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Abstract. Pointwise bounds for characters of representations of the
classical, compact, connected, simple Lie groups are obtained which
allow us to study the singularity of central measures. For example,
we find the minimal integer k such that any continuous orbital mea-
sure convolved with itself k times belongs to L2. We also prove that if
k = rankG then µ2k ∈ L1 for all central, continuous measures µ. This
improves upon the known classical result which required the exponent
to be the dimension of the group G.

1. Introduction

In this paper sharp, pointwise bounds for characters of representations
of the classical, compact, connected, simple Lie groups are obtained. Our
prime motivation is to use these estimates to study the singularity of central,
continuous measures.

In [8] Ragozin proved the striking fact that if G was such a group and µ
was a central, continuous measure on G then µdim G ∈ L1(G). (The product
here is convolution.) This implies, in particular, that if g is not in the centre
of G then Trλ(g)/ deg λ → 0 as the degree of the representation λ tends to
infinity ([11]). Ragozin’s result was improved by one of the authors in [2]
where it was shown that if g does not belong to the centre of G then∣∣∣∣Trλ(g)

deg λ

∣∣∣∣ ≤ c(g) (deg λ)−2/(dim G−rank G) .

A consequence of this bound on the trace function is that if k > dim G/2
and µ is a continuous orbital measure then µk ∈ L2(G), while if µ is any
central, continuous measure then µk ∈ L1(G).

In this paper we improve these results, obtaining the following theorem
for classical Lie groups of rank n:

Theorem: Let G be a compact, connected, simple Lie group of type
An, Bn, Cn or Dn. For every g not in the centre of G there is a
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constant c(g) such that∣∣∣∣Trλ(g)
deg λ

∣∣∣∣ ≤ c(g)(deg λ)−s

for all representations λ if and only if

s ≤


1

n−1 if G is type An−1 or Dn
1

2n−1 if G is type Bn
2

2n−1 if G is type Cn, n 6= 3
1
3 if G is type C3

.

(In contrast, dim G− rank G = O(n2).)
¿From this theorem we are able to show that if G is type An−1, Cn

for n 6= 3 or Dn, and µ is any continuous, orbital measure, then µk belongs
to L2(G) if and only if k ≥ rank G = n. Furthermore, if µ is any continuous,
central measure then µn belongs to L1(G). For type Bn the condition is
k ≥ 2n.

Key to proving this theorem is to understand the structural properties
of maximal subroot systems. These are discussed in section 2. In section
3 we use these properties and computational arguments based on the Weyl
character formula to establish the specified pointwise upper bounds on the
trace function. Examples are found in section 4 which prove these upper
bounds are best possible. Applications to the study of the singularity of
central measures can be found in section 5.

2. Notation and Structural properties of Subroot Systems

2.1. Notation. Let G be a compact, connected, simple, non-exceptional
Lie group of rank n. Let Z(G) denote its centre and W be its Weyl group.
Denote by e1, ..., em the usual unit vectors in Rm where m = n + 1 in type
An and m = n otherwise. We take a maximal torus T with Φ the set of
roots for (G, T ) described below.

Type Root system Φ Base ∆ ={αj : j = 1, ..., n}
An {ei − ej : 1 ≤ i 6= j ≤ n + 1} αj = ej − ej+1

Bn {±ei,±(ei ± ej) : 1 ≤ i 6= j ≤ n} αj = ej − ej+1 for j 6= n
αn = en

Cn {±2ei,±(ei ± ej) : 1 ≤ i 6= j ≤ n} αj = ej − ej+1 for j 6= n
αn = 2en

Dn {±(ei ± ej) : 1 ≤ i 6= j ≤ n} αj = ej − ej+1 for j 6= n
αn = en−1 + en

The positive roots associated with the base of simple roots ∆ will be denoted
by Φ+, the fundamental dominant weights relative to ∆ will be denoted by
λ1, ..., λn, and Λ+ will be the set of all dominant weights. The set Λ+ is in a
1-1 correspondence with Ĝ; σλ ∈ Ĝ is indexed by its highest weight λ ∈ Λ+.
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The degree of σλ will be denoted by dλ. The weights of λ ∈ Λ+ are given
by

Π(λ) = {µ ∈ Λ : w(µ) < λ for all w ∈ W}
where µ < λ means λ − µ is a non-negative integral sum of positive roots.
We set ρ =

∑n
j=1 λj . According to the Weyl dimension formula ([13]) the

degree of λ is given by

(2.1)
∏

α∈Φ+

(ρ + λ, α)/(ρ, α).

For general facts about root systems we refer the reader to [5].
Given g ∈ T we let Φ(g) = {α ∈ Φ : α(g) ∈ 2πZ} and let Φ+(g) =

Φ(g)
⋂

Φ+. It is easily seen that Φ(g) is a subroot system of Φ and that
Φ+(g) is a complete set of positive roots of this subroot system. It is known
that Φ(g) = Φ if and only if g ∈ Z(G) ([1], p. 189). When Φ(g) is empty g
is called a regular element of G .

For g in the torus, the Weyl character formula ([13]) states

Trλ(g) =
eiρ(g)

∑
w∈W det w exp i(ρ + λ, w(g))∏

α∈Φ+(eiα(g) − 1)
.

This determines Trλ on G as characters are class functions.
When g ∈ Z(G) an application of Schur’s lemma shows that |Trλ(g)| =

dλ, hence the interest is when g /∈ Z(G). It was shown in [2] how one can
evaluate the Weyl character formula (by considering suitable directional
derivatives if Φ+(g) is not empty) to obtain
(2.2)

|Trλ(g)|
dλ

= c(g)

∣∣∣∑w∈W det w
∏

α∈Φ+(g)(ρ + λ, w(α)) exp i(ρ + λ, w(g))
∣∣∣∏

α∈Φ+(ρ + λ, α)
.

Consequently,

(2.3)
|Trλ(g)|

dλ
≤ c(g)

∑
w∈W

∣∣∣∏α∈Φ+(g)(ρ + λ, w(α))
∣∣∣∏

α∈Φ+(ρ + λ, α)
.

Thus in order to find pointwise bounds on the trace functions off the cen-
tre of G it is useful to understand the structures of the subroot systems
properly contained in Φ. It clearly suffices to analyze those subroot systems
which are maximal in the sense that there is no other proper subroot system
containing it. These subroot systems are always associated with regular sub-
algebras, (although not always of maximal rank) and hence their diagrams
are subdiagrams of the extended diagram of the original root system. (See
figure 1). Note that the additional vertex, labelled 0, is identified with the
highest root α0.) Once all these subdiagrams have been identified we can
determine all possible sets of positive roots associated with maximal subroot
systems by considering Weyl conjugates of the bases corresponding to the
subdiagrams.
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We will illustrate how to do this to find the positive roots of all maximal
subroot systems for type Bn. The other types will simply be summarized
below.

