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SIGNATURES OF INVARIANT HERMITIAN FORMS ON

IRREDUCIBLE HIGHEST WEIGHT MODULES

WAI LING YEE

Abstract. Perhaps the most important problem in representation theory in
the 1970s and early 1980s was the determination of the multiplicity of com-
position factors in a Verma module. This problem was settled by the proof
of the Kazhdan-Lusztig Conjecture which states that the multiplicities may
be computed via Kazhdan-Lusztig polynomials. In this paper, we introduce
signed Kazhdan-Lusztig polynomials, a variation of Kazhdan-Lusztig polyno-
mials which encodes signature information in addition to composition factor
multiplicities and Jantzen filtration level. Careful consideration of Gabber
and Joseph’s proof of Kazhdan and Lusztig’s recursive formula for computing
Kazhdan-Lusztig polynomials and an application of Jantzen’s determinant for-
mula lead to a recursive formula for the signed Kazhdan-Lusztig polynomials.
We use these polynomials to compute the signature of an invariant Hermitian
form on an irreducible highest weight module. Such a formula has applications
to unitarity testing.

1. Introduction

1.1. The Unitary Dual Problem. In the 1930s, I.M. Gelfand introduced a broad
programme in abstract harmonic analysis which would permit the transfer of dif-
ficult problems in areas as distinct from analysis as topology to more tractable
problems in algebra. Fourier analysis is just one incarnation of this programme.
An unresolved component in Gelfand’s programme is the classification of the irre-
ducible unitary representations of a group, known as the unitary dual problem.

In the case of a real reductive Lie group, the problem is equivalent to identifying
all irreducible Harish-Chandra modules which admit a positive definite invariant
Hermitian form. As Harish-Chandra modules may be constructed via an algebraic
method introduced by Zuckerman in 1978 known as cohomological induction, it
is of interest to study signatures of invariant Hermitian forms on cohomologically
induced modules and to understand how positivity can fail.

Cohomological induction is a two-step process in which we compose an induction
functor with a Zuckerman functor Γi. The intermediate module in cohomological
induction is a generalized Verma module which admits an invariant Hermitian form
if the module to which induction was applied admits an invariant Hermitian form.
Formulas for the signatures of invariant Hermitian forms on these intermediate
modules may be used to compute signatures of forms on corresponding cohomo-
logically induced modules (eg. [Wal84]). This motivates the study of invariant
Hermitian forms on Verma modules (see [Wal84], [Yee05]) and irreducible highest
weight modules.
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1.2. Overview. Let g0 be a real semisimple Lie algebra, θ a Cartan involution
of g0, g0 = k0 ⊕ p0 the corresponding Cartan decomposition, and h0 = t0 ⊕ a0 a
θ-stable Cartan subalgebra and corresponding Cartan decomposition (recall that
every Cartan subalgebra is conjugate to one which is θ-stable). We drop the sub-
script 0 to denote complexification. A Hermitian form 〈·, ·〉 on a g-module V is
invariant if it satisfies

〈Xv, w〉 +
〈
v, X̄w

〉
= 0

for every X ∈ g and every v, w ∈ V , where X̄ denotes the complex conjugate of
X with respect to the real form g0 of g. In this paper, we develop a formula for
the signature character of an invariant Hermitian form on an irreducible highest
weight module of regular infinitesimal character when it exists and h is compact.
In the process, we present a survey of results concerning Verma modules and the
Bernstein-Gelfand-Gelfand category O.

We describe the organization of this paper. In section 2, we review formulas
for signature characters of invariant Hermitian forms on Verma modules and their
relation to the Jantzen filtration. In section 3, we give a brief survey of the theory
of Verma modules, define signed Kazhdan-Lusztig polynomials, and then express
the signature character of an invariant Hermitian form on an irreducible highest
weight module in terms of these polynomials (Theorem 3.2.3). In section 4, we de-
velop recursive formulas for computing signed Kazhdan-Lusztig polynomials when
h is compact (Theorem 4.6.10). We begin by treating the elementary cases. Next,
we discuss category O, Jantzen’s translation functors, Jantzen’s determinant for-
mula, and coherent continuation functors; we adapt classical results for contravari-
ant forms to invariant Hermitian forms. Finally, we show how Gabber and Joseph’s
proof of the remaining “difficult” recursive formula for computing Kazhdan-Lusztig
polynomials may be modified to complete a set of recursive formulas which may be
used to compute signed Kazhdan-Lusztig polynomials. In section 5, we compute
some examples. Throughout this paper, the results typically only require existence
of non-zero invariant Hermitian forms (thus h must be maximally compact in addi-
tion to θ-stable). However, we only know how to compute signed Kazhdan-Lusztig
polynomials when h is compact because in this case, it is easy to derive formulas for
various quantities from analogous formulas for contravariant forms. We impose the
additional condition of compactness on h in: subsection 4.1, Lemma 4.3.4, Proposi-
tion 4.3.5, and any computations of inner products from subsection 4.5 to the end
of section 4.

Acknowledgements. I would like to thank David Vogan for many helpful discus-
sions, Joel Kamnitzer and Hannah Wachs for their hospitality, Alexander Postnikov
for asking about irreducible highest weight modules during my thesis defence, and
the referee for many helpful suggestions.

2. Forms on Verma Modules and Filtrations

2.1. The Signature of the Shapovalov Form on Irreducible Verma Mod-

ules. We review the contents of [Yee05].
Let b = h⊕n be a Borel subalgebra of g. Let ∆+(g, h) be the set of positive roots

determined by b and let ρ be one half the sum of the positive roots. For λ ∈ h∗, let
M(λ) = U(g)⊗U(b) Cλ−ρ be the Verma module of highest weight λ− ρ. We choose

a generator vλ−ρ for M(λ). Given µ ∈ h∗, θµ is defined by (θµ)(H) = µ(θ−1H)
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for every H in h∗. The complex conjugate of µ, µ̄, is defined by µ̄(H) = µ(H̄).
We have the relation θµ = −µ̄ for µ ∈ Λr. The Verma module M(λ) admits an
invariant Hermitian form 〈·, ·〉λ, which is unique up to a real scalar, when h is
maximally compact, θ(∆+(g, h)) = ∆+(g, h) (recall that h is θ-stable), and λ takes
imaginary values on h0. Normalized so that 〈vλ−ρ, vλ−ρ〉λ = 1, it is known as the
Shapovalov form. Henceforth, we shall take h and b to have the properties required
for existence of invariant Hermitian forms.

Define X∗ = −X̄ for X ∈ g, and extend ·∗ to an anti-involution of U(g) via
(xy)∗ = y∗x∗ for x, y ∈ U(g). Then

(2.1.1) 〈xvλ−ρ, yvλ−ρ〉λ = (λ − ρ)(p(y∗x))

where p : U(g) → U(h) is defined to be projection under the direct sum U(g) =
U(h) ⊕ (nopU(g) + U(g)n).

Due to invariance, the Shapovalov form pairs the λ−µ−ρ weight space of M(λ)
with the λ − θµ − ρ weight space. Recalling that θµ = −µ̄ for µ ∈ Λr, we see that
these are two distinct weight spaces when µ is not imaginary, and they are the same
weight space if µ is imaginary. Finite dimensionality of these spaces allows us to
discuss determinants and signatures of the Shapovalov form.

A modification of the classical (invariant bilinear) Shapovalov determinant for-
mula shows that when µ is imaginary so that the weight space M(λ)λ−µ−ρ is
paired with itself, the determinant of a matrix representing the Shapovalov form
on M(λ)λ−µ−ρ is

∏

α∈∆+(g,h)

∞∏

n=1

((λ, α∨) − n)
P (µ−nα)

up to multiplication by a scalar determined by the basis chosen. P denotes Kostant’s
partition function.

