂ H+

α,n, and w′A0 ⊂ H−
α,n.

t"!
# 

ν0

C0

C1 C2

C3

r1

r2

r3

r4 Hα,n

Hδ,k

To obtain our result for the entire Weyl chamber,
consider a reducibility hyperplane Hδ,k for which δ is
orthogonal to both α and β. Take ν0 in the intersection
of Hδ,k with Hα,n such that ν0 lies in the Weyl chamber
under consideration and (ν0, γ

∨) is not an integer for
roots γ not equal to plus or minus α or δ. Then, taking
a circular path in span{α, δ}+ν0 around ν0 of suitably
small radius, we may argue as above to conclude that
the value for ε corresponding to crossing Hα,n in the
region bounded by Hδ,k−1 and Hδ,k is the same as the
value for ε corresponding to crossing Hα,n in the region
bounded by Hδ,k and Hδ,k+1.

5.2. Calculating ε for the rank 2 cases. Some of the results of this section arise
from the structure as dihedral groups of the Weyl groups corresponding to the rank
2 simple root systems.

For a given hyperplane, in order to calculate the value of ε in any given Weyl
chamber, we need to calculate the value in one particular Weyl chamber and then
to calculate the changes that occur as we cross Weyl chamber walls. We work in the
setup of the following three figures for the remainder of this subsection. Alcoves
Ci have been labelled by w ∈ Wa such that Ci = wC0 and by corresponding
translations w−1w = Tµ.

Recall that we used ` to denote path length, which is 6 for type A2, 8 for type
B2, and 12 for type G2. Recall that C0 = C`.

Lemma 5.2.1. Suppose C intersects k reducibility hyperplanes. Then those re-
ducibility hyperplanes correspond to r1, r2, . . . , rk if Hα1,m is a reducibility hyper-
plane, or they correspond to r`, r`−1, . . . , r`−k+1 if Hα2,n is a reducibility hyperplane.

Proof. Recall that the fundamental Weyl chamber C0 was defined so that −ρ ∈ C0

and the fundamental alcove A0 was defined so that A0 ⊂ C0. This lemma may be
proved by observation. �

Lemma 5.2.2. Suppose C intersects one Weyl chamber wall: Hα,0. Then

wI
−1wI = wJ

−1wJ ⇐⇒ wI = wJ or wI = sαwJ .

Proof. ⇒: C intersects two Weyl chambers. Suppose sC0 is one of them. As
sα preserves C, therefore sαsC0 is the other. Since possible values for w̃I and
w̃J are s and sαs, either w̃I = w̃J or w̃I = sαw̃J . Applying ·̃ to both sides of
wI

−1wI = wJ
−1wJ , we have wI

−1 = wJ
−1 or wI

−1 = wJ
−1sα. Substituting this

into wI
−1wI = wJ

−1wJ , we have wI = wJ or wI = sαwJ . The other direction is
trivial. �
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C = {C0, . . . , C5}

C0

1

T0

r1

Hα1,m

C1

r1 = r4

Tmα1

r2

C2

Tmα1+(m+n)α2

r3r2 = r2r1 = r1r3

r3

C3

r2 = r5

T(m+n)(α1+α2)

r4

C4

r1r2 = r2r3 = r3r1

T(m+n)α1+nα2

r5

C5

r3 = r6

Tnα2 Hα1+α2,m+n

r6

Hα2,n

Figure 3. Type A2

We will need some results concerning the Weyl group. For s ∈ W , we have the
following definitions (see 1.6 of [4]):

∆(s) = ∆+ ∩ s−1(∆−)
n(s) = #∆(s)

The product s = si1 · · · sik
∈ W , where sij

= sαij
and the αij

are simple roots,
is a reduced expression for s if k is minimal. The length of s is defined to
be `(s) = k. We have `(s) = n(s) = `(s−1) (see Lemma 10.3 A of [3]). We
note that ∆(s) = {s−1(−α) |α ∈ ∆+ and s−1(−α) > 0}. We may rewrite this as
∆(s) = {α ∈ ∆+ | sα < 0}. Also, if s = si1 · · · sik

is a reduced expression for s ∈ W ,
then

(5.2.1) ∆(s−1) = {αi1 , si1αi2 , . . . , si1 · · · sik−1αik
}
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C = {C0, . . . , C7}

C0

1 T0

r1

Hα1,m

C1
r1 = r5

Tmα1

Hα1+α2,2m+n

r2

C2

r2r1 = r3r2
= r4r3 = r1r4

Tmα1+(2m+n)α2

r3

C3

r2 = r6

T(2m+n)(α1+α2)

r4

C4

r1r3 = r3r1
= r2r4 = r4r2

T(2m+n)α1+2(m+n)α2

r5

C5

r3 = r7

T(m+n)(α1+2α2)

r6

C6
r1r2 = r2r3

= r3r4 = r4r1

T(m+n)α1+nα2

r7

C7

r4 = r8

Tnα2

Hα1+2α2,m+n

r8

Hα2,n

Figure 4. Type B2

(see the proof of Corollary 1.7 of [4]).

Lemma 5.2.3. Recall that we defined the fundamental Weyl chamber C0 so that
−ρ ∈ C0. Let s ∈ W and α ∈ ∆+. If the α hyperplanes are positive in sC0, then

#
{

β ∈ ∆+

∣∣∣∣ β hyperplanes are
positive in sC0

}
> #

{
β ∈ ∆+

∣∣∣∣ β hyperplanes are
positive in sαsC0

}
.

Proof. Note that as{
β ∈ ∆+

∣∣∣∣ β hyperplanes are
positive in sC0

}
= {β ∈ ∆+ | (β, s(−ρ)) > 0}

by invariance of Killing form = {β ∈ ∆+ | s−1β < 0}
= ∆(s−1) by definition,

we only need to show that `(s−1) = `(s) > `(sαs) = `(s−1sα) if the hypotheses
for s and α are satisfied. By (5.2.1), we may assume that α = si1 · · · sij−1αij

for
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C = {C0, . . . , C11}

C0

1

T0

r1

Hα1,m

C1

r1 = r7

Tmα1

r2

Hα1+α2,3m+n
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Tmα1+(3m+n)α2

ri+1ri

r3
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C3

T(3m+n)(α1+α2)
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r8

C8 riri+2
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C9
T(m+n)(α1+3α2)

r9

r5 = r11

r10

C10

riri+1

T(m+n)α1+nα2

C11

Tnα2

r11

r12

r6

Hα2,n

Figure 5. Type G2

some j ∈ {1, . . . , k}. Then sα = si1 · · · sij−1sij
sij−1 · · · si1 by Proposition 1.2 of [4].

Therefore sαs = si1 · · · sij−1sij+1 · · · sik
, whence `(s) > `(sαs). �

Lemma 5.2.4. Suppose I = {i1 < i2 < · · · < ik} satisfies ε(I) 6= 0. Then, letting
µj be such that w{i1,...,ij}

−1w{i1,...,ij} = Tµj
, we have

0 < µ1 < µ2 < · · · < µk.

Proof. We prove this by induction on k. As the reducibility hyperplanes correspond
to positive roots and positive integers, therefore the lemma holds for k = 1. We
wish to prove the lemma for k = N ≥ 2, assuming that it holds for k ≤ N − 1.
If ε(I) 6= 0, then ε({i1, . . . , iN−1}) 6= 0. To prove the lemma for k = N , by our
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induction hypothesis, it suffices to show that µN−1 < µN . Now

wI
−1wI = ri1ri2 · · · riN

riN
· · · ri2ri1

= (ri1 · · · riN
riN

riN−1 · · · ri1)(ri1 · · · riN−1riN−1 · · · ri1)
= ri1 · · · riN

riN
riN−1 · · · ri1 TµN−1

As ε(ri1 · · · riN−1CiN−1, ri1 · · · riN−1CiN
) 6= 0, therefore the corresponding hyper-

plane is a reducibility hyperplane. It follows that ri1 · · · riN
riN

riN−1 · · · ri1 = Tν for
some ν > 0, whence µN = ν + µN−1 > µN−1. �

Proposition 5.2.5. Suppose C intersects a Weyl chamber wall and k reducibility
hyperplanes, where k ≥ 1. Then the Weyl chamber wall corresponds to rk+1 if
Hα1,m is a reducibility hyperplane, or to r`−k if Hα2,n is a reducibility hyperplane.
Among the `/2 possible values for µ where wI

−1wI = Tµ, k are positive. They
correspond to

r1r1 = Tµ1 , r1r2r2r1 = Tµ2 , . . . , r1 · · · rkrk · · · r1 = Tµk

in the case where Hα1,m is a reducibility hyperplane; or to

r`r` = Tµ1 , r`r`−1r`−1r` = Tµ2 , . . . , r` · · · r`−k+1r`−k+1 · · · r` = Tµk

in the case where Hα2,n is a reducibility hyperplane. Furthermore,

0 < µ1 < µ2 < · · · < µk.