2.2. Maximal subroot systems of type Bn. Consider the extended di-
agram of figure 2. Notice that if vertex 0 or 1 is removed the remaining
subgraph is still type Bn and thus is not proper. If vertex 2 is removed we
are left with type A1 ×A1 ×Bn−2. Because the highest root is e1 + e2, the
two roots making up A1 × A1 (in the base we have chosen) are {e1 ± e2},
which for simplicity we will refer to as D2. If any of vertices 3 through n− 2
are removed, say vertex k, we have type Dk ×Bn−k where k ≥ 3, n− k ≥ 2
and D3 is understood to be the obvious root system. It has base

{α0, α1, ..., αk−1}
⋃
{αk+1, ..., αn}

which in terms of ∆ may be expressed as

{e1 ± e2, ei − ei+1 : 2 ≤ i ≤ k − 1}
⋃
{ei − ei+1, en : k + 1 ≤ i ≤ n− 1}.

The Weyl group acts as the group of permutations and sign changes of the
set {e1, ..., en}. Thus any set of positive roots associated with the subroot
systems of type Dk ×Bn−k will be of the form

{ei ± ej : i < j; i, j ∈ J1}
⋃
{el, ei ± ej : i < j; i, j, l ∈ J2}

where J1 and J2 are disjoint subsets of {1, ..., n} of sizes k and n− k respec-
tively.

If vertex n− 1 is removed the subroot system is type A1 ×Dn−1 and the
root in A1 is short. The sets of positive roots associated with this type of
maximal subroot system are of the form

{ei}
⋃
{el ± ej : l < j; l, j 6= i}.

When vertex n is removed we are left with type Dn and positive roots

{ei ± ej : 1 ≤ i < j ≤ n}.

If vertices 0 and 1 are both removed we are left with the maximal system
Bn−1 and the sets of positive roots are Weyl conjugates of

{el, ei ± ej : 1 < i < j ≤ n, l 6= 1}

and thus are of the form

{el, ei ± ej : i < j; i, j, l 6= n0}.

If any other two (or more) vertices are removed from the extended graph we
clearly do not have a maximal subroot system.

Notice that of all these maximal subroot systems only types Dk × Bn−k

and A1 ×Dn−1 are also of maximal rank.



SIZE OF CHARACTERS 5

2.3. Summary of maximal subroot systems. In the charts which follow
J1 and J2 will denote disjoint subsets of {1, ..., n} in types Bn, Cn and Dn;
and disjoint subsets of {1, ..., n + 1} in type An.

Type
Maximal subroot

systems
Positive roots of the maximal

subroot systems
An An−1 {ei − ej : 1 ≤ i < j ≤ n + 1; i, j 6= n0}

Ak ×An−k−1
{ei − ej : i < j; i, j ∈ J1}

⋃
{ei − ej : i < j; i, j ∈ J2}

where |J1| = k + 1 ≥ 2, |J2| = n− k ≥ 2

Bn Bn−1 {el, ei ± ej : i < j; i, j, l 6= n0}

Dn {ei ± ej : 1 ≤ i < j ≤ n}

Dk ×Bn−k
{ei ± ej : i < j; i, j ∈ J1}

⋃
{el, ei ± ej : i < j; i, j, l ∈ J2}

where |J1| = k ≥ 2, |J2| = n− k ≥ 2

A1 ×Dn−1 {ei}
⋃
{el ± ej : l < j; l, j 6= i}

Cn An−1 {siei − sjej : 1 ≤ i < j ≤ n} where sj = ±1

Ck × Cn−k
{2el, ei ± ej : i < j; i, j, l ∈ J1}

⋃
{2el, ei ± ej : i < j; i, j, l ∈ J2}

where |J1| = k ≥ 1, |J2| = n− k ≥ 1

Dn Dn−1 {ei ± ej : i < j; i, j 6= n0}

An−1
{siei − sjej : 1 ≤ i < j ≤ n} where sj = ±1

and an even number of sj = −1

Dk ×Dn−k
{ei ± ej : i < j; i, j ∈ J1}

⋃
{ei ± ej : i < j; i, j ∈ J2}

where |J1| = k ≥ 2, |J2| = n− k ≥ 2

Here D2 is understood to mean {e1 ± e2}, C1 = {2ei}. C2 and D3 are the
obvious root systems.

3. Upper bounds for the Trace function

In this section we will establish the sufficiency of the choice of s in Theo-
rem 1. Each Lie group type must be handled separately, taking into account
the possible choices for Φ+(g).

Theorem 3.1. Let G be a compact, connected, simple Lie group of type
An, Bn, Cn or Dn. For every g /∈ Z(G) there is a constant c(g) such that∣∣∣∣Trλ(g)

deg λ

∣∣∣∣ ≤ c(g)(deg λ)−s
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for all λ ∈ Ĝ provided

s ≤


1

n−1 if G is type An−1 or Dn
1

2n−1 if G is type Bn
2

2n−1 if G is type Cn, n 6= 3
1
3 if G is type C3

.

Proof. Inequality (2.3) together with the Weyl dimension formula (2.1) show
that it is sufficient to prove that there is some constant c such that for all
w ∈ W and representations λ,∣∣∣∏α∈Φ+(g)(ρ + λ, w(α))

∣∣∣∏
α∈Φ+(ρ + λ, α)1−s

≤ c.

Indeed, as α ∈ Φ(g) if and only if w(α) ∈ Φ(w−1(g)), it suffices to prove
there is a constant c such that

(3.1)
∏

α∈Φ+′ (ρ + λ, α)∏
α∈Φ+(ρ + λ, α)1−s

=
∏

α∈Φ+′

(ρ + λ, α)s
∏

α∈Φ+\Φ+′

(ρ + λ, α)s−1 ≤ c

whenever Φ+′ is the set of positive roots of some maximal subroot system,
and this is what we will show in each case.

Throughout this proof we will assume ρ + λ can be expressed in terms
of the fundamental dominant weights as

∑n
i=1 miλi. We will also assume

mk = maxi=1,...,n mi. The letter c will denote a constant which may vary
from one line to another.