When µ is not imaginary (i.e. µ 6= θµ), the determinant of a matrix representing
〈·, ·〉λ on M(λ)λ−µ−ρ ⊕ M(λ)λ−θµ−ρ is

∏

α∈∆+(g,h)

∞∏

n=1

((λ, α∨) − n)
P (µ−nα)

((λ, α∨) − n)
P (θµ−nα)

up to multiplication by a scalar.
Since 〈M(λ)λ−ν−ρ, M(λ)λ−ν−ρ〉λ = 0 when ν is not imaginary, therefore for

non-imaginary µ, the number of positive eigenvalues of a matrix representing the
Shapovalov form on M(λ)λ−µ−ρ⊕M(λ)λ−θµ−ρ equals the number of negative eigen-
values of that matrix (see Sublemma 3.18 of [Vog84] or p.7 of [Yee05]). Thus the
signature of the Shapovalov form on M(λ) may be recorded in a formal sum called
the signature character as follows:

chsM(λ) =
∑

µ∈Λ
+
r

µ imaginary

(p(µ) − q(µ))eλ−µ−ρ

where the signature of the form on M(λ)λ−µ−ρ is (p(µ), q(µ)). Note that p(µ)+q(µ)
is the dimension of M(λ)λ−µ−ρ, whence the usual character formula when all the
roots are imaginary (i.e. h is compact) is

ch M(λ) =
∑

µ∈Λ+
r

(p(µ) + q(µ))eλ−µ−ρ.
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The radical of the Shapovalov form is the unique maximal submodule of M(λ),
whence Verma modules are reducible precisely when the Shapovalov form is degen-
erate. Thus Verma modules M(λ) are reducible precisely on the affine hyperplanes
Hα,n := {λ | (λ, α∨) = n} where α is a positive root and n ∈ Z+. Within any
region defined by these reducibility hyperplanes, the signature of the Shapovalov
form cannot change because the form remains non-degenerate.

The largest region for which the signature does not change is the intersection of
the negative open half spaces

(
⋂

α∈Π

H−
α,1

)
⋂

H−
α̃,1

with ih∗0, where H−
α,n := {λ | (λ, α∨) < n}, α̃∨ is the highest coroot, and Π is the

set of simple roots corresponding to our choice of ∆+. In [Wal84], Wallach used an
asymptotic argument to calculate the signature character of Verma modules M(λ)
with λ in this region, which we refer to as the Wallach region:

Theorem 2.1.1. Let imaginary λ satisfying λ|a0 ≡ 0 be in the Wallach region.
Then the signature character of the Shapovalov form 〈·, ·〉λ on M(λ) is

chsM(λ) =
eλ−ρ

∏

α∈∆+(p,t)

(
1 − e−α

) ∏

α∈∆+(k,t)

(
1 + e−α

) .

(In section 2 of [Yee05], we discuss compatibility with the definition of the signa-
ture character above.) The form taken by reducibility hyperplanes suggests search-
ing for a formula for the signature character in other regions which uses the affine
Weyl group. In [Yee05], we defined

R(λ) :=
∑

µ∈Λ+
r

cµeλ−µ

for some constants cµ given by Wallach’s formula so that R(λ) is the signature
character of the Shapovalov form 〈·, ·〉λ when λ lies in the Wallach region. We also
defined and computed

RA(λ) :=
∑

µ∈Λ+
r

cA
µ eλ−µ

so that RA(λ) is the signature character of the Shapovalov form 〈·, ·〉λ when λ
belongs to the alcove A. We chose the fundamental Weyl chamber C0 to be the
antidominant chamber and the fundamental alcove A0 to be in the antidominant
Weyl chamber. We computed the signature of the Shapovalov form within an alcove
A by taking a path from A to a specific alcove in the Wallach region and computing
changes to the signature character for each hyperplane crossed. We refer the reader
to Theorem 3.2.4 of this paper or Theorem 4.6 of [Yee05] for a partial statement of
the formula and to Theorem 6.12 of [Yee05] for the full formula.

2.2. The Jantzen Filtration. As it is fundamental to our study of irreducible
highest weight modules, we review the main tool used in computing how signatures
change across a hyperplane: the Jantzen filtration. The Jantzen filtration corre-
sponding to an analytic family of Hermitian forms 〈·, ·〉t, for t ∈ (−δ, δ), on a finite
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dimensional vector space E is the sequence of subspaces

E = E〈0〉 ⊃ E〈1〉 ⊃ · · · ⊃ E〈N〉 = {0}

where e ∈ E〈n〉 for n ≥ 0 if there exists an analytic function fe : (−ε, ε) → E for
some ε > 0 such that

(1) fe(0) = e
(2) 〈fe(t), e

′〉t vanishes to order at least n at t = 0 for any e′ ∈ E.

As weight spaces of a Verma module are finite dimensional, by taking an analytic
path λt : (−δ, δ) → ih∗0 and corresponding Hermitian forms 〈·, ·〉λt

, we may discuss
Jantzen filtrations of Verma modules.

For e, e′ ∈ E〈n〉, define

〈e, e′〉
n

= lim
t→0

1

tn
〈fe(t), fe′(t)〉t

which is independent of choice of fe and fe′ . Then

Theorem 2.2.1. ([Vog84], Proposition 3.3) The form 〈·, ·〉n on En is Hermitian
with radical E〈n+1〉, and therefore it induces a non-degenerate Hermitian form on
E〈n〉 := E〈n〉/E〈n+1〉, which we also denote 〈·, ·〉n. Let (pn, qn) be the signature of

〈·, ·〉n, (p, q) be the signature of 〈·, ·〉t for t ∈ (0, δ), and (p′, q′) be the signature of
〈·, ·〉t for t ∈ (−δ, 0). Then

(p, q) =

(
∑

n

pn,
∑

n

qn

)
and

(p′, q′) =

(
∑

n even

pn +
∑

n odd

qn,
∑

n odd

pn +
∑

n even

qn

)
.

Consider an analytic path λt such that λ0 lies in exactly one reducibility hyper-
plane, Hα,n, and λt does not lie in any reducibility hyperplane for t 6= 0. Then
M(λ0) has a unique proper non-trivial submodule: M(λ0 −nα) = M(sαλ0). It lies
in an odd level of the Jantzen filtration, and therefore as one crosses the hyper-
plane Hα,n, the signature changes by the signature of an invariant Hermitian form
on M(λ0 − nα) and thus by plus or minus the signature of 〈·, ·〉λ0−nα. We write
this as

RA(λ) = RA′

(λ) + 2ε(A, A′)RA−nα(λ − nα)

for adjacent alcoves A and A′ separated by the hyperplane Hα,n. ε(A, A′) is a
function of the Weyl chamber containing A and A′, α, and n. Its value may
be found in [Yee05]. The relation above leads to the inductive formula for the
signature character of the Shapovalov form on an irreducible Verma module which
was mentioned previously.

Results which we wish to use are formulated in terms of the canonical Jantzen
filtration and so we review this classical concept and investigate relations to our
version of the Jantzen filtration.

We use the setup of [GJ81] since we will follow sections of it closely. Let
{Xα, Yα |α ∈ ∆+(g, h)} ∪ {Hα |α ∈ Π} be the Chevalley basis for g. We let gZ

be the integer span of the Chevalley basis. It is a Lie algebra. hZ, nZ, n
op
Z , and bZ

are the obvious analogues. We let A be the local ring C [t](t). For the Lie algebra
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aZ, define aA to be aZ ⊗Z A. Jantzen defines U(nop)Z to be the Z-subalgebra gener-
ated by Yα,n = Y n

α /n! where α ∈ ∆+(g, h) and n ≥ 0. For a highest weight module
E with primitive generator v for which 〈v, v〉 = 1, define EZ to be U(nop)Zv.

Given λ ∈ h∗A, we let Aλ be the one dimensional U(hA)-module on which H ∈ h

acts by multiplication by λ(H). Extending Aλ to a U(bA)-module by allowing
X ∈ nA to act by zero, we define the Verma module over U(gA) by M(λ)A :=
U(gA) ⊗U(bA) Aλ−ρ.

There is an involutive antiautomorphism σ of g so that σ(H) = H for all H ∈ h

and such that σ(Xα) = Yα for every positive root α. It may be extended to an
antiautomorphism of U(g) in the same way that ·∗ was. This leads to the canonical
contravariant forms, denoted by (·, ·), on U(g) and U(gA) Verma modules with the
defining properties that the forms are symmetric, bilinear, and (xv, w) = (v, σ(x)w)
for all x in the universal enveloping algebra and all elements v, w of the Verma
module. Thus (·, ·) on M(λ) or M(λ)A satisfies

(2.2.1) (xvλ−ρ, yvλ−ρ) = (λ − ρ)(p(σ(y)x)).