Proof. The first statement follows from Lemma 5.2.1. Since the alcoves of C are in
one-to-one correspondence with possible values for wI , therefore by Lemma 5.2.2,
there are `/2 possible values for µ. These correspond to r1r1, r2r2, . . ., r`/2r`/2

by Lemma 5.2.2 since ri 6= rj for 1 ≤ i < j ≤ `/2 and certainly ri = sαrj is not
possible as ri is an affine reflection while sαrj is not. It now follows by Lemma
5.2.1 that there are k positive values for µ.

To prove the remainder of the proposition, by Lemma 5.2.4 and symmetry,
it suffices to assume that Hα1,m is a reducibility hyperplane and to show that
ε({1, 2, . . . , k}) 6= 0.

By Lemma 5.2.1, there exists a product of simple reflections s = si1 · · · sik+1 such
that

r1 corresponds to αi1

r2 corresponds to si1αi2

...
rk+1 corresponds to si1 · · · sik

αik+1 .

(See Lemma 5.2.3 and the material preceding it.) Observing that Cj = rj · · · r2r1C0,
we also have

rjrj−1 · · · r1 = si1 · · · sij for 1 ≤ j ≤ k.

We need to show that ε(r1r2 · · · rj−1Cj−1, r1r2 · · · rj−1Cj) 6= 0 for 2 ≤ j ≤ k.
The hyperplane separating Cj−1 and Cj corresponds to the root si1 · · · sij−1αij .
Therefore the hyperplane separating r1r2 · · · rj−1Cj−1 and r1r2 · · · rj−1Cj corre-
sponds to the root r1 · · · rj−1si1 · · · sij−1αij

= sij−1 · · · si1si1 · · · sij−1αij
= αij

. Al-
coves of C lie in si1 · · · sik+1C0 and si1 · · · sik

C0. Therfore r1r2 · · · rj−1Cj−1 and
r1r2 · · · rj−1Cj lie in sij

sij+1 · · · sik
C0 or in sij

sij+1 · · · sik+1C0. In both of those
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Weyl chambers, αij hyperplanes are reducibility hyperplanes, which implies that
ε(r1r2 · · · rj−1Cj−1, r1r2 · · · rj−1Cj) 6= 0. Therefore ε({1, 2, . . . , k}) 6= 0. �

Proposition 5.2.6. For a fixed hyperplane Hαi,N separating two adjacent alcoves
wA0 ⊂ H+

αi,N
and w′A0 ⊂ H−

αi,N
, the value of ε(wA0, w

′A0) does not depend on w

and w′.

Proof. By symmetry, it suffices to suppose C intersects a Weyl chamber wall and
to show that if Hα1,m is a reducibility hyperplane, then

ε(C0, C1) + ε(C`/2, C`/2+1) = 0.

Suppose C intersects k reducibility hyperplanes. Then by Proposition 5.2.5, the
only positive values for µ in wI

−1wI = Tµ are

r1r1 = Tµ1 , r1r2r2r1 = Tµ2 , . . . , r1 · · · rkrk · · · r1 = Tµk

and 0 < µ1 < µ2 < · · · < µk.
Consider (5.1.2). We may rewrite the equation as

k∑
j=1

∑
∅6=I⊂{1,...,`}

wI
−1wI=Tµj

2|I|ε(I)RwI
−1C0

(
wI

−1wIλ
)

= 0.

Here, we observe that as C does not lie entirely within a single Weyl chamber,
Lemma 5.1.2 may not be used as it was in the proof of Proposition 5.1.1 to obtain
equation (5.1.3). However, by minimality of µ1,∑

∅6=I⊂{1,...,`}
wI

−1wI=Tµ1

2|I|ε(I) = 0.

Indices I of size one in the above sum are {1} and {`/2+1}. Because µ1 is minimal,
by Lemma 5.2.4 ε(I) = 0 if wI

−1wI = Tµ1 and |I| ≥ 2, whence

ε(C0, C1) + ε(C`/2, C`/2+1) = 0.

In fact, we see that

(5.2.2)
∑

∅6=I⊂{1,...,`}
wI

−1wI=Tµ1

2|I|ε(I)RwI
−1C0

(
wI

−1wIλ
)

= 0.

�

Remark 5.2.7. Note that we did not use simplicity of α1 and α2 in the proof above
or in any of the lemmas quoted.

Definition 5.2.8. Recall that Ck = rk · · · r2r1C0. Define Ck to be rk · · · r2r1C0.

Proposition 5.2.9. Suppose C intersects Ck and Ck+1. If 2 ≤ k < `/2, then

ε(Ck−1, Ck) + ε(C`/2+k−1, C`/2+k) + 2ε(C0, C1)(r1C1, r1C2) = 0.

Symmetrically, if `/2 ≤ k < `− 2, then

ε(Ck+1−`/2, Ck+2−`/2)+ε(Ck+1, Ck+2)+2ε(C`/2−1, C`/2)ε(r`/2C`−2, r`/2C`−1) = 0.
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Proof. It suffices to prove the first statement. By (5.2.2), (5.1.2) may be written as
k∑

j=2

∑
∅6=I⊂{1,...,`}

wI
−1wI=Tµj

2|I|ε(I)RwI
−1C0

(
wI

−1wIλ
)

= 0.

With the µ1 terms removed, µ2 is now minimal. Therefore∑
∅6=I⊂{1,...,`}

wI
−1wI=Tµ2

2|I|ε(I) = 0.

Now Tµ2 = r1r2r2r1 = rkrk+1rk+1rk = rkrk, whence {k} and {k + `/2} are the
indices of size one appearing in the sum.

By Lemma 5.2.4, ε(I) = 0 for |I| ≥ 3 satisfying wI
−1wI = Tµ2 . Furthermore, if

I = {i1, i2} is such that ε(I) 6= 0 and wI
−1wI = Tµ2 , then ri1ri1 = Tµ1 . Therefore

ri1ri1 = r1r1 and ri1ri2ri2ri1 = r1r2r2r1. It follows that {1, 2}, {1, `/2 + 2}, and
{`/2 + 1, `/2 + 2} are the indices of size two appearing in the sum. By Proposition
5.2.6, ε({1, `/2 + 2}) + ε({`/2 + 1, `/2 + 2}) = 0. We conclude that

ε(Ck−1, Ck) + ε(C`/2+k−1, C`/2+k) + 2ε(C0, C1)(r1C1, r1C2) = 0.

�

Proposition 5.2.10. If C contains one Weyl chamber wall, then for 2 ≤ i ≤ `/2

ε(Ci−1, Ci) + (−1)N(i,C)ε(C`/2+i−1, C`/2+i) = 0,

where N(i, C) = #
{
I = {i1 < i2} ⊂ {1, . . . , `} | ε(I) 6= 0 and wI

−1wI = riri

}
. In

fact, if ε(Ci−1, Ci) 6= 0 then (−1)N(i,C) = (−1)n(i,C)−1 where Tµn(i,C) = riri in the
language of Proposition 5.2.5.

Proof. The statement is trivial if ri does not correspond to a reducibility hyper-
plane. We may work in the setup of Proposition 5.2.5 and assume that there is i0
such that riri = Tµi0

. We may rewrite (5.1.2) using

RwA0(λ) = Rw′A0(λ) + 2ε(wA0, w
′A0)Rsα,nw′A0(sα,nsα,nλ)

so that µi0 is minimal. We obtain an equation of the form
(5.2.3)

k∑
j=i0

∑
∅6=I⊂{1,...,`}

wI
−1wI=Tµj

2|I|ε(I)RwI
−1C0

(
wI

−1wIλ
)

+
∑

w∈S⊂Wa

cSRw−1C0
(
w−1wλ

)
= 0,

where the cS are constant integers. For w ∈ S, w−1w = Tµ where µ ∈ {µi0 , . . . , µk}.
We first show that cS ≡ 0 mod 8 by elaborating on the procedure by which

we obtain the above equation. We may remove from (5.1.2) pairs of the form
{j}, {j + `/2} corresponding to µ1, . . . , µi0−1 such that ε({j}) + ε({j + `/2}) = 0.
Summands arising from pairs {j}, {j+`/2} for which ε({j})+ε({j+`/2}) 6= 0 may
be rewritten as 4ε({j})RrjC0(rjrjλ). Our equation (5.1.2) has now been rewritten
so that any summand corresponding to µ1, . . . , µi0−1 has coefficient divisible by 4.
It now follows that applications of (4.2) result in integer coefficients divisible by 8.