One common technique we use is an induction argument. We often par-
tition Φ+ (and Φ+′) into two sets, one of which is a positive root system
(subroot system) of smaller type. The product we need to study correspond-
ing to these roots of smaller type are handled by the induction assumption.
Another common technique is to count the number of positive roots α, from
some appropriate set, such that (ρ + λ, α) is (essentially) maximal and see
that there are enough of these terms occuring in the product with a negative
exponent to make the product suitably small. Both these ideas are used in
Case 1.1 below (when the maximal subroot system is type An−1 in type An).
In other cases, the arguments are slightly more delicate, but always they are
of an elementary, combinatorial nature.

Type An

Case 1.1 Maximal subroot system is type An−1 :
We proceed by induction on n. If n = 1 then Φ+′ is empty and conse-

quently s = 1 suffices. So assume inductively that (3.1) is satisfied with
s = 1/(n−1) whenever Φ+ is the set of positive roots of type An−1 and Φ+′

is the set of positive roots of a subroot system of type An−2.
Let Φ+ be the set of positive roots of type An and let Φ+′ be the set of

positive roots of a subroot system of type An−1; Φ+′ will be a set of the
form {ei − ej : 1 ≤ i < j ≤ n + 1; i, j 6= n0}.
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First assume k ≤ n0 − 1 (which implies, in particular, that n0 6= 1).
Partition Φ+ as Φ+

1

⋃
Φ+

2 with

Φ+
1 = {ei − ej : 2 ≤ i < j ≤ n + 1}

and
Φ+

2 = {e1 − ej : 2 ≤ j ≤ n + 1}.
Similarly partition Φ+′ as Φ+′

1

⋃
Φ+′

2 where

Φ+′
1 = {ei − ej : 2 ≤ i < j ≤ n + 1; i, j 6= n0}

and
Φ+′

2 = {e1 − ej : 2 ≤ j ≤ n + 1; j 6= n0}.
The set Φ+

1 may be viewed as the positive roots of type An−1 and Φ+′
1 as

the positive roots of a subroot system of type An−2 (considering the vectors
to be in Rn by omitting the first (zero) coordinate). When α ∈ Φ+

1 , then
(ρ + λ, α) is equal to (

∑n
i=2 miλi, α), thus the induction hypothesis may be

applied to conclude that if s ≤ 1/(n− 1) then∏
α∈Φ+′

1

(ρ + λ, α)s
∏

α∈Φ+
1 \Φ

+′
1

(ρ + λ, α)s−1 ≤ c.

Since the cardinality of Φ+′
2 is n− 1 we clearly have∏

α∈Φ+′
2

(ρ + λ, α)s ≤ cm
s(n−1)
k .

Recall that e1 − en0 = λ1 + ... + λn0−1. As k ≤ n0 − 1 this means that
(ρ+λ, e1−en0) ≥ mk, and since e1−en0 ∈ Φ+

2 \Φ
+′
2 we obtain the inequality∏

α∈Φ+
2 \Φ

+′
2

(ρ + λ, α)s−1 ≤ ms−1
k .

Therefore, ∏
α∈Φ+′

2

(ρ + λ, α)s
∏

α∈Φ+
2 \Φ

+′
2

(ρ + λ, α)s−1 ≤ cm
s(n−1)+s−1
k .

This is bounded if s(n−1)+s−1 ≤ 0, i.e. when s ≤ 1/n, giving the desired
result.

Otherwise k ≥ n0 (and n0 6= n + 1). In this case we partition Φ+′ into
Φ+′

1

⋃
Φ+′

2 where Φ+′
1 is the subset of Φ+′ consisting of all the words ei − ej

with i, j 6= n + 1, and

Φ+′
2 = {ej − en+1 : 1 ≤ j ≤ n; j 6= n0}.

Similarly partition Φ+ so that Φ+
2 \Φ

+′
2 = {en0 − en+1}. Again the induction

hypothesis can be applied to the factors of the product corresponding to
α ∈ Φ+

1 and Φ+′
1 , and this observation reduces the problem to proving∏

α∈Φ+′
2

(ρ + λ, α)s
∏

α∈Φ+
2 \Φ

+′
2

(ρ + λ, α)s−1 ≤ c
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for s ≤ 1/n. As

(ρ + λ, en0 − en+1) = (ρ + λ, λn0 + ... + λn) ≥ mk

the required inequality can be established in the same manner as the first
part.

Case 1.2 Maximal subroot system is type Ak × An−k−1, where k,
n− k − 1 ≥ 1 :

We again proceed by induction on n. Notice that a maximal subroot
system of this type is not found in type A1 or A2, and consequently the
initial step of the induction hypothesis is with n = 3 and Φ+′ the set of
positive roots of type A1 × A1. We will leave it to the reader to verify the
hypothesis for this initial condition.

We assume inductively that (3.1) holds with s = 1/(n− 1) whenever Φ+

is the set of positive roots of type An−1 and Φ+′ is type Ak × An−k−2 for
some k and n− k− 2 ≥ 1, and proceed to verify the induction step for type
An.

¿From section 2.3 we know that any set of positive roots of type Ak ×
An−k−1 in An is of the form Φ+′ = Φ+′

1

⋃
Φ+′

2 where

Φ+′
1 = {ei − ej : i < j; i, j ∈ J1},

Φ+′
2 = {ei − ej : i < j; i, j ∈ J2}

and J1, J2 are disjoint sets whose union is {1, ..., n + 1}, of sizes k + 1 and
n− k respectively. Without loss of generality we may assume 1 ∈ J1.

Let

Ψ′
1 = {ei − ej : 1 < i < j; i, j ∈ J1}

(Ψ′
1 is taken to be empty if the cardinality of J1 is two) and Ψ′

2 = Φ+′
1 \Ψ′

1.
Let Ψ1 be the set of words ei − ej , i < j, on the letters {2, ..., n + 1}, and
Ψ2 = {e1 − ej : j 6= 1}. Then Ψ1 may be viewed as the set of positive roots
of type An−1, with Ψ′

1

⋃
Φ+′

2 a subroot system of type Ak−1×An−k−1. Thus
the induction hypothesis may be applied to yield∏

α∈Ψ′
1

S
Φ+′

2

(ρ + λ, α)s
∏

α∈Ψ1\Ψ′
1

S
Φ+′

2

(ρ + λ, α)s−1 ≤ c

when s ≤ 1/(n− 1). (If Ψ′
1 is empty then this is actually case 1.1 which has

already been done.)
It remains to prove that for Ψ′

2 = {e1 − ej : j ∈ J1\{1}} and s ≤ 1/n,∏
α∈Ψ′

2

(ρ + λ, α)s
∏

α∈Ψ2\Ψ′
2

(ρ + λ, α)s−1 ≤ c.