Compare this with (2.1.1).
Consider the U(gA)-module M = M(λ + δt)A where λ ∈ h∗ and δ ∈ h∗ are

regular and imaginary. The Jantzen filtration of M(λ + δt)A is defined to be

M (0) ⊃ M (1) ⊃ · · · ⊃ M (N) = {0}

where M (j) = {v ∈ M | (v, w) ∈ (tj)∀w ∈ M}. This is a filtration of M(λ + δt)A

by U(gA) modules. We get a filtration on the module M̄ := M/tM , which is
isomorphic to the U(g) Verma module M(λ), via M̄ (j) = M (j)/(tM ∩ M (j)). It is
the usual Jantzen filtration of M(λ) and does not depend on the value of regular δ:
in [Bar83], Barbasch showed for an arbitrary non-degenerate deformation direction
that the Jantzen filtration coincides with the socle filtration. We define M(j) and

M̄(j) as in the Hermitian case.

Lemma 2.2.2. Let M(λ)〈j〉 be the jth level of the Jantzen filtration defined by the
path λt = λ + δt. Then

M(λ)(j) = M(λ)〈j〉.

Proof. Note that (λ + δt − ρ)(y∗x) = (λ + δt − ρ)(σ(σ(y∗))x) so that

〈xvλ+δt−ρ, yvλ+δt−ρ〉λ+δt = (xvλ+δt−ρ, σ(y∗)vλ+δt−ρ).

The lemma now follows from the two definitions of the Jantzen filtration and the
observation that ·∗ and σ are bijections from U(g) to U(g). �

Henceforth, bar will denote specialization at t = 0. For the remainder of this
paper, we use the classical Jantzen filtration of a Verma module and use j inter-
changeably with (j) and with 〈j〉.

3. Verma modules and Kazhdan-Lusztig polynomials

3.1. A Brief Overview of Verma Modules. The structure of Verma modules
has been studied by a number of people (eg. [Ver68], [BGG71], [DL77], [Jan79],
[BB93]).

Theorem 3.1.1. (cf. [Dix96] Theorem 7.6.6)

dim Homg(M(λ), M(µ)) ≤ 1 for all λ, µ ∈ h∗.
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Theorem 3.1.2. (Bernstein-Gelfand-Gelfand, [Dix96] Theorem 7.6.23) For λ, µ ∈
h∗,

M(µ) ⊂ M(λ) ⇐⇒ ∃α1, · · · , αm ∈ ∆+(g, h) such that

λ ≥ sα1λ ≥ · · · ≥ sαm
· · · sα1λ = µ.

(Recall that for µ1, µ2 ∈ h∗, µ1 ≤ µ2 if and only if µ2 − µ1 ∈ Λ+
r .)

Remark 3.1.3. The above conditions may not be equivalent to µ ∈ Wλ and µ ≤ λ.

Verma modules have finite composition series. The composition factors of M(λ)
are L(µ) where M(µ) ⊂ M(λ) (cf. [Dix96], Theorem 7.6.23). In [DL77], Deodhar
and Lepowsky showed that although dimHomg(M(µ), M(λ)) ≤ 1, it is possible
for a composition factor of a Verma module to have multiplicity greater than one.
In [KL79], Kazhdan and Lusztig defined polynomials Px,y for x, y ∈ W known as
Kazhdan-Lusztig polynomials. They famously conjectured that for λ antidominant
and regular and for x and y in the integral Weyl group Wλ with longest element wλ,
the polynomials give the multiplicity of L(yλ) as a composition factor of M(xλ):

[M(xλ) : L(yλ)] = Pwλx,wλy(1)

from which we obtain

(3.1.1) ch M(xλ) =
∑

y≤x

Pwλx,wλy(1)ch L(yλ).

Furthermore, the multiplicity of L(yλ) in the jth level of the Jantzen filtration of
M(xλ) is encoded by Kazhdan-Lusztig polynomials:

(3.1.2) [M(xλ)j : L(yλ)] = the coefficient of q(ℓ(x)−ℓ(y)−j)/2 in Pwλx,wλy.

A proof of the Kazhdan-Lusztig Conjecture was perhaps the most important
open problem in representation theory in the early 1980s. In [Vog79b], Vogan
showed that semisimplicity of UαL(xλ), where UαL(xλ) is defined to be the co-
homology of the complex 0 → L(xλ) → θαL(xλ) → L(xλ) → 0, implies the
Kazhdan-Lusztig Conjecture. In [GJ81], Gabber and Joseph proved that Vogan’s
Conjecture follows from Jantzen’s Conjecture:

M(xλ)j = M(xsαλ)j+1 ∩ M(xλ)

for j ≥ 0, x ∈ Wλ, xsα > x, and α ∈ Π such that (λ, α∨) ∈ Z. Brylinski,
Kashiwara, Beilinson, and Bernstein were able to prove the Kazhdan-Lusztig Con-
jecture by studying the relation between Kazhdan-Lusztig polynomials and Deligne,
Goresky, and MacPherson’s intersection cohomology ([BK81], [BB81]). Beilinson
and Bernstein subsequently proved Jantzen’s Conjecture ([BB93]) using stronger
versions of these techniques.

3.2. A formula for chsL(xλ) in terms of signed Kazhdan-Lusztig poly-

nomials. Because the radical of the Shapovalov form on M(xλ) is M(xλ)1 and
L(xλ) = M(xλ)0 = M(xλ)/M(xλ)1, therefore the Shapovalov form on the Verma
module descends to an invariant Hermitian form, which we also call the Shapo-
valov form, on the irreducible highest weight module L(xλ). Their signatures differ
only by zero eigenvalues. We write chsL(xλ) for the signature character of the
Shapovalov form on L(xλ). (We implicitly assume here that xλ is imaginary.)
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From equation (3.1.1), one obtains the inversion formula

ch L(xλ) =
∑

y≤x

(−1)ℓ(x)−ℓ(y)Py,x(1) ch M(yλ)

(cf. [KL79]). Because we do not know the value of chsM(yλ) when M(yλ)
is reducible, we cannot compute signature characters from the above formula.
However, we may make use of our knowledge of signature characters for alcoves
which contain xλ in their closures. To illustrate this, consider the simple ex-
ample of xλ such that only the adjacent alcoves A and A′ contain xλ in their
closures. Let Hα,n be the reducibility hyperplane containing xλ. Recall that as
one crosses the hyperplane Hα,n at xλ, the signature changes by the signature of
M(xλ − nα) = M(sαxλ) = L(sαxλ). We conclude that the signature characters
for the alcoves A and A′ evaluated at the point xλ are chsL(xλ) ± chsL(sαxλ) in

some order so that 1
2

(
RA(xλ) + RA′

(xλ)
)

= chsL(xλ). We have formulas for RA

and for RA′

, and so we have expressed chsL(xλ) in terms of known quantities.
We now consider the general case. Take the path λt = xλ+δt, where δ is regular

and imaginary, and consider the Jantzen filtration of M(xλ) which it defines. Now
M(xλ)j is semisimple (cf. [GJ81] Theorem 4.8 (ii) ) and 〈·, ·〉j is a non-degenerate

invariant Hermitian form on M(xλ)j . The contribution to the signature character of
〈·, ·〉j by a particular irreducible constituent L(yλ) of M(xλ)j is either the signature

character of the Shapovalov form, the negative of it, or zero because L(yλ) is paired
with L(θyλ) (which may be another copy of L(yλ)). Recording which of the three
choices occurs for each composition factor with +1, −1, or 0, we have

(3.2.1) chs 〈·, ·〉j =
∑

y≤x

aλ,δ
wλx,wλy,jchsL(yλ)

for some integers aλ,δ
wλx,wλy,j. Since signatures cannot change in the interior of an

alcove, we will let w(δ) ∈ Wλ be such that δ ∈ w(δ)C0 and we will write a
λ,w(δ)
wλx,wλy,j

in place of aλ,δ
wλx,wλy,j We record these integers in polynomials

Pλ,w
wλx,wλy(q) :=

∑

j≥0

aλ,w
wλx,wλy,jq

ℓ(x)−ℓ(y)−j

2

which we call the signed Kazhdan-Lusztig polynomials. We remind the reader
that the signed Kazhdan-Lusztig polynomials above are indexed by a regular an-
tidomininant weight λ and by elements w, x, and y of Wλ.

Remark 3.2.1. Note that the usual Kazhdan-Lusztig polynomials are defined in the
same way, but with contributions of +1 to coefficients for every composition factor
rather than +1, −1, or 0. Therefore
∣∣∣aλ,w

wλx,wλy,j

∣∣∣ ≤ [M(wλ)j : L(yλ)] = coefficient of q(ℓ(x)−ℓ(y)−j)/2 in Pwλx,wλy.