The coefficients in (5.2.3) corresponding to µi0 must sum to zero. As ε must be
1 or −1, our first statement follows from considering that sum modulo 8.
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To prove the second statement, we first note that if we define I = {i1 < i2} and
J = {j1 < j2} to be equivalent if ri1 = rj1 and ri2 = rj2 , then for each equivalence
class, the set in the statement of this proposition contains either zero, one, or three
representatives. Therefore the parity of N(i, C) is the same as the parity of the
number of possible values for ri1 for {i1 < i2} belonging to that set. That number
is i0 − 1 = n(i, C)− 1 by Lemma 5.2.4. �

Lemma 5.2.11. In the setting of Proposition 5.2.5, the equations

r1r1 = Tµ1 , r1r2r2r1 = Tµ2 , · · · , r1 · · · rkrk · · · r1 = Tµk

may be rewritten as

r1r1 = Tµ1 , rkrk = Tµ2 , r2r2 = Tµ3 , rk−1rk−1 = Tµ4 , · · ·

and

r`r` = Tµ1 , r`r`−1r`−1r` = Tµ2 , . . . , r` · · · r`−k+1r`−k+1 · · · r` = Tµk

may be rewritten as

r`r` = Tµ1 , r`−k+1r`−k+1 = Tµ2 , r`−1r`−1 = Tµ3 , r`−k+2r`−k+2 = Tµ4 , · · · .

Proof. We make repeated use of riri+a = rjrj+a and rk+1rk+1 = 1 in the case
where C intersects Ck and Ck+1, and r`−kr`−k = 1 in the case where C intersects
C`−k−1 and C`−k. �

Proposition 5.2.12. In the setting of Proposition 5.2.10, if C intersects Ck and
Ck+1 and ε(Ci−1, Ci) 6= 0, then

(−1)N(i,C) =


1 if 2 ≤ i ≤ bk+1

2 c and k < `/2
−1 if `/2 ≥ i > bk+1

2 c and k < `/2
1 if `/2 ≥ i ≥ `/2− bk−1

2 c and k ≥ `/2
−1 if 2 ≤ i < `/2− bk−1

2 c and k ≥ `/2.

Proof. Use the previous lemma and proposition. �

We combine the propositions of this subsection and record our computations in
the following tables:

Theorem 5.2.13. Type A2:

Weyl chamber
walls in C Equations for Type A2

Hα1,0 ε(C2, C3) + ε(C5, C6) = 0
ε(C1, C2) + ε(C4, C5) + 2ε(C2, C3)ε(r3C4, r3C5) = 0

Hα2,0 ε(C0, C1) + ε(C3, C4) = 0
ε(C1, C2) + ε(C4, C5) + 2ε(C0, C1)ε(r1C1, r1C2) = 0

Hα1+α2,0 ε(C0, C1) + ε(C3, C4) = 0
ε(C2, C3) + ε(C5, C0) = 0
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Type B2:

Weyl chamber
walls in C Equations

Hα1,0 ε(C2, C3) + ε(C6, C7) = 0
ε(C3, C4) + ε(C7, C0) = 0
ε(C1, C2) + ε(C5, C6) + 2ε(C3, C4)ε(r4C6, r4C7) = 0

Hα2,0 ε(C0, C1) + ε(C4, C5) = 0
ε(C1, C2) + ε(C5, C6) = 0
ε(C2, C3) + ε(C6, C7) + 2ε(C0, C1)ε(r1C1, r1C2) = 0

Hα1+α2,0 ε(C0, C1) + ε(C4, C5) = 0
ε(C3, C4) + ε(C7, C0) = 0
ε(C2, C3) + ε(C6, C7) + 2ε(C3, C4)ε(r4C6, r4C7) = 0

Hα1+2α2,0 ε(C0, C1) + ε(C4, C5) = 0
ε(C3, C4) + ε(C7, C0) = 0
ε(C1, C2) + ε(C5, C6) + 2ε(C0, C1)ε(r1C1, r1C2) = 0

Type G2:

Weyl chamber
walls in C Equations

Hα1,0 ε(C1, C2) + ε(C7, C8) + 2ε(C5, C6)ε(r6C10, r6C11) = 0
ε(C2, C3)− ε(C8, C9) = 0
ε(C3, C4) + ε(C9, C10) = 0
ε(C4, C5) + ε(C10, C11) = 0
ε(C5, C6) + ε(C11, C0) = 0

Hα1+α2,0 ε(C0, C1) + ε(C6, C7) = 0
ε(C2, C3) + ε(C8, C9) + 2ε(C5, C6)ε(r6C10, r6C11) = 0
ε(C3, C4)− ε(C9, C10) = 0
ε(C4, C5) + ε(C10, C11) = 0
ε(C5, C6) + ε(C11, C0) = 0

H2α1+3α2,0 ε(C0, C1) + ε(C6, C7) = 0
ε(C1, C2) + ε(C7, C8) + 2ε(C0, C1)ε(r1C1, r1C2) = 0
ε(C3, C4) + ε(C9, C10) + 2ε(C5, C6)ε(r6C10, r6C11) = 0
ε(C4, C5) + ε(C10, C11) = 0
ε(C5, C6) + ε(C11, C0) = 0

Hα1+2α2,0 ε(C0, C1) + ε(C6, C7) = 0
ε(C1, C2) + ε(C7, C8) = 0
ε(C2, C3) + ε(C8, C9) + 2ε(C0, C1)ε(r1C1, r1C2) = 0
ε(C4, C5) + ε(C10, C11) + 2ε(C5, C6)ε(r6C10, r6C11) = 0
ε(C5, C6) + ε(C11, C0) = 0

Hα1+3α2,0 ε(C0, C1) + ε(C6, C7) = 0
ε(C1, C2) + ε(C7, C8) = 0
ε(C2, C3)− ε(C8, C9) = 0
ε(C3, C4) + ε(C9, C10) + 2ε(C0, C1)ε(r1C1, r1C2) = 0
ε(C5, C6) + ε(C11, C0) = 0
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Type G2 cont’d:

Weyl chamber
walls in C Equations

Hα2,0 ε(C0, C1) + ε(C6, C7) = 0
ε(C1, C2) + ε(C7, C8) = 0
ε(C2, C3) + ε(C8, C9) = 0
ε(C3, C4)− ε(C9, C10) = 0
ε(C4, C5) + ε(C10, C11) + 2ε(C0, C1)ε(r1C1, r1C2) = 0

Remark 5.2.14. None of our arguments referred to simplicity of the αi.

Definition 5.2.15. Fix a hyperplane Hγ,N and s ∈ W . We let ε(Hγ,N , s) be the
value of any ε(wA0, w

′A0), where Hγ,N separates the adjacent alcoves wA0 and
w′A0, wA0 ⊂ H+

γ,N and w′A0 ⊂ H−
γ,N , and wA0 ⊂ sC0 (and hence w′A0 ⊂ sC0

also). By Proposition 5.1.1, this is well-defined.

Definition 5.2.16. Given a root α, let δα be −1 if α is noncompact, and 1 if it is
compact.

Lemma 5.2.17. If α is simple and n is positive, then ε(Hα,n, s) = δn
α if α hyper-

planes are positive on sC0.

Proof. Choose a standard triple Xα ∈ gα, Yα ∈ g−α, and Hα = [Xα, Yα] ∈ h
satisfying µ(Hα) = (µ, α∨) ∀µ ∈ h∗. We have the relations

[Hα, Xα] = 2Xα, [Hα, Yα] = −2Yα, [Xα, Yα] = Hα,

α(Hα) = (α, α∨) = 2.

Taking complex conjugates, multiplying by −1, and using anti-commutativity,[
−H̄α, X̄α

]
= −2X̄α,

[
−H̄α, Ȳα

]
= 2Ȳα,

[
Ȳα, X̄α

]
= −H̄α,

ᾱ(H̄α) = (ᾱ, ᾱ∨) = 2.