If there exists some j ∈ J2 such that j ≥ k + 1, then for some α ∈ Ψ2\Ψ′
2

(ρ + λ, α) = (ρ + λ, e1 − ej) = (ρ + λ, λ1 + ... + λj−1) ≥ mk.
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Combining this with the fact that the cardinality of J1 is at most n− 1 we
obtain the inequalities∏

α∈Ψ′
2

(ρ + λ, α)s
∏

α∈Ψ2\Ψ′
2

(ρ + λ, α)s−1 ≤ cm
s(|J1|−1)
k ms−1

k ≤ c

when s ≤ 1/n.
Otherwise, n + 1 ∈ J1 and there is some j ≤ k which belongs to J2.

(Indeed, all j ∈ J2 must satisfy j ≤ k.) Redefine

Ψ′
1 = {ei − ej : 1 ≤ i < j ≤ n; i, j ∈ J1},

Ψ1 = {ei − ej : 1 ≤ i < j ≤ n}
and Ψ2, Ψ′

2 correspondingly. The argument now follows from the fact that
(ρ + λ, α) ≥ mk for α = ej − en+1 ∈ Ψ2\Ψ′

2.
Type Bn

Case 2.1 Maximal subroot system is type Bn−1 :
The maximal subroot system Φ+′ = {el, ei ± ej : i < j; i, j, l 6= n0}. We

consider the cases n0 = 1 and n0 6= 1 separately and assume s ≤ 1/(2n− 1).
n0 = 1 : Notice (ρ + λ, α) = O(mk) for all α = e1, e1 + ej and these roots

all belong to Φ+ \ Φ+′. Also, |Φ+′| = (n− 1)2, and thus

(3.2)
∏

α∈Φ+′

(ρ + λ, α)s
∏

α∈Φ+\Φ+′

(ρ + λ, α)s−1 ≤ m
s(n−1)2

k m
(s−1)n
k .

Since
1

2n− 1
≤ n

n2 − n + 1
it follows that (3.2) is bounded whenever s ≤ 1/(2n− 1).

n0 6= 1 : Here we proceed by induction, leaving the initial step with n = 3
to the reader. The words from Φ+′ in Φ+ with letters from {2, ..., n} are
the positive roots of a subroot system of type Bn−2 in type Bn−1. Thus the
induction hypothesis reduces the problem to consideration of∏

α∈Ψ′

(ρ + λ, α)s
∏

α∈Ψ\Ψ′

(ρ + λ, α)s−1,

where Ψ′ and Ψ are the remaining roots in Φ+′ and Φ+ respectively.
Set aj = max{ml : l < j}. Notice that {aj} is an increasing sequence and

that (ρ + λ, e1 − ej) = O(aj). Also, both (ρ + λ, e1) and (ρ + λ, e1 + ej) are
O(mk). As Ψ′ = {e1, e1 ± ej : j 6= 1, n0}, this implies∏
α∈Ψ′

(ρ + λ, α)s = (ρ + λ, e1)s
∏

α=e1+ej ,j 6=1,n0

(ρ + λ, α)s
∏

α=e1−ej ,j 6=1,n0

(ρ + λ, α)s

≤ cm
s(n−1)
k

n0−1∏
j=2

as
j

n∏
j=n0+1

as
j ≤ cm

s(n−1)
k as(n0−2)

n0
m

s(n−n0)
k

≤ cm
s(2n−n0−1)
k as(n0−2)

n0
.
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Moreover Ψ \Ψ′ = {e1 ± en0}, therefore∏
α∈Ψ\Ψ′

(ρ + λ, α)s−1 = cms−1
k as−1

n0
.

Hence ∏
α∈Ψ′

(ρ + λ, α)s
∏

α∈Ψ\Ψ′

(ρ + λ, α)s−1 ≤ cm
s(2n−n0)−1
k as(n0−1)−1

n0
,

and noting that both exponents are negative completes the argument.
Case 2.2 Maximal subroot system is type Dn :
In this case Φ+′ = {ei ± ej : 1 ≤ i < j ≤ n} and therefore Φ+ \ Φ+′ is

the set of all words of length one in Φ+. Let bi = max{ml : l ≥ i}. Then
(ρ+λ, α) = O(bi) if α = ei or ei+ej for any j > i. Also, (ρ+λ, ei−ej) ≤ O(bi)
whenever j > i. Thus∏

α∈Φ+′

(ρ + λ, α)s
∏

α∈Φ+\Φ+′

(ρ + λ, α)s−1

=
∏

α=ei±ej ,i<j

(ρ + λ, α)s
n∏

i=1

(ρ + λ, ei)s−1

≤ c

n−1∏
i=1

b
2s(n−i)
i

n∏
i=1

bs−1
i = c

n∏
i=1

b
s(2n−2i+1)−1
i ,

and this is clearly bounded for s ≤ 1/(2n− 1).
Case 2.3 Maximal subroot system is type A1 ×Dn−1 :
The argument is essentially the same as case 2.2.
Case 2.4 Maximal subroot system is type Dm×Bn−m;m,n−m ≥

2 :
The positive roots of type Dm in type Bm were already treated in Case

2.2, so it suffices to show

P ≡

∣∣∣∣∣ ∏
α∈Ψ′

(ρ + λ, α)s
∏
α∈Ψ

(ρ + λ, α)s−1

∣∣∣∣∣
is bounded when

Ψ′ = {el,ei ± ej : i < j; i, j, l ∈ J2}

and
Ψ = {ei ± ej : i ∈ J1, j ∈ J2}.

We consider the cases 1 ∈ J1 and 1 ∈ J2 separately. The argument is much
easier when 1 ∈ J1 and hinges on the fact that in this case Ψ ⊇ {e1 ± ej :
j ∈ J2}. Thus

P ≤
∏
i∈J2

(ρ + λ, ei)s
∏

i<j∈J2

(ρ + λ, ei ± ej)s
∏
j∈J2

(ρ + λ, e1 ± ej)s−1.
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Let bi = max{ml : l ≥ i} and ai = max{ml : l < i}. With this notation, for
i < j we have

(ρ + λ, ei + ej) = O(bi), (ρ + λ, ei) = O(bi)
(ρ + λ, ei − ej) ≤ O(aj), (ρ + λ, e1 − ej) = O(aj).

Hence we can further bound P by

P ≤ c
∏
i∈J2

bs
i b

s(|J2|−1)
i

∏
j∈J2

a
s(|J2|−1)
j b

(s−1)|J2|
1

∏
j∈J2

as−1
j

≤ cb
s(|J2|2+|J2|)−|J2|
1

∏
j∈J2

a
s|J2|−1
j .