Let A(xλ, w(δ)) be the alcove containing xλ + δt for regular, imaginary δ and
for small t > 0. Using our formulas above and Theorem 2.2.1:

RA(xλ,w(δ))(xλ) =
∑

j

chs 〈·, ·〉j =
∑

y≤x

Pλ,w(δ)
wλx,wλy(1)chsL(yλ).
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Remark 3.2.2. When yλ is not imaginary, neither M(yλ) nor L(yλ) admit non-zero
invariant Hermitian forms, whence chsL(yλ) is undefined. However, in this case,

each L(yλ) is paired with some L(θyλ) , giving us a
λ,w(δ)
wλx,wλy,j = 0 and P

λ,w(δ)
wλx,wλy = 0

(see our discussion in the previous section concerning non-imaginary weights). The
sum above ought to be over y such that yλ is imaginary to avoid abuse of notation.

Observe that P
λ,w(δ)
wλx,wλx(q) = a

λ,w(δ)
wλx,wλx,0 = 1, and so

chsL(xλ) = RA(xλ,w(δ))(xλ) −
∑

y<x

yλ imaginary

Pλ,w(δ)
wλx,wλy(1)chsL(yλ).

Applying this formula recursively, we arrive at:

Theorem 3.2.3. If λ ∈ h∗ is regular and antidominant, then for x ∈ Wλ such that
xλ is imaginary and for any w ∈ Wλ:

chsL(xλ) =
∑

y1<···<yj=x

ykλ’s imaginary

(−1)j−1

(
j∏

i=2

Pλ,w
wλyi,wλyi−1

(1)

)
RA(y1λ,w)(y1λ).

We recall the formula for RA(y1λ,w)(y1λ):

Theorem 3.2.4. ([Yee05], Theorems 4.6 and 6.12) Let ∆+
i (g, h) be the set of imag-

inary roots in ∆+(g, h). Subscripts or superscripts i will refer to objects associated
with ∆+

i (g, h). We will assume that everything (simple roots, reducibility hyper-
planes, etc.) in this theorem is associated to the root system of imaginary roots.
Choose the fundamental alcove Ai

0 of W i
a and the fundamental chamber Ci

0 of Wi

to contain −ρi. Let ·̄ : W i
a → Wi be the homomorphism arising from the semidirect

product structure W i
a = Wi ⋉Λi. Given a ∈ W i

a, let ã ∈ Wi be such that aAi
0 ∈ ãCi

0.

Let aAi
0 = C0

r1→ C1
r2→ · · ·

rℓ→ Cℓ = ãAi
0 be a path from aAi

0 to ãAi
0. Then for

imaginary λ ∈ Ai
0:

chsM(λ)|a0 = λ|a0 and

chsM(λ)|t0 = RaAi
0(λ|t0)

=
∑

S={i1<···ik}

⊂{1,...,ℓ}

ε(S)2|S| eri1ri2 ···rik
rik

rik−1
···ri1λ|t0−ρ

∏
α∈∆+(p,t)(1 − e−α)

∏
α∈∆+(k,t)(1 + e−α)

where ε(S) = ε(Ci1−1, Ci1)ε(ri1Ci2−1, ri1Ci2 ) · · · ε(ri1 · · · rik−1
Cik−1, ri1 · · · rik−1

Cik
),

ε(∅) = 1, and the formula for ε(C, C′) for alcoves C, C′ may be found in Theorem
6.12 of [Yee05].

Since we have formulas for RA for any alcove A, therefore we can compute
chsL(xλ) as long as we can compute the integers Pλ,w

wλx,wλy(1).

4. Recursive Formulas for computing signed Kazhdan-Lusztig

polynomials

4.1. Recursive formulas for the easy cases. The usual Kazhdan-Lusztig poly-
nomials may be computed via Px,x = 1, Px,y = 0 when x > y, and by the recursive
formulas:

a) Pwλx,wλy = Pwλxs,wλy if ys > y and x, xs ≥ y, s simple.
a’) Pwλx,wλy = Pwλsx,wλy if sy > y and x, sx ≥ y, s simple.



10 WAI LING YEE

b) If y > ys then

qcPwλxs,wλy + q1−cPwλx,wλy =

∑

z∈Wλ|zs>z

µ(wλz, wλy)q
ℓ(z)−ℓ(y)+1

2 Pwλx,wλz

+Pwλx,wλys

where c = 1 if xs < x, c = 0 if xs > x, and µ(wλz, wλy) is the multiplicity
of L(yλ) in M(zλ)1.

The initial conditions for signed Kazhdan-Lusztig polynomials are identical:
Pλ,w

x,x = 1 and Pλ,w
x,y = 0 when x > y. We will find the recursive formulas to

be different.
We discuss the signed Kazhdan-Lusztig polynomial analogue of case a’). We

assume the Cartan subalgebra h to be not only maximally compact but compact
for this subsection. Thus yλ = θ(yλ) for all y ∈ Wλ. Choose x, y ∈ Wλ and
s = sα simple so that sy > y and sx > x. Recall that λ is regular antidominant.
We consider the Jantzen filtration corresponding to the path λt = xλ + δt where
δ ∈ wC0 and we restrict our attention to L(yλ) in the j+1st level of M(sxλ). Since
sx > x, therefore (xλ, α∨) > 0, whence M(xλ) is a submodule of M(sxλ). The
Jantzen Conjecture and our recursive formula a’) tell us that all copies of L(yλ)
in the j + 1st level of the filtration arise from the submodule M(xλ) of M(sxλ).
Similarly, if xs > x and ys > y then all copies of L(yλ) in the j + 1st level of
the Jantzen filtration of M(xsλ) arise from the submodule M(xλ) of M(sxλ). We
obtain:

Proposition 4.1.1. Let s = sα be a simple reflection and let y < x.

a) aλ,w
wλx,wλy,j+1 = sgn(−wρ, xα)ε(Hxα,(xsλ,xα∨), xs)aλ,w

wλx,wλy,j if xs > x

a’) aλ,w
wλsx,wλy,j+1 = sgn(−wρ, α)ε(Hα,(sxλ,α∨), sx)aλ,w

wλx,wλy,j if sx > x.

Proof. Recall that ε(A, A′) is a function of the Weyl chamber containing A and
A′ and the hyperplane which separates them. We therefore defined ε(Hγ,N , z) for
z ∈ W in [Yee05]. Take an analytic path λt : (−ε, ε) → ih∗0 in the Weyl chamber
zC0 so that λt ∈ H+

γ,N for t > 0, λt ∈ H−
γ,N for t < 0, Hγ,N is the only reducibility

hyperplane containing λ0, and M(λt) is irreducible for t 6= 0. Let t1 ∈ (0, ε) and
let t2 ∈ (−ε, 0). Recall that

chsM(λt1) = eλt1−λt2 chsM(λt2) + 2ε(Hγ,N , z)eλt1−λ0chsM(λ0 − Nγ)

which reflects the change of the signature character by the signature character of
the radical M(λ0 − Nγ) ⊂ M(λ0) as we cross the reducibility hyperplane Hγ,N

(cf. [Yee05], Proposition 3.2). Recall that ε(Hγ,N , z) encodes information about
singular vectors: if f ∈ U(nop) is such that fvλ0 generates M(λ0−Nγ) = M(sγλ0),
then

sgn 〈fvλt−ρ, fvλt−ρ〉λt
=

{
ε(Hγ,N , z) if λt ∈ H+

γ,N

−ε(Hγ,N , z) if λt ∈ H−
γ,N .

Invariant Hermitian forms on Verma modules are unique up to a real scalar, which
is determined by the inner product of a generator with itself. The proposition now
follows from the observation that xλ = sαsxλ and xλ = sxαxsλ. �

Corollary 4.1.2. Letting s = sα be a simple reflection, the signed Kazhdan-Lusztig
polynomials satisfy:
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a) Pλ,w
wλx,wλy = sgn(−wρ, xα)ε(Hxα,(xsλ,xα∨), xs)Pλ,w

wλxs,wλy if ys > y and x, xs ≥
y

a’) Pλ,w
wλx,wλy = sgn(−wρ, α)ε(Hα,(sxλ,α∨), sx)Pλ,w

wλsx,wλy if sy > y and x, sx ≥
y.