If α is imaginary, then X̄α ∈ g−α and Ȳα ∈ gα. Also, −H̄α = Hα. The above rela-
tions give (Ȳα, X̄α,−H̄α) = (cXα, c−1Yα,Hα) for some non-zero scalar c. B(X, X̄)
is positive for non-zero X ∈ p and negative for non-zero X ∈ k. By Lemma 2.18a)
of [7], if α is compact, then c < 0 and if α is noncompact, then c > 0. We may
arrange for c to be ±1. We have:

−Ȳα = δαXα.

The λ−nα weight space of M(λ) is one-dimensional and spanned by the vector
Y n

α vλ. We know that

〈Y n
α vλ, Y n

α vλ〉λ = δn
α 〈vλ, Xn

αY n
α vλ〉λ

= δn
αn! 〈vλ,Hα(Hα − 1) · · · (Hα − (n− 1))vλ〉λ

from sl2 theory. As λ(Hα) − j is positive for j < n − 1 and λ ∈ H−
α,n ∩ H+

α,n−1,
negative for j = n− 1 and λ ∈ H−

α,n ∩H+
α,n−1, while it is positive for j = n− 1 and

λ ∈ H+
α,n, we conclude that ε(Hα,n, s) = δn

α. �
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Theorem 5.2.18. In the setting of figures 3, 4, and 5, we have the following tables
of values for ε(Hα,N , s):

Type A2:
Hyperplane Weyl Chamber sC0

Hα1,N C1 C2 C3

δN
α1

δN
α1

δN
α1

Hα1+α2,N C2 C3 C4

δN
α1

δN
α2

−δN
α1

δN
α2

δN
α1

δN
α2

Hα2,N C3 C4 C5

δN
α2

δN
α2

δN
α2

Type B2:

Hyperplane Weyl Chamber sC0

Hα1,N C1 C2 C3 C4

δN
α1

δN
α1

δN
α1

δN
α1

Hα1+α2,N C2 C3 C4 C5

δN
α1

δN
α2

−δN
α1

δN
α2

−δN
α1

δN
α2

δN
α1

δN
α2

Hα1+2α2,N C3 C4 C5 C6

δN
α1

−δN
α1

−δN
α1

δN
α1

Hα2,N C4 C5 C6 C7

δN
α2

δN
α2

δN
α2

δN
α2

Type G2:

Hyperplane Weyl Chamber sC0

Hα1,N C1 C2 C3 C4 C5 C6

δN
α1

δN
α1

δN
α1

δN
α1

δN
α1

δN
α1

Hα1+α2,N C2 C3 C4 C5 C6 C7

δN
α2

δN
α1

−δN
α2

δN
α1

−δN
α2

δN
α1

−δN
α2

δN
α1

−δN
α2

δN
α1

δN
α2

δN
α1

H2α1+3α2,N C3 C4 C5 C6 C7 C8

δN
α2

−δN
α2

δN
α2

δN
α2

−δN
α2

δN
α2

Hα1+2α2,N C4 C5 C6 C7 C8 C9

δN
α1

−δN
α1

δN
α1

δN
α1

−δN
α1

δN
α1

Hα1+3α2,N C5 C6 C7 C8 C9 C10

δN
α1

δN
α2

−δN
α1

δN
α2

−δN
α1

δN
α2

−δN
α1

δN
α2

−δN
α1

δN
α2

δN
α1

δN
α2

Hα2,N C6 C7 C8 C9 C10 C11

δN
α2

δN
α2

δN
α2

δN
α2

δN
α2

δN
α2

Proof. Combine the previous theorem and lemma. �

5.3. Using induction to obtain the general case.

Lemma 5.3.1. Let γ be a positive non-simple root. There exists some simple root
α such that (γ, α) > 0 and sαγ > 0.

Proof. The first statement follows from Lemma 10.2 A of [3] and the second from
Lemma 10.2 B. �

Proposition 5.3.2. Let γ be a positive non-simple root. Let α and β = sαγ be
the roots provided by Lemma 5.3.1. If α and γ do not, along with other roots in
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∆(g, h), form a type G2 root system, then:
If |γ| = |α|:

ε(Hγ,N , s) =
{
−δN

α ε(Hβ,N , sαs) if α and β hyperplanes are positive on sC0

δN
α ε(Hβ,N , sαs) otherwise.

If 2|γ|2 = |α|2:

ε(Hγ,N , s) =

 −δN
α ε(Hβ,N , sαs) if α and α + 2β = sβα hyperplanes are

positive on sC0

δN
α ε(Hβ,N , sαs) otherwise.

If |γ|2 = 2|α|2:

ε(Hγ,N , s) =

 −ε(Hβ,N , sαs) if α and α + β = sβα hyperplanes are positive
on sC0

ε(Hβ,N , sαs) otherwise.

Proof. Consider a two-dimensional slice P = span{α, γ} + µ0 through sC0, where
µ0 lies in the intersection of Hγ,N and Hα,k for some integer k, and (µ0, δ

∨) is not
an integer for any root δ that does not lie in the root subsystem generated by α
and γ. We are in the leftmost situation of Figure 2. If we take a suitably small
circular path around µ0 in P , due to Remark 5.2.14, the proof of Theorem 5.2.13
still applies with α and γ corresponding to a suitable choice of the roots in the root
system generated by α1 and α2. This choice must be made so that α corresponds
to some αi. Further, an appropriate analogue of Proposition 5.2.6 still holds, so
that for α and some root δ in our root system generated by α and γ so that {α, δ}
corresponds to {α1, α2}, the values for ε for the hyperplanes Hα,k and Hδ,k do not
change as we cross Weyl chamber walls along a path restricted to P .

This procedure handles all three cases. We will illustrate this in detail by apply-
ing it to the first case and discuss the remaining cases briefly.
Case |γ| = |α|: First, we work in the setup of Figure 1 when m = 0. Our equation
from Theorem 5.2.13 gives:

− + + − − + + −
ε(C1, C2) + ε(C4, C5) + 2ε(C2, C3)ε(r3C4, r3C5) = 0
Hα1+α2,m+n Hα1+α2,m+n Hα2,n Hα1,m+n

As ε = ±1, letting n = N we may rewrite this equation as

ε(Hα1+α2,N , sα2sα1) = −ε(Hα1+α2,N , sα1sα2sα1)
= ε(Hα2,N , sα1sα2sα1)ε(Hα1,N , sα1)

by Lemma 5.2.17 = δN
α1

ε(Hα2,N , sα1sα2sα1).

Theorem 5.2.13 indicates that ε(Hα1+α2,N , s) changes sign as we cross the hy-
perplane Hα2,0, so we also have

ε(Hα1+α2,N , sα1sα2) = δN
α1

ε(Hα2,N , sα1sα2sα1) = δN
α1

ε(Hα2,N , sα2sα1sα2).

Writing α > 0 on sC0 to mean that α hyperplanes are positive on sC0, we have

ε(Hα1+α2,N , s) =

 δN
α1

ε(Hα2,N , sα1s) if α1 < 0, α2 > 0 on sC0,
−δN

α1
ε(Hα2,N , s) if α1 > 0, α2 > 0 on sC0,

δN
α1

ε(Hα2,N , sα2s) if α1 > 0, α2 < 0 on sC0.
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Figure 6. Type A2: calculating ε for Hα1+α2,N

Note that α1+α2 hyperplanes are positive on sC0 if and only if α2 = sα1(α1+α2) hy-
perplanes are positive on sα1sC0. By Theorem 5.2.13, ε(Hα2,N , sα1s), ε(Hα2,N , s),
and ε(Hα2,N , sα2s) are all equal. We may rewrite the previous equation as:

ε(Hα1+α2,N , s) =
{
−δN

α1
ε(Hα2,N , sα1s) if α1, α2 > 0 on sC0,

δN
α1

ε(Hα2,N , sα1s) otherwise.

In the case where |γ| = |α|, the root subsystem generated by α and γ is type A2

as (γ, α) 6= 0. We assign α1 + α2 = γ and α1 = α, without loss of generality. The
first formula in the proposition now follows from our initial remarks in the proof of
this proposition and Remark 5.2.14.