The final product is bounded over all λ since |J2| ≤ n−2 and s ≤ 1/ (2n− 1).
Now assume 1 ∈ J2. Here a further induction argument is useful. Parti-

tion Ψ′ as X1
⋃

X2 and Ψ as Y1
⋃

Y2 where

X1 = {el, ei ± ej : i < j, 1 6= i, j, l ∈ J2}, X2 = {e1, e1 ± ej : 1 6= j ∈ J2}

and
Y1 = {ei ± ej : i ∈ J1, 1 6= j ∈ J2}, Y2 = {e1 ± ei : i ∈ J1},

and assume inductively that∣∣∣∣∣∣
∏

α∈X1

(ρ + λ, α)s
∏

α∈Y1

(ρ + λ, α)s−1

∣∣∣∣∣∣ ≤ c

for s ≤ 1/ (2n− 1) . (The initial case is left for the reader). We need to
check that ∣∣∣∣∣∣

∏
α∈X2

(ρ + λ, α)s
∏

α∈Y2

(ρ + λ, α)s−1

∣∣∣∣∣∣ ≤ c

to complete the induction step. Since (ρ+λ, e1 + ei) = O(mk) for all i ∈ J1,

and (ρ+λ, e1−ei)s−1 ≤ 1, the product above is bounded by m
s|X2|
k m

(s−1)|J1|
k .

As |X2| = 2 |J2| − 1 and J1 has at least two elements the desired result is
obtained.

This completes type Bn.
Type Cn

Case 3.1 Maximal subroot system is type An−1 :
When k = n then (ρ + λ, 2ei) = O(mk) for all i = 1, ..., n and as these

roots belong to Φ+\Φ+′ it follows that for s ≤ 2/(2n− 1),

P =
∏

α∈Φ+′

(ρ + λ, α)s
∏

α∈Φ+\Φ+′

(ρ + λ, α)s−1 ≤ m
s(n

2)
k m

(s−1)n
k ≤ c.

When k 6= n we proceed inductively. The words from Φ+ and Φ+′ built
on the letters {2, ..., n} form a subroot system of type An−2 in Cn−1 and
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thus our standard induction argument reduces the problem to showing that

P =
∏

α∈Ψ′

(ρ + λ, α)s
∏

α∈Ψ\Ψ′

(ρ + λ, α)s−1 ≤ c

where Ψ′ and Ψ are the remaining words of Φ+′ and Φ+ respectively.
As Ψ′ contains only one of e1 ± en, it follows that (ρ + λ, α) = O(mk) for

at least two α ∈ Ψ\Ψ′, namely, α = 2e1 and the one of e1 ± en which is not
in Ψ′. Furthermore, |Ψ′| = n− 1, hence

P ≤ m
s(n−1)
k m

2(s−1)
k ,

and this is certainly bounded for s ≤ 2/(2n− 1).
Case 3.2 Maximal subroot system is type C1 × Cn−1 :
This case is much more delicate than any of the others. When n = 3 it

can be done by explicit calculation and we leave this for the reader. So we
begin with n ≥ 4 and take s ≥ 2/(2n− 1).

As the maximal subroot system is

Φ+′ = {2ei0}
⋃
{2el, ei ± ej : i < j; i, j, l 6= i0},

(3.1) can be written as

P =
n∏

l=1

(ρ + λ, 2el)s
∏

i<j 6=i0

(ρ + λ, ei ± ej)s
∏
j 6=i0

|(ρ + λ, ei0 ± ej)|s−1 .

Let bi = max{ml : l ≥ i}. When i < j then (ρ + λ, ei + ej) = O(bi) =
(ρ + λ, 2ei). Thus

(3.3) P = c
n∏

i=1

bs
i

∏
i<i0

b
s(n−i−1)
i

∏
i>i0

b
s(n−i)
i

∏
j<i0

bs−1
j b

(n−i0)(s−1)
i0

Q

where
Q =

∏
i<j 6=i0

(ρ + λ, ei − ej)s
∏
j 6=i0

|(ρ + λ, ei0 − ej)|s−1 .

Notice that Q is the product we considered for the problem of the maximal
subroot system of type An−2 in type An−1 (Case 1.1), and thus is bounded
provided s ≤ 1/ (n− 1) . This is true in our situation since we have the
stronger inequality s ≤ 2/(2n− 1).

Simplifying, and using the fact that when i > i0 then bi ≤ bi0 , we obtain

P ≤ cb
s+(n−i0)(s−1)
i0

∏
i<i0

b
s(n−i+1)−1
i

∏
i>i0

b
s(n−i+1)
i0

Q

and hence

(3.4) P ≤ cb
s(n−i0+1+(n−i0+1)(n−i0)/2)−(n−i0)
i0

∏
i<i0

b
s(n−i+1)−1
i Q.
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To continue, we split the problem into two cases. First, suppose k ≥ i0.
Then bi = mk whenever i ≤ i0. Recall also that Q is bounded, thus

P ≤ cm
s(n−i0+1+(n−i0+1)(n−i0)/2)−(n−i0)
k

∏
i<i0

mk
s(n−i+1)−1.

Routine calculations reduce this to the inequality

P ≤ m
s(n2+n)/2−n+1
k

which one can check is bounded for our choices of n and s.
Now, suppose k < i0. A standard argument with inequalities shows that

the exponent of bi0 in (3.4) is negative (for s ≤ 2/(2n− 1)) if i0 6= n. Also,
s(n− i + 1)− 1 ≤ 0 if i > 1. Consequently,

P ≤
{

cbs
nbsn−1

1 b2s−1
n−1 Q if i0 = n

cbsn−1
1 Q if i0 6= n

.

We factor Q as

Q =
∏

j 6=1,i0

(ρ + λ, e1 − ej)s(ρ + λ, e1 − ei0)
s−1Q1

where

Q1 =
∏

i<j 6=1,i0

(ρ + λ, ei − ej)s
∏

j 6=1,i0

|(ρ + λ, ej − ei0)|
s−1 .

Q1 is bounded being the product we consider for the problem of a maximal
subroot system of type An−3 in type An−2 (on the letters {2, ..., n}; note
that the assumption k < i0 implies i0 6= 1). Also, as k < i0, (ρ+λ, e1−ei0) =
O(mk), thus

P ≤

{
cbs

nbsn−1
1 b2s−1

n−1 m
s(n−2)
k ms−1

k Q1 if i0 = n

cbsn−1
1 m

s(n−2)
k ms−1

k Q1 if i0 6= n

But bn ≤ bn−1 and b1 = mk, hence

P ≤

{
cb3s−1

n−1 m
s(2n−1)−2
k if i0 = n

cm
s(2n−1)−2
k if i0 6= n

.