An excellent companion for the remainder of this section is [GJ81] from which
the results of this section are derived. The objective is to compute Pλ,w

wλx,wλy for
case b). We begin by introducing some background material.

4.2. Category O. Bernstein-Gelfand-Gelfand defined category O in [BGG76]. It
is the subcategory of the category of g-modules consisting of modules M satisfying:

(1) M = ⊕µ∈h∗Mµ

(2) M is finitely generated
(3) M is n-finite (i.e. U(n)v is finite-dimensional for every v ∈ M).

Category O is closed under arbitrary direct sums, quotients, submodules, and ten-
soring with finite-dimensional modules. Verma modules are objects in category O
and the simple objects of O consist of the irreducible highest weight modules L(µ)
where µ ∈ h∗. Irreducible highest weight modules form an additive basis of the
Grothendieck group of category O.

h∗ is a disjoint union of W -orbits which are called blocks. Recall that χµ = χν

if and only if ν ∈ Wµ. For each block D and some µ ∈ D, we define

OD := Oµ := {modules ∈ O | ∃N such that (z − χµ)N annihilates M ∀ z ∈ Z(g)}.

Remark 4.2.1. These blocks are larger than the standard ones in ring theory: two
irreducible modules belong to the same block if they admit a non-trivial extension
in the category. In the case of category O, this amounts to two irreducible highest
weight modules having the same infinitesimal character and all of their weights
differing by sums of roots.

Category O decomposes into blocks OD of category O:

Theorem 4.2.2. (cf. [BGG76], property 4) of Section 3)

O =
⊕

blocks D

OD.

Denote projection onto OD (or Oµ) by PrD (resp. Prµ). Projection onto the
blocks of category O defines what is known as the primary decomposition

M ≃
⊕

blocksD

PrDM

of a module M in O. For any M ∈ O, PrDM is non-zero for finitely many D.
PrDM is called the primary component of M with respect to the block D.

Theorem 4.2.3. (cf. [Jan74], Satz 1, iv) of Section 3.) Primary decomposition of
a module in category O which admits an invariant Hermitian form is an orthogonal
decomposition into submodule pairs or singletons. Specifically,

PrDM and PrD′M are orthogonal for D′ 6= −D̄.

Proof. It is straightforward to modify Jantzen’s proof that primary decomposition
of modules in category O admitting a contravariant form is an orthogonal decom-
position. �
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4.3. Jantzen’s translation functors and his determinant formula. For an
integral weight µ, let F (µ) denote the finite-dimensional representation of extremal
weight µ. Jantzen’s translation functors are compositions of tensoring with a finite-
dimensional module with projections onto blocks of category O:

T λ+µ
λ : {modules of inf’l character λ} → {modules of inf’l character λ + µ}

M 7→ Prλ+µ(M ⊗ F (µ))

for any λ ∈ h∗ (cf. [Kos75]). We will later use T D′

D in place of T λ′

λ when λ and λ′

are both antidominant, and therefore the value of λ′ − λ may be recovered.
Recall for λ ∈ h∗ that ∆λ(g, h) = {α ∈ ∆(g, h)| 〈λ, α∨〉 ∈ Z}. A facette F is a

non-empty subset of some A(λ) := Q∆λ(g, h)⊗Q R associated with a disjoint union
∆+

λ (g, h) = ∆0
F ∪ ∆+

F ∪ ∆−
F :

F =



x ∈ A(λ)

∣∣∣∣∣∣

〈x, α∨〉 = 0 if α ∈ ∆0
λ

〈x, α∨〉 > 0 if α ∈ ∆+
λ

〈x, α∨〉 < 0 if α ∈ ∆−
λ



 .

If M is irreducible, λ and λ + µ are antidominant with λ + µ in the closure of the

facette containing λ, then T λ+µ
λ M is irreducible or zero ([Jan79], Theorem 2.11).

If both λ and λ + µ are strictly antidominant, then T λ+µ
λ : Oλ → Oλ+µ is an

equivalence of categories.
We may extend the translation functor to category O:

T λ+µ
λ : O → O

M 7→ Prλ+µ(F (µ) ⊗ (PrλM)).

In order to study how Jantzen’s translation functors affect Verma modules and
forms on Verma modules, we need some facts about the tensor product of a Verma
module M(λ) with a finite-dimensional module F :

Theorem 4.3.1. (Bernstein-Gelfand-Gelfand, [Dix96], Theorem 7.6.14.) Let µ1,
. . ., µN be an ordering of the weights of F (with multiplicity) such that µi ≤ µj

implies that i ≤ j. Then there is a filtration of M = M(λ)⊗F by Verma modules:

M = M0 ⊃ M1 ⊃ · · · ⊃ MN ⊃ MN+1 = {0}

where M i/M i+1 ≃ M(λ + µi).

Theorem 4.3.2. ([Jan74], Satz 1, iii) of Section 3.) Let Mi be Prλ+µi
M . Then

Mi is generated as a U(nop)-module by the images of vλ−ρ ⊗Fν where ν is a weight
of F such that λ + ν belongs to the Weyl group orbit of λ + µi.

Suppose the modules U and V admit an invariant Hermitian (resp. contravari-
ant) form. The tensor product of the two modules U ⊗V naturally has an invariant
Hermitian (resp. contravariant) form: 〈u1 ⊗ v1, u2 ⊗ v2〉U⊗V = 〈u1, u2〉U ·〈v1, v2〉V .
Since primary decomposition of a module is orthogonal with respect to invariant
Hermitian forms in the case of a compact Cartan and also with respect to contravari-
ant forms, the Mis inherit invariant Hermitian forms from invariant Hermitian
forms on M(λ) and on F , and they inherit contravariant forms from contravariant
forms on M(λ) and on F . Jantzen has a determinant formula for such contravariant
forms:
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Theorem 4.3.3. ([Jan74], Section 5.) Suppose the numbers (λ, α∨) for α ∈ Π
are algebraically independent over Q. Suppose F = L(λ0) where λ0 ∈ Λ is strictly
dominant and let v0 be a highest weight vector of F so that (v0, v0) = 1. Let n(µ)
denote the multiplicity of the weight µ in F and let {eµ,j}1≤j≤n(µ) be a Z-basis of
the µ weight space of U(nop)Zv0. µ = µi for some i. Denote by fµ,j the orthogonal
projection of vλ−ρ ⊗ eµ,j onto Mi. The determinant of the contravariant form for
the fµ,j is DF (µ)aµ, where DF (µ) is the determinant of the contravariant form
with respect to a Z-basis of U(nop)Zv0, and thus for the eµ,j, and

aµ =
∏

α∈∆+(g,h)

∏

r>0,r+〈µ,α∨〉≥0

(
(λ, α∨) − r

(λ + µ, α∨) + r

)n(µ+rα)

.

We now compare the canonical contravariant form with the Shapovalov form
for the purpose of stating Jantzen’s determinant formula for invariant Hermitian
forms. We begin by introducing a Z2-grading of Λr in the case of a compact Cartan.
From [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k, and from [gα, gβ ] ⊂ gα+β , we see that a root is
non-compact if and only if when expressed as a sum of simple roots, there are an
odd number of non-compact roots in the sum, counting multiplicity. It follows that
for any µ ∈ Λr, the parity of the number of non-compact roots in any expression
of µ as a sum of roots is independent of the expression chosen. We will denote the
grading defined by this parity by ε : Λr → Z2.

The Chevalley basis may be chosen so that

X∗
α = −X̄α = θYα = (−1)ε(α)Yα = (−1)ε(α)σ(Xα)

(cf. [Yee05]). Thus

Lemma 4.3.4. If h is compact and we choose a Z-basis from U(nop)Zvλ−ρ for
(M(λ)Z)µ, matrices representing the canonical contravariant form and the invari-
ant Hermitian form with respect to this basis differ by multiplication by the scalar
(−1)ε(λ−ρ−µ).

Proposition 4.3.5. When h is compact, Theorem 4.3.3 holds with “invariant Her-
mitian form” in place of “contravariant form” and (−1)ε(λ0−ρ−µ)n(µ)aµ in place of
aµ.