Case |α|2 = 2|γ|2: In using the setup of Figure 1 in this case, note that the roots
γ and α generate a root system of type B2 and they must correspond to α1 + α2

and α1, respectively.
Case |γ|2 = 2|α|2: The roots γ and α generate a root system of type B2 and

they must correspond to α1 + 2α2 and α2, respectively, in the setup of Figure 1.
Observe that the formula we wish to prove for this case is of a different form than
the formulas for the previous two cases. This is because in substituting m = N
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into the equation

− + + − − + − +
ε(C2, C3) + ε(C6, C7) + 2ε(C0, C1)ε(r1C1, r1C2) = 0
Hα1+2α2,m+n Hα1+α2,m+n Hα1,m Hα2,2m+n

for n = 0 from Theorem 5.2.13, 2m + n = 2N ⇒ ε(r1C1, r1C2) = −δ2N
α = −1. �

Lemma 5.3.3. For a positive root α and β = si1 · · · sik
α where for j = 1, . . . , k we

have ht(sij · · · sik
α) > ht(sij+1 · · · sik

α), si1 · · · sik
is a reduced expression.

Proof. Suppose si1 · · · sik
is not reduced. By the deletion condition (see [4], The-

orem 1.7), there are indices j1 < j2 such that si1 · · · sik
= si1 · · · ˆsij1

· · · ˆsij2
· · · sik

.
It suffices to consider the case where j1 = 1 and j2 = k. Again, from the deletion
condition, αi1 = si2 · · · sik−1αik

. Now

(αi1 , β) = (si2 · · · sik−1αik
, si1 · · · sik

α) = (si2 · · · sik−1αik
, si2 . . . sik−1α) = (αik

, α).

Since applying si1 to β decreases the height while applying sik
to α increases the

height, therefore (αi1 , β) > 0 while (αik
, α) < 0, which gives us a contradiction. �

Theorem 5.3.4. Let γ be a positive root that does not form a type G2 root system
with other roots in ∆(g, h), and let γ = si1 · · · sik−1αik

be such that ht(sij
· · · sik−1αik

)
decreases as j increases. Let wγ = si1 · · · sik

. If γ hyperplanes are positive on sC0,
then

ε(Hγ,N , s) = (−1)N#{noncompact αij
: |αij

|≥|γ|}

× (−1)#{β∈∆(w−1
γ ) : |β|=|γ|, β 6=γ, and β,sβγ∈∆(s−1)}

× (−1)#{β∈∆(w−1
γ ) : |β|6=|γ| and β,−sβsγβ∈∆(s−1)}.

Proof. Note that si1 · · · sik−1 must be reduced, by Lemma 5.3.3. Combined with
the fact that γ = si1 · · · sik−1αik

> 0, we deduce that si1 · · · sik−1sik
must also be re-

duced by Lemma 1.6 of [4]. By (5.2.1), ∆(w−1
γ ) = {αi1 , si1αi2 , . . . , si1 · · · sik−1αik

}.
Let tj = (si1 · · · · · · sij )

−1s ∈ W and let γj = (si1 · · · · · · sij )
−1γ for j = 0, 1, . . .,

k − 1. Note that t0 = s and γ0 = γ. Also, tj = sij
tj−1 and γj = sij

γj−1. Observe
that γ is positive on sC0 if and only if γj is positive on tjC0. As ht(γj) > ht(γj+1),
therefore (γj , αij+1) > 0. Thus by Proposition 5.3.2,
If |γj | = |αij+1 |:

ε(Hγj ,N , tj) =

{
−δN

αij+1
ε(Hγj+1,N , tj+1) if αij+1 > 0 and γj+1 > 0 on tjC0,

δN
αij+1

ε(Hγj+1,N , tj+1) otherwise.

If 2|γj |2 = |αij+1 |2:

ε(Hγj ,N , tj) =


−δN

αij+1
ε(Hγj+1,N , tj+1) if αij+1 + 2γj+1 = sγj+1αij+1 > 0

and αij+1 > 0 on tjC0,
δN
αij+1

ε(Hγj+1,N , tj+1) otherwise.

If |γj |2 = 2|αij+1 |2:

ε(Hγj ,N , tj) =

 −ε(Hγj+1,N , tj+1) if αij+1 + γj+1 = sγj+1αij+1 > 0
and αij+1 > 0 on tjC0,

ε(Hγj+1,N , tj+1) otherwise.

We make the following observations:
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(1) As the Weyl group preserves length, |γj | = |γ|.
(2) The Killing form is invariant under the action of the Weyl group. There-

fore αij+1 and γj+1 = (si1 · · · sij+1)
−1γ hyperplanes are positive on the

Weyl chamber tjC0 = (si1 · · · sij
)−1sC0 if and only if si1 · · · sij

αij+1 and
si1 · · · sij

sij+1sij
· · · si1γ are positive on sC0.

(3) The reflection corresponding to si1 · · · sij
αij+1 is si1 · · · sij

sij+1sij
· · · si1 .

(4) Using Proposition 1.2 of [4], since γj+1 = (si1 · · · sij sij+1)
−1γ, therefore

sγj+1 = sij+1 · · · si1sγsi1 · · · sij+1 .

(5) From our previous observation, we may conclude that

si1 · · · sij
sγj+1αij+1 = −(si1 · · · sij

sij+1sij
· · · si1)sγ(si1 · · · sij

αij+1).

From these observations, k − 1 applications of our equations above and an ap-
plication of Lemma 5.2.17 give the desired result. �

6. Extending to non-compact h

According to our results from Section 3, in some sense, the only reducibility
hyperplanes we should worry about in computing the signature character are those
corresponding to imaginary roots.

Let ∆i(g, h) be the imaginary roots in ∆(g, h). We observe that it satisfies the
axioms of a root system, hence it is a semisimple root subsystem of ∆(g, h). Let
∆+

i (g, h) be the intersection of ∆i(g, h) with ∆+(g, h). Observe that if we replace
Wa and W with the affine Weyl group and Weyl group corresponding to ∆i(g, h) in
our arguments in sections 4 and 5, our arguments carry through to the non-compact
Cartan subalgebra case. The remaining difficulty is to determine the set of simple
roots corresponding to ∆+

i (g, h) and to calculate ε for hyperplanes corresponding
to those simple roots (recall δα).

We begin with the observation that as θ∆+(g, h) = ∆+(g, h), if there are complex
roots, then θ is a non-trivial automorphism of the corresponding Dynkin diagram.
The only Dynkin diagrams which have a non-trivial automorphism are those of
types An, Dn, and E6. The vertices of the Dynkin diagram fixed by θ correspond
to the imaginary simple roots, and the others to the complex simple roots.

Let Πi = {α ∈ Π |α is imaginary} and ΠC = {α ∈ Π |α is complex}.

Proposition 6.1. The set of simple roots corresponding to ∆+
i (g, h) is

Πi := Πi ∪ {αi |α ∈ ΠC}

where αi is defined to be α+αi1 + · · ·αim +θα if the segment of the Dynkin diagram
from α to θα is (α)− (αi1)− · · · − (αim

)− (θα).

Proof. It is clear that α ∈ Πi is indecomposable as a sum of positive imaginary
roots.

Note that α, αi1 , . . . , αim , θα all have the same length. Since θ flips the segment
of the Dynkin diagram (α)− (αi1)− · · · − (αim

)− (θα), therefore θαik
= αim+1−k

.
From knowledge of type An root systems, we see that αi cannot be decomposed
into the sum of two positive imaginary roots.

Listing the roots in root systems of types An, Dn, and E6 and possible θ, we see
that we have found all the roots in ∆i(g, h) which are indecomposable. �
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Now we compute ε for Hαi,n where α ∈ ΠC. We assume λ to be imaginary and
(λ + ρ, (αi)∨) = n.

We may assume that g is type Am, α = α1, and that the Dynkin diagram is
(α1)− (α2)− · · · − (αm) so that αi = α1 + α2 + · · ·+ αm.

Recall the definition of Xαj
, Yαj

, and Hαj
from Lemma 5.2.17. The definition is

unique up to multiplication of Xαj
by c and Yαj

by c−1 for some non-zero scalar
c. In the case where αj is complex, ḡαj = g−θαj and ḡ−αj = gθαj , whence complex
conjugation preserves gαj + g−αj + gθαj + g−θαj . We may choose c so that

−Ȳαj
= Xθαj

and − Ȳθαj
= Xαj

when j 6= m + 1
2

.