As n ≥ 4 we have s ≤ 1/3, and thus P is bounded in either case.
Case 3.3 Maximal subroot system is type Ck ×Cn−k; k, n− k ≥ 2:
This is similar to Case 1.2 (but easier because of the fact that (ρ+λ, ei +

ej) = O(mk) for all j).
Type Dn

Case 4.1 Maximal subroot system is type Dn−1 :
Assume s ≤ 1(n− 1) and

Φ+′ = {ei ± ej : 1 ≤ i < j ≤ n; i, j 6= n0}.
The case when k ≥ n0 can be done directly by counting, but is slightly

different from the earlier cases because of the fact that (e1 + en, λn−1) = 0.
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Observe that Φ+\Φ+′ = {ei ± en0 : i 6= n0} (where ei − en0 should be
understood to mean en0 − ei when i > n0). Because k ≥ n0,

(ρ + λ, α) ≥ mk for α =

 ei + en0 ∀i 6= n0, provided k 6= n− 1
ei + en0 ∀i 6= n0 or n, if k = n− 1
en0 − en if k = n− 1 (so that n0 6= n)

.

Thus for all k ≥ n0, (ρ + λ, α) ≥ mk for at least n− 1 elements in Φ+\Φ+′,
and so ∏

α∈Φ+\Φ+′

(ρ + λ, α)s−1 ≤ m
(n−1)(s−1)
k .

Combined with the fact that |Φ+′| = 2
(
n−1

2

)
, this yields∏

α∈Φ+′

(ρ + λ, α)s
∏

α∈Φ+\Φ+′

(ρ + λ, α)s−1 ≤ cm
s(n−1)(n−2)+(s−1)(n−1)
k ,

which is clearly bounded when s ≤ 1/(n− 1).
If k = n−1 and n0 = n then (ρ+λ, ei−en0) = O(mk) for all i = 1, ..., n−1

and so the argument is similar.
Otherwise we proceed inductively. The words from Φ+ and Φ+′ based on

the letters {2, ..., n} are a subroot system of type Dn−2 in Dn−1 and so are
handled by the induction hypothesis, leaving us to show that∏

j 6=1,n0

(ρ + λ, e1 ± ej)s
∏

α=e1±en0

(ρ + λ, α)s−1

is bounded. But this is quite routine because the assumptions k ≤ n0 − 1
and k 6= n− 1 ensure that (ρ + λ, e1 ± en0) ≥ mk.

Case 4.2 Maximal subroot system is type An−1 :
It is convenient for the induction argument used in this case to assume

Φ+′ = {siei − sjej : i < j}, taking no consideration for the parity of the
signs, si. We leave the initial case of n = 4 for the reader, so assume n > 4
and proceed inductively.

Suppose first that k ≤ n − 2. Applying the induction argument one can
see that it suffices to establish the boundedness of

(3.5)

∣∣∣∣∣∣
∏

α∈Ψ′

(ρ + λ, α)s
∏

α∈Ψ\Ψ′

(ρ + λ, α)s−1

∣∣∣∣∣∣ ,

where Ψ = {e1±ej : 1 < j ≤ n} and Ψ′ = Ψ
⋂

Φ+′. Because (ρ+λ, α) ≥ mk

for α = e1 ± en−1 and α = e1 ± en, at least two of which belong to Ψ\Ψ′,

and |Ψ′| = n− 1, the product above is at most cm
s(n−1)+2(s−1)
k and hence is

bounded when s ≤ 1/(n− 1).
If k = n then let J denote the number of sj = +1. Notice that if si and

sj are the same sign, then |(ρ + λ, siei + sjej)| ≥ mn. A counting argument
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shows that∣∣∣∣∣∣
∏

α∈Φ+′

(ρ + λ, α)s
∏

α∈Φ+\Φ+′

(ρ + λ, α)s−1

∣∣∣∣∣∣ ≤ cm
(n
2)s

n m
(s−1)((J

2)+(n−J
2 ))

n

and one can readily verify that this exponent is negative for our choices of
s and n.

The case k = n− 1 is similar letting J denote the number of elements of
{s1, ..., sn−1,−sn} equal to +1.

Case 4.3 Maximal subroot system is type Dk×Dn−k; k, n−k ≥ 2 :
Here it is convenient for the induction argument to allow k or n − k to

equal 1, understanding that D1 is the empty set. When n = 3 we can only
have D1 × D2, which is actually just D2, and this was done in case 4.1 of
this section. (Indeed, case 4.1 does D1 ×Dn−1 for general n.) This begins
the induction argument.

¿From the previous remarks one can see there is no loss of generality in
assuming k and n− k ≥ 2. Moreover, we may assume

Φ+′ = {ei ± ej : i < j; i, j ∈ J1}
⋃
{ei ± ej : i < j; i, j ∈ J2}

where J1 and J2 are disjoint subsets of {1, ..., n} of sizes k and n − k, and
1 ∈ J1.

The induction argument applies to the factors with α = ei ± ej , i, j 6= 1,
thus we need only consider the product over the remaining words:

(3.6)
∏

α∈{e1±ej :1 6=j∈J1}

(ρ + λ, α)s
∏

α∈{e1±ej :j∈J2}

(ρ + λ, α)s−1.

If k 6= n − 1, then (ρ + λ, e1 + ej) ≥ mk for all j ∈ J2. If k = n − 1, it is
still true that (ρ + λ, e1 + ej) ≥ mk for all j ∈ J2 except j = n, but then
also (ρ + λ, e1 − en) ≥ mk. In either case there are at least |J2| positive
roots α ∈ {e1 ± ej : j ∈ J2} such that (ρ + λ, α) ≥ mk. As |J2| ≥ 2 and
|J1| ≤ n−2, this implies (3.6) is bounded when s ≤ 1/(n−1) and completes
the proof for type Dn.

Remark 3.1. The expressions obtained for the maximal subroot systems
of the exceptional Lie groups, E6, E7, and E8, are too cumbersome for the
application of this method.

4. Optimality of the upper bounds

In this section we will demonstrate the optimality of the choice of s in
the main theorem, in the sense that there exist g ∈ G and infinitely many
representations λ such that Trλ(g) = O(d1−s

λ ). The elements g in the torus
T which we will work with, and the corresponding sets Φ+(g), are listed
below. Notice that the sets Φ+(g) are the positive roots of maximal subroot
subsystems of type An−1, Dn, C1 × Cn−1 and Dn−1 in An, Bn, Cn and Dn
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respectively.