Proof. A vector of weight λ − ρ + µ in M(λ) ⊗ L(λ0) must be the sum of tensor
products of a vector of weight λ−ρ−ν and a vector of weight µ+ν for some ν ∈ Λr.
The proposition now follows from the grading, the lemma and the observation that
(−1)ε(ν)+ε(λ0−ρ−(µ+ν)) = (−1)ε(λ0−ρ−µ). �

4.4. Gabber and Joseph’s generalization of category O. For the purpose of
studying the Kazhdan-Lusztig Conjecture, Gabber and Joseph introduced modifi-
cations of category O. Let C ⊂ h∗A be of the form λ+Λr (recall the discussion of the
setup of [GJ81] after Theorem 2.2.1). Let KC be the subcategory of U(gA)-modules
M such that:

1) M =
∑

µ∈C−ρ Mµ

2) M is U(nA)-finite
3) M is finitely generated over U(gA).

Note that M(λ)A belongs to ObKC .
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If µ ∈ C, given any maximal ideal m of A, there is a unique maximal submodule
of M(µ)A containing mM(µ)A (cf. 1.7.2 of [GJ81]). Call the corresponding simple
quotient L(m, µ). In our case, A is a local ring, so we use L(µ)A in place of L((t), µ).

A block in the context of the category KC is a subset D of C whose specialization
at t = 0, D̄ = {λ̄ |λ ∈ D}, is a W -orbit. Define

JD =
⋂

µ∈D

kerχµ.

We may define, as we did for category O, the primary component of M ∈ ObKC

with respect to the block D:

PrDM = {m ∈ M | for all z ∈ JD, exists n ∈ Z+ such that znm = 0}.

We note that C =
∐

i Di is a countable union of blocks. As for category O:

Proposition 4.4.1. (cf. Proposition 1.8.4, [GJ81]) For M ∈ ObKC , we have

M = ⊕iPrDi
M,

the primary decomposition of M .

Given a block D ⊂ C, the subcategory KD of KC consists of modules whose
simple quotients are among the L(m, µ) where m is a maximal ideal of A and µ ∈ D.
PrD takes objects in KC to objects in KD.

In [GJ81], Gabber and Joseph extended Jantzen’s definition of translation func-
tors to category KC . Let D = Wλλ + δt, where λ, δ ∈ h∗ are regular and λ is
antidominant. Let D′ = Wλ(λ − µ) + δt, where µ ∈ Λ and λ − µ is antidominant.

T D′

D M = PrD′(F (−µ)A ⊗A (PrDM))

is the translation functor from the block KD to the block KD′ .
We refer the reader to Definition 2.3 of [Yee05] for the definition of the Hermitian

dual of a module. Given a module M in ObKC̄ , we define δh(M) to be the h-finite
part of its Hermitian dual Mh.

Lemma 4.4.2. Let M ∈ ObKD̄ for some block D ⊂ C. If M admits a non-
degenerate invariant Hermitian form and h is compact, then δh(M) ∼= M .

Proof. We may modify Section 3.10 and Lemma 4.7 (iii) of [GJ81]. �

4.5. Coherent continuation functors. Suppose λ ∈ h∗ is antidominant and
regular and δ ∈ h∗ is regular. Let D = Wλλ + δt. Let s = sα be a simple reflection
in Wλ. We may choose να ∈ Λ so that λ− να is antidominant and so that the only
root β for which (λ − να, β) = 0 is β = α. Let Dα = Wλ(λ − να) + δt. Since we
are studying invariant Hermitian forms, we assume furthermore that δ and λ are
imaginary, although the statements which follow hold for non-imaginary δ and λ
if they contain no reference to invariant Hermitian forms. We fix this notation for
the remainder of this article. The generalized notion (it exists for category O also)
of translation to the α wall is the functor

T Dα

D M = PrDα
(F (−να)A ⊗A (PrDM))

and
T D

Dα
M = PrD(F (να)A ⊗A (PrDα

M))

is translation from the α wall. Translation to the α wall followed by translation
from the α wall, denoted by θα = T D

Dα
T Dα

D , is an exact functor known as coherent
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continuation across the α wall or the reflection functor across the α wall.
We will also use θα to denote coherent continuation in category O. Due to results
in sections 4.2 and 4.3, if M carries an invariant Hermitian form, then so do T Dα

D M ,
T D

Dα
M , and θαM naturally. We use T 〈·, ·〉 to denote the form which results from

application of the translation functor T to a module with invariant Hermitian form
〈·, ·〉.

We would like to describe the form which arises from a translation functor when
the module and its invariant Hermitian form are a Verma module and its Shapovalov
form respectively. For any z ∈ Wλ,

T Dα

D M(zλ + δt)A ≃ M(z(λ − να) + δt)A

by Satz 2.9 of [Jan79]. We define

(4.5.1) v′z(λ−να)+δt−ρ := PrDα
vzλ+δt−ρ ⊗ e−zνα,1,

〈·, ·〉′z(λ−να)+δt := T Dα

D 〈·, ·〉zλ+δt , and

(4.5.2) c′z :=
〈
v′z(λ−να)+δt−ρ, v

′
z(λ−να)+δt−ρ

〉′
z(λ−να)+δt

.

Let λ−
α ∈ Λ+ be the highest weight of F (−να). According to Theorems 4.3.2 and

4.3.3 and Lemma 4.3.4, the form 〈·, ·〉′z(λ−να)+δt on M(z(λ− να)+ δt)A is such that

c′z = (−1)ε(λ−
α +zνα)DF (−να)(−zνα)a′

−zνα

where
(4.5.3)

a′
−zνα

=
∏

β∈∆+(g,h)

∏

r>0,r+〈−zνα,β∨〉≥0

(
(zλ + δt, β∨) − r

(zλ − zνα + δt, β∨) + r

)n(−zνα+rβ)

.

On the level of signature characters, we have

(4.5.4) chs〈·, ·〉
′

z(λ−να)+δt = sgn(c′z)chs 〈·, ·〉z(λ−να) .

Here, we observe that Jantzen’s determinant formula holds in the category KC

setting also since we work with U(nop)Z bases and hence his projection formulas
and recursive formulas hold (cf. [Jan74], Section 5).

Returning to the problem of developing a recursive formula for signed Kazhdan-
Lusztig polynomials in case b), we fix x, y ∈ Wλ such that y > ys and x < xs for the
remainder of this section. Following the notation of [GJ81], let X = M(xsλ + δt)A

and let Z = M(xλ + δt)A. Define Y to be θαZ. Then:

Proposition 4.5.1. ([GJ81], section 3.6.)

i) θαX ≃ θαZ ≃ Y .

ii) There is a short exact sequence 0 → X → Y
π
→ Z → 0.

Remark 4.5.2. Because of the short exact sequence, Y is called an extension of

X by Z.

Remark 4.5.3. Gabber and Joseph’s results are for contravariant forms. The in-
variant Hermitian form analogues of their results hold in the compact Cartan case:
their proofs may be transferred to the Hermitian form setting using Lemma 2.2.2
and Theorem 4.2.3.
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We review Gabber and Joseph’s discussion of the filtration of Y by Verma mod-
ules. Now for x′ ∈ Wλ,

(4.5.5)
[
T D

Dα
M(x(λ − να) + δt)A : M(x′λ + δt)A

]
= dim(F (να)A)µ

where µ = x′λ − x(λ − να) = x′λ − xs(λ − να). According to Satz 2.9 of [Jan79],
there are two solutions: x′ = x, µ = xνα and x′ = xs, µ = xsνα. By Theorem 4.3.2,

Y is generated as a U(nop) module by v′′xλ+δt−ρ = PrDα

(
v′x(λ−να)+δt−ρ ⊗ exνα,1

)

and by v′′xsλ+δt−ρ = PrDα

(
v′x(λ−να)+δt−ρ ⊗ exsνα,1

)
. Observe that v′′xλ+δt−ρ and

v′′xsλ+δt−ρ are mutually orthogonal with respect to 〈·, ·〉′′D := T D
Dα

〈·, ·〉′x(λ−να)+δt.