In order to compute ε, we use concepts introduced in [9]. Let g1, · · · , gm ∈ g be
linearly independent. In [9], the authors give meaning to some monomials

(6.1) gγ1
i1
· · · gγN

iN
,

where the γj are complex numbers, by associating them with appropriate elements
of the universal enveloping algebra. Let Ju = {1 ≤ j ≤ m | ij = u} and let
γu =

∑
j∈Ju

γj . In the case where γ1, . . . , γN are non-negative integers, by using
appropriate commutation relations, we have

(6.2) gγ1
i1
· · · gγN

iN
=

∞∑
j1,...,jm=0

Pj1...jm
(g1, . . . , gm)gγ1−j1

1 · · · gγm−jm
m

for some elements Pj1...jm
(g1, . . . , gm) of U([g, g]) ⊂ U(g). The Pj1...jm

(g1, . . . , gm)
are polynomial in the γj , and thus we may extend the Pj1...jm

to all possible γj and
not just non-negative integral γj .

Definition 6.2. If the following conditions are satisfied:
(1) All γu are non-negative integers.
(2) If ju > γu, then Pj1...jm(g1, . . . , gm) = 0.

then the monomial (6.1) is said to make sense. If the monomial makes sense, then
the right side of equation (6.2) is an element of U(g) and we may say that (6.1) is
equal to it.

Given w = siN
· · · si1 ∈ W and λ ∈ h∗, we define λ0, λ1, . . . , λN ∈ h∗ by:

λj + ρ = sij
· · · si1(λ + ρ).

As sβµ− µ is a multiple of β for any β, µ ∈ h∗, we may define the scalars γj for
1 ≤ j ≤ N so that λj − λj−1 = γjαij

.

Definition 6.3. Using the notation defined above and letting Yj = Yαj
, we define

F (w;λ) = Y −γN

iN
· · ·Y −γ1

i1
.

Lemma 6.4. (Malikov-Feigin-Fuks,[9]) If F (w;λ) makes sense, then F (w;λ)vλ is
a singular vector of the Verma module M(λ).

Theorem 6.5. (Malikov-Feigin-Fuks,[9]) If (λ + ρ, α∨) = n where α is a positive
root and n is a positive integer, then F (sα;λ) makes sense and F (sα;λ)vλ is a
singular vector of the Verma module M(λ) of weight λ− nα.

Remark 6.6. Here, we must make the observation that for a complex semisimple
Lie algebra viewed as a Kac-Moody algebra, all roots are real roots.
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We return to the setup where αi = α1 + · · ·+ αm. We define

c1 = (λ + ρ, α∨1 )
c2 − c1 = (λ + ρ, α∨2 )

...
...

cm−1 − cm−2 = (λ + ρ, α∨m−1).

Then n− cm−1 = (λ + ρ, α∨m).

If we use s1s2 · · · sm · · · s2s1 as a reduced expression for sαi , then

F (sαi ;λ) = Y n−c1
1 Y n−c2

2 · · ·Y n−cm−1
m−1 Y n

mY
cm−1
m−1 · · ·Y c2

2 Y c1
1 .

If we use smsm−1 · · · s1 · · · sm−1sm as a reduced expression for sαi instead, we get

F (sαi ;λ) = Y cm−1
m Y

cm−2
m−1 · · ·Y c1

2 Y n
1 Y n−c1

2 · · ·Y n−cm−2
m−1 Y n−cm−1

m .

Lemma 6.7. In our setup above,

F (s1s2 · · · sm · · · s2s1;λ) = F (smsm−1 · · · s1 · · · sm−1sm;λ).

Proof. We prove this by induction on m. If m = 1, this is clear. If m = 2:

Y n−c1
1 Y n

2 Y c1
1 = Y n−c1

1

∑
j

(
c1

j

)(
n

j

)
Y c1−j

1 Y n−j
2 [Y2, Y1]j

=
∑

j

(
c1

j

)(
n

j

)
Y n−j

1 Y n−j
2 [Y2, Y1]

j

=
∑

j

(
c1

j

)(
n

j

)
Y n−j

1 Y c1−j
2 [Y2, Y1]

j
Y n−c1

2

= Y c1
2 Y n

1 Y n−c1
2

by Proposition 2.2 (2) of [9]. Now assume m > 2. Let λ′ = s1(λ + ρ) − ρ and
α′ = α2 + α3 + · · ·+ αm. Then

c2 = (λ + ρ, α∨2 )
c3 − c2 = (λ + ρ, α∨3 )

...
...

cm−1 − cm−2 = (λ + ρ, α∨m−1)

n− cm−1 = (λ + ρ, α∨m).

Note that (λ′ + ρ, (α′)∨) = n. Applying our induction hypothesis for m − 1 to α′

and λ′,

F (sα′ , λ
′) = Y n−c2

2 Y n−c3
3 · · ·Y n−cm−1

m−1 Y n
mY

cm−1
m−1 · · ·Y c3

3 Y c2
2

= Y cm−1
m Y

cm−2
m−1 · · ·Y c2

3 Y n
2 Y n−c2

3 · · ·Y n−cm−2
m−1 Y n−cm−1

m .
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Thus, using our knowledge of type Am,

F (s1 · · · sm · · · s1;λ)

= Y n−c1
1 Y n−c2

2 · · ·Y n−cm−1
m−1 Y n

mY
cm−1
m−1 · · ·Y c2

2 Y c1
1(6.3)

= Y n−c1
1 Y cm−1

m Y
cm−2
m−1 · · ·Y c2

3 Y n
2 Y n−c2

3 · · ·Y n−cm−2
m−1 Y n−cm−1

m Y c1
1

= Y cm−1
m Y

cm−2
m−1 · · ·Y c2

3 (Y n−c1
1 Y n

2 Y c1
1 )Y n−c2

3 · · ·Y n−cm−2
m−1 Y n−cm−1

m

= Y cm−1
m Y

cm−2
m−1 · · ·Y c1

2 Y n
1 Y n−c1

2 · · ·Y n−cm−2
m−1 Y n−cm−1

m(6.4)
= F (smsm−1 · · · s1 · · · sm−1sm;λ).

�

We wish to compute (F (sαi ;λ))∗F (sαi ;λ). Recall that −Ȳj = Xm+1−j when
j 6= m+1

2 . Apply the expression (6.3) for F (sαi ;λ) to the left factor. We get

(F (sαi ;λ))∗ = Xc1
m Xc2

m−1 · · ·X
cm−1
2 Xn

1 X
n−cm−1
2 · · ·Xn−c2

m−1 Xn−c1
m

if m is even. Note that n− cm−j = cj from θ(α1 + · · ·+ αj) = αm + · · ·+ αm−j+1.
This give us

(F (sαi ;λ))∗ = Xn−cm−1
m X

n−cm−2
m−1 · · ·Xn−c1

2 Xn
1 Xc1

2 · · ·Xcm−2
m−1 Xcm−1

m .

When m is odd, we have to multiply the expression by δn
α m+1

2

. Now apply (6.4)

to the right factor. We see that the element of the universal enveloping algebra
corresponding to (F (sαi ;λ))∗F (sαi ;λ) obtained is precisely what you would get
from applying equation (6.4) to both factors of (F (sαi ;λ))∗F (sαi ;λ) in the case
where all of the αj are imaginary and compact for j 6= m+1

2 and αm+1
2

is left as
it is. As (αj , α

i) = (αj , α1 + · · · + αm) = 0 for 2 ≤ j ≤ m − 1, it does no harm
to assume that for each of those j, (λ + ρ, α∨j ) is a small positive number so that
(λ + ρ, α1) and (λ + ρ, αm) are positive.

Let s ∈ W be such that λ+ρ ∈ sC0. Letting ε be the value of ε(Hα1+···+αm,n, s)
where all of the αj , even αm+1

2
, are imaginary and compact,

ε(Hαi,n, · ) =

{
ε if m is even,
δn
α m+1

2

ε if m is odd.

Calculating ε using Proposition 5.3.2, we obtain the following:

Proposition 6.8. For α ∈ ΠC for which the segment from α to θα in the Dynkin
digram has m vertices,

ε(Hαi,n, · ) =

{
(−1)m−1 = −1 if m is even,
(−1)m−1δn

α m+1
2

= δn
α m+1

2

if m is odd.

Remark 6.9. Here, we observe that we could have arrived at the above answer using
Theorem 5.3.4 without adjusting λ so that (λ + ρ, α∨j ) > 0 for all j as follows:

(1) Set γ = α1 + α2 + · · · + αm, and choose s so that λ + ρ ∈ sC0. Since γ =
s1s2 · · · sm−1αm, therefore ∆(w−1

γ ) = {α1, α1 + α2, . . . , α1 + · · ·+ αm}. By
θ-invariance of (·, ·), (λ+ρ, (αj+1+· · ·+αm)∨) = (λ+ρ, (α1+· · ·+αm−j)∨).