Type Element g of T Positive subroot system Φ+(g)

An
(−nx, x, ..., x) ∈ Rn+1

where x = π/(n + 1) {ei − ej : 2 ≤ i < j ≤ n + 1}

Bn (π, ..., π) {ei ± ej : 1 ≤ i < j ≤ n}
Cn (π, 0, ..., 0) {2e1}

⋃
{ei ± ej , 2ek : i < j, k 6= 1}

Dn (π, 0, ..., 0) {ei ± ej : 1 < i < j ≤ n}

Theorem 4.1. Suppose G is a compact, connected, simple Lie group of type
An, Bn, Cn or Dn. Let g be the element in T listed in the chart above and
let λ = mλ1 with m an even integer (λ = mλ3 in type C3). Then∣∣∣∣Trλ(g)

deg λ

∣∣∣∣ ≥ c̃(g)(deg λ)−s

for some constant c̃(g) independent of λ if

s =


1

n−1 if G is type An−1 or Dn
1

2n−1 if G is type Bn
2

2n−1 if G is type Cn, n 6= 3
1
3 if G is type C3

.

The strategy of the proof will be to first establish that

det w sgn

 ∏
α∈Φ+(g)

(ρ + λ, w(α))

 exp i(ρ + λ, w(g))

is constant over w ∈ W . This fact, together with (2.2), show that∣∣∣∣Trλ(g)
dλ

∣∣∣∣ ≥ max
w∈W

c̃(g)

∣∣∣∏α∈Φ+(g)(ρ + λ, w(α))
∣∣∣∏

α∈Φ+(ρ + λ, α)
,

and we shall see that it is a straightforward matter to prove that the latter
ratio is O(d−s

λ ).
First, some preliminary results.

Lemma 4.2. Let λ be any representation, let Φ+(g) be as above and let
w = w1w2 ∈ W where w1 is a product of sign changes and w2 a permutation.
(w1 = 1 in type An.) Then

sgn

 ∏
α∈Φ+(g)

(ρ + λ, w(α))

 =
{

det w2 in type Bn,

(−1)w2(1)−1 det w in type An, Cn or Dn
.

Proof. Obviously sgn ((ρ + λ, w2(α))) = 1 when α = ei + ej , ei or 2ei. If
i < j and w2(i) < w2(j) then sgn ((ρ + λ, w2(α))) = 1, while if w2 reverses
their order the sign is negative. Thus if we let

X = {(i, j) : ei − ej ∈ Φ+(g), i < j and w2(i) > w2(j)},
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then

sgn

 ∏
α∈Φ+(g)

(ρ + λ, w(α))

 = (−1)|X|.

In type Bn,

X = {(i, j) : 1 ≤ i < j ≤ n and w2(i) > w2(j)},

hence (−1)|X| = detw2. For the other types the pairs (1, j) are never in-
cluded in X and therefore

det w2 = (−1)|X|+|{j:j>1 and w2(1)>w2(j)}| = (−1)|X|+w2(1)−1.

Hence,
(−1)|X| = (−1)w2(1)−1 det w2

in types An, Cn or Dn. This completes the proof for type An as w2 = w.
Next, assume w1 is a simple sign change, say w1(ei) = −ei if i = i0 and

w1(ei) = ei otherwise. Then

(ρ + λ, w1(ei0 + ek))(ρ + λ, w1(ei0 − ek)) = (ρ + λ, ei0 + ek)(ρ + λ, ei0 − ek),

while of course (ρ + λ, w1(ei0)) = −(ρ + λ, ei0). Since Φ+(g) only contains
words of the form ei ± ej in types Bn and Dn,∏

α∈Φ+(g)

(ρ + λ, w1(α)) =
{ −

∏
α∈Φ+(g)(ρ + λ, α) in type Cn

+
∏

α∈Φ+(g)(ρ + λ, α) in type Bn or Dn
.

We can determine the effect of an arbitary sign change by repeating this
argument the appropriate number of times:

sgn

 ∏
α∈Φ+(g)

(ρ + λ, w1(α))

 =
{

(−1)#sign changes = detw1 in type Cn

+1 in type Bn or Dn
.

This is also the determinant of w1 in type Dn since only an even number of
sign changes are allowed in the Weyl group.

Combining these observations completes the proof.

Lemma 4.3. Let g ∈ G be as above and let λ =
∑

miλi with mi even (and
mn ≡ mn−1 ≡ 0 mod 4 in type Dn). Let w ∈ W , w = w1w2 where w1 is a
product of sign changes (w1 = 1 in type An) and w2 a permutation. Then

exp i(ρ + λ, w(g)) =
{

(−1)w2(1)−1θ in type An, Cn or Dn

det w1θ in type Bn

for some complex numbers θ of modulus one which do not depend on w.

Proof. Type Bn: Here w2 is clearly irrelevant. Expressed in terms of the
standard basis vectors the j′th entry of ρ +

∑
miλi is{ ∑n−1

i=j mi + mn/2 + n− j + 1/2 if j 6= n

(mn + 1) /2 if j = n
.
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The reader can easily check from this that if w1 changes k signs then

exp i(ρ + λ, w(g)) = (−1)kθ = detw1θ

for an appropriate choice of θ.
Type Cn: In terms of the standard basis vectors

ρ +
∑

miλi = (
n∑

i=1

mi + n,
n∑

i=2

mi + n− 1, ...,mn + 1).

Suppose w2(1) = j. Then,

(ρ + λ, w2(g)) =

 n∑
i=j

mi + n− j + 1

 π.

As all mi are assumed even,

exp i(ρ + λ, w2(g)) = (−1)j−1 exp inπ.

Because g = −g, the sign changes have no effect on g and thus the argument
is complete.

Type Dn: One can verify that if w2(1) = j then

(ρ + λ, w(g)) =


±

(∑n−2
i=j mi + 1

2 (mn−1 + mn) + n− j
)

π if j ≤ n− 2
±

(
1 + 1

2 (mn−1 + mn)
)
π if j = n− 1

±(mn −mn−1)π/2 if j = n

with the choice of ± depending on w1. As these are all integer multiples
of π the choice of ± does not affect the parity of (ρ + λ, w(g)), and since
m1, ...,mn−2 and 1

2 (mn−1 ±mn) are even integers, it follows that for all
choices of j we have

exp i(ρ + λ, w(g)) = (−1)j exp inπ.

Type An: The j′th entry of ρ +
∑

miλi is

1
n + 1

(−(m1 + 1)− 2(m2 + 1)... + (mj + 1)(n− j + 1) + ... + (mn + 1)) .

The same kinds of calculations as used for the other types show that if
w2(1) = j then

exp i(ρ + λ, w(g)) = exp i(ρ + λ, g)(−1)j−1.