Recall c′x =
〈
v′x(λ−να)+δt−ρ, v

′
x(λ−να)+δt−ρ

〉′
x(λ−να)+δt

. Let λ+
α ∈ Λ be the high-

est weight of L(λ+
α )A = F (να)A. From Theorem 4.3.3, we have

〈
v′′xλ+δt−ρ, v

′′
xλ+δt−ρ

〉′′
D

= (−1)ε(λ+
α−xνα)DF (να)A

(xνα)a′′
xνα

c′x and
〈
v′′xsλ+δt−ρ, v

′′
xsλ+δt−ρ

〉′′
D

= (−1)ε(λ+
α−xsνα)DF (να)A

(xsνα)a′′
xsνα

c′x

where

a′′
xνα

=
∏

β∈∆+

∏

r>0,r+〈xνα,β∨〉≥0

(
(x(λ − να) + δt, β∨) − r

(xλ + δt, β∨) + r

)n(xνα+rβ)

and

a′′
xsνα

=
∏

β∈∆+

∏

r>0,r+〈xsνα,β∨〉≥0

(
(xs(λ − να) + δt, β∨) − r

(xsλ + δt, β∨) + r

)n(xsνα+rβ)

.

We compute which factors are zero at t = 0.

Denominator of a′′
xνα

: We require r and β > 0 such that (xλ, β∨) = −r < 0. Then
sβxλ − xλ = rβ so sβxλ − x(λ − να) = xνα + rβ. From (4.5.5) and from part
ii) of Theorem 4.5.1, we see that

n(xνα + rβ) =

{
1 if sβx = xsα ⇒ β = xα
0 otherwise.

We conclude that the denominator has exactly one factor, (δt, xα∨), which is
zero at t = 0.

Numerator of a′′
xνα

: Suppose we have β > 0 and (x(λ − να), β∨) = r > 0. Then
x(λ − να) − sβx(λ − να) = rβ so sβxνα − rβ = sβxλ − x(λ − να). By (4.5.5)
and by part ii) of Theorem 4.5.1,

n(xνα + rβ) = n(sβxνα − rβ) =

{
1 if sβx = xsα ⇒ β = xα
0 otherwise.

However, (x(λ − να), xα∨) = 0 6= r and we deduce that the numerator has no
factors which are zero at t = 0.

Similarly, none of the factors in the numerator and the denominator of a′′
xsνα

are
zero at t = 0.

Remark 4.5.4. The results of this section hold with any z < zs in place of x. We
define v′′zλ+δt−ρ, v′′zsλ+δt−ρ, a′′

zνα
, and a′′

zsνα
analogously for all such z ∈ Wλ.
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4.6. A recursive formula in the difficult case. Here, we combine the results
of the preceding subsections to deduce a recursive formula for computing signed
Kazhdan-Lusztig polynomials for case b).

We will need Gabber and Joseph’s description of Ȳj where the form on Y arises
from the form on Z and coherent continuation (cf. 4.4, 4.5, 4.6 of [GJ81]). Recall
the exact sequence from Theorem 4.5.1. If we define Ȳ x

j = (Ȳ j ∩ X̄)/(Ȳ j+1 ∩ X̄)

and Ȳ z
j = π(Ȳ j)/π(Ȳ j+1) then there is a short exact sequence

0 → Ȳ x
j → Ȳj → Ȳ z

j → 0.

For M ∈ ObKC , we define M+ (resp. M−) to be the smallest (resp. largest)
submodule of M for which θα(M/M+) = 0 (resp. θαM− = 0 ). We have the short
exact sequences

0 → X̄+
j+1 → Ȳ x

j → X̄−
j → 0

and

0 → Z̄−
j+1 → Ȳ z

j → Z̄+
j → 0

(cf. 4.5 (2), 4.5 (4), Lemma 4.6 ii) and Proposition 4.7 of [GJ81]). This gives us
the four-step filtration of Ȳj :

Ȳj

Ȳ x
j Ȳ z

j

X̄+
j+1 X̄−

j Z̄−
j+1 Z̄+

j

Here we remark that in the paper [GJ81], because 3.14 still holds and because we
may modify Lemma 3.15 for invariant Hermitian forms, Hermitian analogues of
results in sections 4.4 to 4.7 hold. We have:

Lemma 4.6.1. (cf. [GJ81], Lemma 4.5.)

i)
〈
X̄+

j+1, Ȳ
x
j

〉
= 0

ii)
〈
X̄+

j+1, ker(Ȳj → Z̄+
j )
〉

= 0.

Furthermore, δh(X̄+
j+1)

∼= Z̄+
j . It follows that:

Proposition 4.6.2. Consider the four-step filtration of Ȳj. X̄+
j+1 is paired with

Z̄+
j , whence the signature character of Ȳj is given by the signature characters of

X̄−
j and Z̄−

j+1.

We will clarify the latter half of this statement, which is vague. First, we discuss
the structure of X̄−

j and Z̄−
j+1, which is given (along with the structure of X̄±

i and

Z̄±
i for any i) by Kazhdan-Lusztig polynomials and the following proposition:

Proposition 4.6.3. ([GJ81], Lemma 3.6, 3.11.)

i) θαL(zλ) = 0 if z > zs and θαL(zλ) 6= 0 otherwise.
ii) When z < zs, θαL(zλ) has a unique simple quotient and it is isomorphic

to L(zλ). The corresponding unique maximal submodule has unique simple
submodule L(zλ).

Recalling that X̄i is semisimple, X̄+
i is a sum of simple submodules L(zλ) for

which z > zs and X̄−
i is a sum of simple submodules L(zλ) for which z < zs.

Likewise for Z̄i.
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We study θαL(zλ) when z < zs in more detail. The functor T D̄
D̄α

is a left and a

right adjoint to T D̄α

D̄
(cf. 3.4 of [GJ81] and (3.5) of [Vog79a]). It follows that

Homg

(
L(zλ), T D̄

D̄α
T D̄α

D̄
L(zλ)

)
∼= Homg

(
T D̄α

D̄
L(zλ), T D̄α

D̄
L(zλ)

)

∼= Homg

(
T D̄

D̄α
T D̄α

D̄
L(zλ), L(zλ)

)

from which we obtain a chain complex

0 → L(zλ)
i
→ θαL(zλ)

p
→ L(zλ) → 0

(cf. [Vog79a], Theorem 3.7). Because L(zλ) is simple, the first map is injective and
the second map is surjective.

Since θαL(zλ) admits a non-degenerate invariant Hermitian form (for exam-
ple, the form acquired through coherent continuation and the form on L(zλ)),
δh(θαL(zλ)) ∼= θαL(zλ). δh takes submodules of a module M to quotients of δhM
and quotients of M to submodules of δhM . Since δh does not take the submod-
ule L(zλ) of θαL(zλ) to the submodule L(zλ) of δh(θαL(zλ)), it follows that that
submodule cannot be paired with itself, and hence it is paired with the quotient
L(zλ). We conclude:

Lemma 4.6.4. Suppose z < zs. Then chsθαL(zλ) = chsUαL(zλ) where UαL(zλ)
is defined to be the cohomology of the complex

0 → L(zλ) →֒ θαL(zλ) ։ L(zλ) → 0.

Uα may be extended to semisimple modules via Uα(M ⊕N) = UαM ⊕UαN . In
particular, we may apply Uα to Z̄+

j . Since θαM j = (θαM)j for M ∈ ObKC (cf.

[GJ81], Lemma 4.3 ii) ), we see that Ȳj = θαZ̄j = θαZ̄+
j .

Proposition 4.6.5. (cf. [GJ81], Proposition 4.7 iv).) There is a short exact
sequence

0 → X̄−
j → UαZ̄+

j → Z̄−
j+1 → 0.

Furthermore, choosing the form θα 〈·, ·〉xλ+δt on Y :

chsȲj = chsUαZ̄+
j = sgn(c̄′′xsc̄

′
x)chsX̄

−
j + sgn(c̄′′x(δ, xα∨)c̄′x)chsZ̄

−
j

where for z < zs

c′′z := (−1)ε(λ+
α−zνα)DF (να)(zνα)a′′

zνα
(δt, zα∨)

and c′′zs := (−1)ε(λ+
α−zsνα)DF (να)(zsνα)a′′

zsνα
.

Proof. This follows from our previous discussion, Theorems 4.3.2 and 4.3.3, and
our analysis of a′′

zνα
and a′′

zsνα
. �

We discuss the signature character of an invariant Hermitian form on some
UαL(zλ). The process of coherent continuation in category O uniquely determines
an invariant Hermitian form on UαL(zλ) from a form on L(zλ). Since UαL(zλ) is
semisimple by Vogan’s Conjecture, it may have many other non-degenerate invari-
ant Hermitian forms. For example, another natural form on UαL(xλ) is the form
on Ȳ0 which arises from the Jantzen filtration of θαZ = θαM(xλ + δt). The signa-
ture depends on δ while the form coming from coherent continuation in category
O does not, and so the signatures may be different. The form given by the Jantzen
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filtration is the form in which we are interested. In the following computations, we
will always study the form arising from the Jantzen filtration.