(2) sα1+···+αj γ = αj+1 + · · ·+ αm.
(3) ssα1+···αj

γγ = α1 + · · ·+ αj .
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(4) Thus β ∈ ∆(w−1
γ ) such that |β| = |γ|, β 6= γ, and β, sβγ ∈ ∆(s−1) occur in

pairs α1 + · · ·+αj and α1 + · · ·+αm−j , except for the root α1 + · · ·+αm/2

which is paired with itself in the case where m is even. In this case,

(λ + ρ, (α1 + · · ·+ αm/2)∨) =
n

2
> 0.

(5) Use the formula from Theorem 5.3.4.

Now gαi = C [X1, [X2, [· · · [Xm−1, Xm] ] · · · ] ] is θ-stable as αi is imaginary. We
have

θ [X1, [X2, [· · · [Xm−1, Xm] ] · · · ] ] = [θX1, θ [X2, [· · · [Xm−1, Xm] ] · · · ] ]
...
= [θX1, [θX2, [· · · [θXm−1, θXm] ] · · · ] ] .

As θαj = αm+1−j , we may arrange for θXj = Xm+1−j if j 6= m+1
2 , and for

θXm+1
2

= δα m+1
2

Xm+1
2

. Using the Jacobi identity, induction on m, and type Am

commutation relations, we may show that

[Xm, [Xm−1, [· · · [X2, X1] ] · · · ] ] = (−1)m−1 [X1, [X2, [· · · [Xm−1, Xm] ] · · · ] ] .

It follows that

θ [X1, [X2, [· · · [Xm−1, Xm] ] · · · ] ] =


− [X1, [X2, [· · · [Xm−1, Xm] ] · · · ] ]

if m is even,
δα m+1

2
[X1, [X2, [· · · [Xm−1, Xm] ] · · · ] ]

if m is odd,

whence:

Lemma 6.10. Let α and m be as defined in the previous Proposition. αi is compact
if m is odd and αm+1

2
is compact, and noncompact otherwise.

Theorem 6.11. Let α ∈ ΠC and let m be as defined in the previous proposition.

ε(Hαi,n) =

 −1 if αi is noncompact and m is even,
(−1)n if αi is noncompact and m is odd,
1 if αi is compact.

We may adjust Theorem 5.3.4 to obtain an analogous formula for the non-
compact Cartan setting. Note that in the case where αi is noncompact and m
is even, none of the roots in Π are imaginary and the simple roots corresponding to
∆+

i (g, h) are orthogonal to one another. In this case, ε is always −1 and ∆i(g, h)
is a disjoint union of copies of A1. In the remaining cases, Theorem 5.3.4 holds if
we replace the ambient root system ∆+(g, h) with ∆+

i (g, h).
In summary, we have the following formula:

Theorem 6.12. Subscripts or superscripts i will refer to objects associated with
∆+

i (g, h). Everything within this theorem (simple roots, reducibility hyperplanes,
reduced expressions) has this association.

The action of W i
a, the affine Weyl group corresponding to ∆+

i (g, h), partitions
ih∗0 into alcoves in which the signature character of the Shapovalov form is constant.
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Choose the fundamental alcove A0 of W i
a and the fundamental chamber C0 of Wi

to contain ρi, both of which are contained in the Wallach region( ⋂
α∈Πi

H−
α,1

)⋂
H−eαi,1

.

a) If λ is imaginary and λ + ρ lies in the Wallach region, then

chsM(λ)|a0 = eλ|a0 and

chsM(λ)|t0 =
eλ|t0∏

α∈∆+(p,t)

(
1− e−α

) ∏
α∈∆+(k,t)

(
1 + e−α

) .
Let the constants cµ and cA

µ for imaginary µ ∈ Λ+
r be such that

R(λ) :=
∑

µ∈Λ+
r

µ imaginary

cµeλ−µ

is the signature character of the Shapovalov form 〈·, ·〉λ when λ + ρ lies in the
Wallach region, and

RA(λ) :=
∑

µ∈Λ+
r

µ imaginary

cA
µ eλ−µ

is the signature character of 〈·, ·〉λ when λ + ρ lies in the alcove A.
b) For w ∈ W i

a, let wA0 = C0
r1→ C1

r2→ · · · r`→ C` = w̃A0 be a (not necessarily
reduced) path from wA0 to w̃A0. Then

RwA0(λ) =
∑

I={i1<···<ik}⊂{1,...,`}

ε(I)2|I|Rri1 ···rik
ewA0

(
ri1ri2 · · · rik

rik
rik−1 · · · ri1λ

)
=

∑
I={i1<···<ik}⊂{1,...,`}

ε(I)2|I|R
(
ri1ri2 · · · rik

rik
rik−1 · · · ri1λ

)
where ε(∅) = 1 and

ε(I) = ε(Ci1−1, Ci1)ε(ri1Ci2−1, ri1Ci2) · · · ε(ri1 · · · rik−1Cik−1, ri1 · · · rik−1Cik
).

The ε(C,C ′), where C and C ′ are adjacent alcoves defined by the action of W i
a

separated by some hyperplane Hγ,N where γ ∈ ∆+
i (g, h) and N ∈ Z, take the values

0,±1 as follows:

• ε(C,C ′) = −ε(C ′, C)
• ε(C,C ′) = 0 if N ≤ 0
• ε(C,C ′) = ε(Hγ,N , s) if N > 0, where C ⊂ sC0.

Choose γ = si1 · · · sik−1αik
where the αij

∈ Πi so that hti(sij
· · · sik−1αik

) decreases
as j increases. (Proposition 6.1 provides a precise description of Πi. Recall Defi-
nition 5.2.15.) Let wγ = si1 · · · sik

. If N > 0 then:
• If θ does not fix any element of Π, then:

ε(Hγ,N , s) = −1.
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• If θ fixes some element of Π and γ does not form a type G2 root system
with other roots in ∆i(g, h), then:

ε(Hγ,N , s) = (−1)N#{noncompact αij
: |αij

|≥|γ|}

× (−1)#{β∈∆(w−1
γ ) : |β|=|γ|, β 6=γ, and β,sβγ∈∆(s−1)}

× (−1)#{β∈∆(w−1
γ ) : |β|6=|γ| and β,−sβsγβ∈∆(s−1)}.

• If γ, along with other roots in ∆i(g, h), forms a type G2 root system, then
the value of ε(Hγ,N , s) can be found in Theorem 5.2.18.

7. Historical context

In this section, we will expand on the historical context of the problem solved in
this paper.

Let q = l ⊕ u be a θ-stable parabolic subalgebra of g and h ⊂ l be a Cartan

subalgebra. Let L be the normalizer of q in G. We define ρ(u) to be
1
2

∑
α∈∆(u,h)

α.

We make these definitions in the context of our setup from previous sections.
Recall the definition of the production functor, prog

q : C(l, L∩K) → C(g, L∩K):

prog
q V = Homq(U(g), V )L∩K−finite.

We define Ri : C(l, L ∩K) → C(g,K) by

RiV = Γi prog
q(V ⊗ ∧topu).

In [10], Vogan conjectured:

Conjecture 7.1. For an irreducible, unitarizable (l, L ∩K)-module V with infini-
tesimal character λ ∈ h∗, if

Re(α, λ− ρ(u)) ≥ 0 ∀α ∈ ∆(u, h)

and if m = dim u ∩ k,

then RmV is also unitarizable.

In [11], Vogan gave a proof of this conjecture, the fundamental idea of which was
to couple the theory of minimal K-types with knowledge of a large family of well
understood unitary representations which were studied by Harish-Chandra: the
tempered unitary representations. The following will describe some work leading
up to and inspired by this result.

Important to the study of unitarizability is a duality theorem for cohomological
induction functors. In his 1978 IAS lectures, Zuckerman proved what was equivalent
to the following duality theorem for the right derived functors Γi and Γ2m−i:

Theorem 7.2. For 0 ≤ i ≤ 2m, X 7→ ΓiX and X 7→ (Γ2m−i(Xh))h are naturally
equivalent on the subcategory of admissible (k, l ∩ k)-modules.