Proof of Theorem: Combining these lemmas we clearly obtain

det w sgn

 ∏
α∈Φ+(g)

(ρ + λ, w(α))

 exp i(ρ + λ, w(g)) = θ
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and this is independent of w. Thus

|Trλ(g)|
dλ

≥ c̃(g)
maxw∈W

∣∣∣∏α∈Φ+(g)(ρ + λ, w(α))
∣∣∣∏

α∈Φ+(ρ + λ, α)
.

For type Bn notice that Φ+(g) ⊇ {e1 ± ej : j 6= 1}. As λ = mλ1

we have (ρ + λ, e1 ± ej) ≥ m, thus

max
w∈W

∣∣∣∣∣∣
∏

α∈Φ+(g)

(ρ + λ, w(α))

∣∣∣∣∣∣ ≥ cm2(n−1).

Since also (ρ+λ, e1) = O(m) and (ρ+λ, α) is bounded independently
of m for all other α ∈ Φ+, it follows that dλ = cm2n−1 and hence

|Trλ(g)|
dλ

≥ cd
−1/(2n−1)
λ

as claimed.
The other cases are similar.

5. Singularity of central, continuous measures

A measure µ on G is called central if µ commutes with all other measures
on G under the action of convolution. Central measures are characterized
by the fact that their Fourier transforms are scalar multiples of identity
matrices:

µ̂(λ) = aλIdλ
where aλ =

∫
G

Trλ(x)
dλ

dµ.

We will simply write µ̂(λ) in place of aλ.
An interesting class of singular, central measures are the orbital measures.

The orbital measure µg, supported on the conjugacy class C(g) containing
g ∈ G, is defined by∫

G
fdµg =

∫
G

f(tgt−1)dmG(t) for f ∈ C(G).

Orbital measures are continuous if and only if g /∈ Z(G), the centre of G.
In [8] Ragozin proved that if g /∈ Z(G) then µdim G

g ∈ L1(G). One can
easily see that µ̂g(λ) = Trλ(g)

dλ
, and using this fact it was shown in [2] that

if k > dim G/2 then µk
g ∈ L2. By appealing to the sharper results of this

paper we can now prove:

Proposition 5.1. The measures µk
g belong to L2(G) for all g /∈ Z(G) if and

only if k ≥ k0 where

k0 =

 n if G is type An−1; Cn , n 6= 3 ; or Dn

2n if G is type Bn

4 if G is type C3

.
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Proof. ¿From the Peter-Weyl theorem we know µk
g ∈ L2 if and only if∑

λ∈ bG
dλ

∣∣µ̂g(λ)
∣∣2k

Tr |Idλ
|2 =

∑
λ∈ bG

d2
λ

∣∣∣∣Trλ(g)
dλ

∣∣∣∣2k

< ∞.

It was shown in Corollary 9 of [2] that
∑

λ∈ bG dt
λ < ∞ when t < −rank G/ |Φ+|.

This fact, combined with Theorem 3.1, proves the sufficiency of the choice
of k.

Necessity is a consequence of Theorem 4.1. For example, when G is type
An and g = (−nx, x, ..., x) for x = π/(n + 1) we know∑
λ∈ bG

d2
λ

∣∣∣∣Trλ(g)
dλ

∣∣∣∣2k

≥
∑

m even

d2
mλ1

∣∣∣∣Tr mλ1(g)
dmλ1

∣∣∣∣2k

≥ c̃(g)
∑

m even

d2
mλ1

d
−2k/n
mλ1

= c
∑

m even

mn(2−2k/n),

which is finite only if 2n − 2k < −1. Thus we require k > n + 1/2, but as
k ∈ N this means k ≥ n + 1 is a necessary condition. The other types are
similar.

Remark 5.1. Of course, if µk
g ∈ L2 then µ2k

g is a continuous function.

The same result can be proved for central, continuous measures compactly
supported on the conjugates of a set of the form {x ∈ T : Φ+(x) = Φ+′} for
some fixed set Φ+′ as such measures µ also have the property that |µ̂(λ)| ≤
O(d−s

λ ) for s as in the main theorem. (see [2]) We should point out, in
contrast, that for any a < 1 there are central, continuous measures µ such
that µ̂(λ) ≥ da−1

λ for infinitely many λ. This is shown in [3] and is a
consequence of the fact that although compact Lie groups do not admit
infinite central Sidon sets (an application of Ragozin’s original work) they
do admit central (a, 1)-Sidon sets for all a < 1.

Finally, we are ready to improve upon Ragozin’s result on convolutions
of arbitrary central, continuous measures.

Proposition 5.2. Suppose µ1, ..., µk are central continuous measures and
k ≥ k0. Then µ1 ∗ · · · ∗ µk ∈ L1(G).

Proof. The proof is essentially the same as Theorem 11 of [2] but uses the
stronger results obtained in Proposition 5.1.

Remark 5.2. Ragozin observed that µk
g is singular to Haar measure on

G for all k < dim G/ dim C(g). As dim C(g) = 2(|Φ+| − |Φ+(g)|) ([7]) this
means, for instance, that if G is type An then µk

g is singular to Haar measure
when k < n/2 + 1. It remains open as to whether or not µk

g ∈ L1 for all
g ∈ G\Z(G), when k is between n/2+1 and n+1 (other than for the trivial
case A1 where clearly k = 2 is the best possible result).

A measure µ is called Lp-improving if there is some p < 2 such that
µ∗Lp ⊆ L2. Young’s inequality implies that all functions in Lq, for some q >
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1, are examples of Lp-improving measures. A question of current interest is
to understand which singular measures on compact groups are Lp-improving.
For example, surface measures on analytic manifolds which generate G were
shown to be Lp-improving in [9]. In [10] it was shown that if g was a regular
element, then µg ∗ Lp ⊆ L2 if and only if p ≥ 1 + r/(2 dim G − r). For
arbitrary continuous, orbital measures we can prove:

Proposition 5.3. If g /∈ Z(G) then µg is Lp-improving. Indeed, for any
g /∈ Z(G), µg ∗ Lp ⊆ L2 for p > 2− 2/(n + 1) when G is type An−1, Dn or
Cn, n 6= 3; p > 2− 2/(2n + 1) in type Bn; and p > 8/5 for C3.

Proof. Proposition 5.1 tells us that the operator Tk0(f) = µk0
g ∗ f maps

L1(G) into L2(G) whenever g /∈ Z(G). Since the identity map obviously
maps L2(G) into L2(G) an application of Stein’s interpolation theorem [12]
(see also [4]) gives that µg ∗ Lp ⊆ L2 for the choices of p listed.
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