In [2], Enright and Wallach show that since the forgetful functor is additive,
covariant, exact, takes injectives to injectives, and commutes with Γ, one can prove
the following (stronger) duality theorem (see Theorem 4.3 in [2]):
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Theorem 7.3. If X is in fact an admissible (g, k∩ l)−module, then the k-module
isomorphism

ΓiFX ' (Γ2m−i(FXh))h,

where F denotes the forgetful functor, induces a g-module isomorphism

ΓiX ' (Γ2m−i(Xh))h.

We will discuss the implementation of the k-module isomorphism.
For every γ ∈ k̂ with corresponding representation Fγ , there is a positive definite

k-invariant Hermitian form 〈·, ·〉γ on Fγ and its dual pairing on F ∗
γ . The pairing of

ΓiX with Γ2m−i(Xh) uses the natural isomorphism

ΓiX '
⊕
γ∈k̂

Hi(k, k ∩ l;X ⊗ F ∗
γ )⊗ Fγ

as k-modules, where the action on the right is on the last term.
We may pair Hi(k, k∩ l;X ⊗F ∗

γ ) with H2m−i(k, k∩ l;Xh⊗F ∗
γ ) by pairing spaces

Ci and C2m−i in the cochain complexes using the identification

Ci(X ⊗ F ∗
γ ) = Homk∩l(∧i(k/k ∩ l), X ⊗ F ∗

γ ) '
[
∧i(k/k ∩ l)

]∗ ⊗X ⊗ F ∗
γ .

Using 〈·, ·〉, a Hermitian pairing of ∧i(k/k ∩ l) and ∧2m−i(k/k ∩ l) defined in Section
1 of [12], we define the following k-invariant pairing of Ci(k, k ∩ l;X ⊗ F ∗

γ ) and
C2m−i(k, k ∩ l;Xh ⊗ F ∗

γ ):

(7.1) 〈ω1 ⊗ v ⊗ f∗1 , ω2 ⊗ v′ ⊗ f∗2 〉 = 〈ω1, ω2〉 〈v, v′〉 〈f∗1 , f∗2 〉γ .

This produces a k-invariant pairing at the level of cohomology by the standard proof
of Poincaré duality. From the tensor product pairing of Hi(k, k ∩ l;X ⊗ F ∗

γ ) ⊗ Fγ

and H2m−i(k, k ∩ l;Xh ⊗ F ∗
γ ) ⊗ Fγ , we obtain a k-invariant pairing of Γi(X) and

Γ2m−i(Xh) which induces the g-invariant pairing of the duality theorem of Enright
and Wallach.

In the case where X has an invariant Hermitian form and i = m, this implies that
there is a g-invariant isomorphism ΓmX ' (ΓmX)h, and so ΓmX has a g-invariant
Hermitian form.

Define L i : C(l, L ∩K) → C(g,K) by

L iV = Γi indg
q̄(V ⊗ ∧topu).

As indg
q̄(V )h ' prog

q(V h), if V is an (l, L∩K)-module, then (L iV )h ' R2m−i(V h).
When studying RiV where V admits an invariant Hermitian form, we are essentially
looking at the duality theorem in the case where X has an invariant Hermitian form
and is the generalized Verma module indg

q̄(V ).
The general outline of the proof of Conjecture 7.1 in [11] is as follows:

• Any representation which admits an invariant Hermitian form may be ob-
tained from a tempered unitary representation via analytic continuation
through representations admitting invariant Hermitian forms.

• Jantzen filtration arguments lead us to conclude that for a (g,K)-module
of finite length admitting a non-degenerate invariant Hermitian form 〈·, ·〉,
there exists some finite collection of tempered irreducible (g,K)-modules
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Z1, . . . , Zp of formal K-character Θ(Zi) and integers r+
1 , . . . , r+

p , r−1 , . . . , r−p

such that the signature of 〈·, ·〉 is

 p∑
i=1

r+
i Θ(Zi),

p∑
j=1

r−j + Θ(Zj)

.

• The tempered characters in this expression for the signature in the case
where the (g,K)-module is RV must have lowest K-types in the bottom
layer of RV . It follows that unitarizability of RV is equivalent to the form
being definite on the bottom layer.

• Using the ideas of Enright and Wallach (including the construction (7.1)
of the invariant Hermitian pairing) described above, one may compare the
signatures of the invariant Hermitian forms for V and RV on the bottom
layer of K-types.

Wallach gives an alternate proof to Vogan’s conjecture in [12] that does not use
the complicated machinery of K-types and tempered unitary representations.

For λ ∈ z(l) and V an admissible, finitely generated (l, L ∩K)-module, Wallach
defines Cλ to be the one-dimensional l-module corresponding to λ and he defines
Vλ to be Cλ ⊗ V , which may be extended to a q-module by allowing u to act
trivially. M(q, λ, V ) denotes the generalized Verma module U(g)

⊗
U(q)

Vλ. From an

irreducible V which admits an l-invariant Hermitian form 〈·, ·〉, one constructs an
invariant Hermitian form on M(q, λ, V ) analogous to the Shapovalov form that we
constructed.

Wallach defines (V, λ, 〈〉) to be well placed if for some ξ ∈ (z(l) ∩ k)∗ that is
purely imaginary valued on z(l) ∩ k0, (ξ, α) < 0 for α ∈ ∆(u, t) and M(q, λ + tξ, V )
is irreducible for all t ≥ 0. (Here, we note the connection between the definitions
of well placed and Wallach region.)

In the case that (V, λ, 〈〉) is well placed,

chs(M(q, λ + tξ, V )) = etξchs(M(q, λ, V )).

As discussed previously in Section 2, an asymptotic argument as t goes to infinity
gives us a formula for the signature character of M(q, λ, V, 〈〉) in terms of the sig-
nature character of (V, 〈〉). A similar argument gives us a formula for the character
of the generalized Verma module in terms of the character of V .

As in Vogan’s proof, the construction (7.1) of an invariant Hermitian form on
ΓmX is an instrumental component in discussing unitarizability. From the con-
struction, it is clear that

(7.2) chs(ΓiX ⊕ Γ2m−iX) = 0

for i 6= m, whence

(7.3) chsΓ·X = chsΓmX.

Furthermore, the signature character of ΓmX can be expressed in terms of signa-
tures of the forms on the Hm(g, k;X ⊗ F ∗

γ ) and in terms of characters chFγ :

(7.4) chsΓmX =
∑
γ∈k̂

sgn(Hm(g, k;X ⊗ F ∗
γ )) chFγ

where sgn(Y ) is p− q if (p, q) is the signature on Y .
For X = M(q, λ, V, 〈〉), Wallach uses the above equation to calculate the coef-

ficient of chFγ in (−1)mchsΓm(M(q, λ, V, 〈〉)) in the case where (V, λ, 〈〉) is well
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placed and 〈〉 is positive definite . He then calculates the coefficient of chFγ in∑2m
i=0(−1)ich Γi(M(q, λ, V, 〈〉)). The first expression obtained involves the signature

character chsM(q, λ, V, 〈〉) while the second involves the character chM(q, λ, V, 〈〉).
Manipulating these expressions using the formulas calculated using asymptotic ar-
guments mentioned above, he shows that the two expressions are in fact equal. It
follows that

(−1)mchsΓm(M(q, λ, V, 〈〉) =
2m∑
i=0

(−1)ichΓi(M(q, λ, V, 〈〉)).

Since ΓiM(q, λ, V ) = 0 for i 6= m and (V, λ, 〈〉) well placed, therefore

chsΓm(M(q, λ, V, 〈〉)) = ch Γm(M(q, λ, V, 〈〉)),
whence Γm(M(q, λ, V, 〈〉)) is unitarizable or zero.

Wallach shows that for (V, 〈〉) satisfying the conditions of Conjecture 7.1, with
necessary adjustments to accommodate usage of indg

q instead of prog
q, (V, 0, 〈〉) is

well placed. It follows that Γm indg
q V is unitarizable, proving the conjecture.

8. Final Remarks

As discussed in the introduction, the motivation behind the problem solved in
this paper is the utilization of a formula for the Shapovalov form on an arbitrary
generalized Verma module when it exists in the study of unitarizability of coho-
mologically induced modules. We observe that many formulas such as (7.2), (7.3),
and (7.4) still hold outside of the Wallach region, which is encouraging.

In order to extend the approach of this paper to arrive at a formula for the
signature of the Shapovalov form on an arbitrary generalized Verma module, we
must begin by determining when generalized Verma modules are irreducible. This
is regarded to be a difficult open problem in the most general case.
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