We compute the signature character of the form on (θαM(zλ + δt))0
∼= θαL(zλ)

for z < zs. By Proposition 4.6.5, there is a short exact sequence

0 → M(zsλ + δt)
−

0 → UαM(zλ + δt)0 → M(zλ + δt)
−

1 → 0.

By chsUαM(zλ + δt)0 we mean the signature character of the form given by the
Jantzen filtration in the direction δ. By our analysis of the denominators and
numerators of a′′

zνα
and of a′′

zsνα
, the denominators of c′′z and c′′zs do not vanish at

t = 0. From Jantzen’s determinant formula and our short exact sequence above,

chsUαM(zλ + δt)0 = sgn(c̄′′zsc̄
′
z)chsL(zsλ)

+ sgn(c̄′′z (δ, zα∨)c̄′z)
∑

y∈Wλ|y>ys

azλ,w
y,1 chsL(yλ).

Using this in conjunction with the previous proposition gives:

Proposition 4.6.6. If x, y ∈ Wλ are such that x < xs and y > ys and x > y then:

sgn(c̄′′xsc̄
′
x)Pλ,w

wλxs,wλy(q) + sgn(c̄′′x(δ, xα∨)c̄′x)qPλ,w
wλx,wλy(q)

=
∑

z∈Wλ|z<zs

sgn(c̄′′z (δ, zα∨)c̄′z)a
zλ,w
y,1 q

ℓ(z)−ℓ(y)+1
2 Pλ,w

wλx,wλz(q)

+ sgn(c̄′′ys(δ, ysα∨)c̄′ys)P
λ,w
wλx,wλys(q).

We discuss the values of sgn(c̄′′z ), sgn(c̄zs) and sgn(c̄′z) for z < zs.

Lemma 4.6.7. For an integral weight ν and for all w ∈ W ,

sgn
(
DF (ν)(wν)

)
= 1

(see Theorem 4.3.3 for notation).

Proof. We prove this by induction on ℓ(w). Clearly this is true for w = 1. We may
assume ν to be dominant and let vν be the canonical generator of F (ν). Suppose
the lemma holds for w ∈ W and sα is a simple reflection such that sαw > w. Let
a ∈ U(nop) be such that avν is a vector of weight wν in F (ν). Now sαw > w, so
(wν, α∨) > 0. Let nα = (wν, α∨) = (ν, w−1α∨) ∈ Z≥0. sαwν = wν − nαα and so
Y nα

α avν is a vector of weight sαwν in F (ν). Because avν is a vector of extremal
weight wν and because the set of weights of F (ν) is convex, Y nα

α avν ∈ F (ν) implies
Xαavν = 0. Therefore

(Y nα
α avν , Y nα

α avν) = (σ(Y nα
α a)Y nα

α avν , vν) = (σ(a)Xnα
α Y nα

α avν , vν)

(from Xαavν = 0) = (σ(a)p(Xnα
α Y nα

α )avν , vν)

(from sl2 theory) = wν (Hα (Hα − 1) · · · (Hα − (nα − 1))) · (σ(a)avν , vν).

Now wν (Hα (Hα − 1) · · · (Hα − (nα − 1))) > 0 since wν(Hα) = nα. By our in-
duction hypothesis, (σ(a)avν , vν) > 0. Thus (Y nα

α avν , Y nα
α avν) > 0, proving our

lemma. �

Remark 4.6.8. We may also prove the lemma using the following unpublished re-
sult of Birgit Speh: if h is a compact Cartan subalgebra, then given the finite
dimensional representation of highest weight λ0, the Shapovalov form is definite on
each weight space, with the form being positive definite (resp. negative definite)
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on the λ0 − µ weight space if ε(µ) = 0 (resp. ε(µ) = 1). Again, we may take
ν to be dominant. Comparing what Speh’s formula and Lemma 4.3.4 imply for
the signature of the one-dimensional weight space corresponding to wν, we have
(−1)ε(ν−wν) = sgn(DF (ν)(wν))(−1)ε(ν−wν) from which the lemma follows.

Lemma 4.6.9. For z < zs ∈ Wλ:

i) sgn(ā′
−zνα

) = 1.

ii) sgn(a′′
zνα

(δt, zα∨)) = −1.
iii) sgn ā′′

zsνα
= 1.

Proof. i): Consider (4.5.3). If (−zνα, β∨) ≥ 0 then n(−zνα + rβ) = 0 for r > 0. If
(−zνα, β∨) < 0, then the index for the second product starts at r = −(−zνα, β∨).

−zνα − (−zνα, β∨)β = sβ(−zνα)

is an extremal weight of F (−να). Therefore n(−zνα+rβ) = 0 for r > −(−zνα, β∨).
Therefore ā′

−zνα
may be written

ā′
−zνα

=
∏

β∈∆+(g,h),(−zνα,β∨)<0

(
(zλ, β∨) + (−zνα, β∨)

(zλ − zνα, β∨) − (−zνα, β∨)

)1

=
∏

β∈∆+(g,h),(−zνα,β∨)<0

(z(λ − να), β∨)

(zλ, β∨)
.

λ − να lies in the closure of the antidominant Weyl chamber, which is the Weyl
chamber to which λ belongs. Since (λ − να, β∨) 6= 0 for β 6= α, we conclude that
sgn(z(λ − να), β∨) = sgn(zλ, β∨) for β 6= zα. Observing that (−zνα, zα∨) > 0, we
conclude that sgn(ā′

−zνα
) = 1.

ii): As in the previous case,

a′′
zνα

(δt, zα∨) = (zλ, zα∨)
∏

β∈∆+(g,h)\{zα},(zνα,β∨)<0

(
(zλ, β∨)

(z(λ − να), β∨)

)1

so sgn(a′′
zνα

(δt, zα∨)) = −1.
iii): As in the first case,

ā′′
zsνα

=
∏

β∈∆+(g,h),(zsνα,β∨)<0

(zsλ, β∨)

(zs(λ − να), β∨)
.

Since (zsνα, zα∨) > 0, we conclude that sgn(ā′′
zsνα

) = 1. �

Combining the results of this subsection, cancelling out common factors of

(−1)ε(λ+
α +λ−

α ), and observing that xνα − xsνα = x((να, α∨)α) = x((λ, α∨)α), we
arrive at:

Theorem 4.6.10. Letting s = sα be a simple reflection, the signed Kazhdan-Lusztig
polynomials are defined by the intial conditions Pλ,w

x,x = 1, Pλ,w
x,y = 0 for x > y and

the recursive formulas:

a) Pλ,w
wλx,wλy = sgn(−wρ, xα)ε(Hxα,−(λ,α∨), xs)Pλ,w

wλxs,wλy if ys > y and xs >
x ≥ y

a’) Pλ,w
wλx,wλy = sgn(−wρ, α)ε(Hα,(sxλ,α∨), sx)Pλ,w

wλsx,wλy if sy > y and sx >
x ≥ y
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b) If x, y ∈ Wλ are such that x < xs and y > ys and x > y then:

− (−1)ε((λ,α∨)xα)Pλ,w
wλxs,wλy(q) + sgn(δ, xα∨)qPλ,w

wλx,wλy(q)

=
∑

z∈Wλ|z<zs

sgn(δ, zα∨)azλ,w
y,1 q

ℓ(z)−ℓ(y)+1
2 Pλ,w

wλx,wλz(q) + sgn(δ, ysα∨)Pλ,w
wλx,wλys(q).

5. Some Examples

Example 1: g0 = so(2). We have h = t. Let ∆+(g, h) = {α1} and let λ1 be the
corresponding fundamental weight.

Irreducible Verma modules: Choose λ ∈ h∗ so that (λ, α∨
1 ) ∈ (n, n + 1) where

n ∈ Z≥0. Then λ ∈ A(nλ1, w0). The reducibility hyperplanes separating the
alcove aA0 containing λ and ãA0 are Hα1,1, Hα1,2, . . . Hα1,n. In the setup of
Theorem 3.2.4 we choose the path so that r1 = sα1,n, r2 = sα1,n−1, . . ., rn = sα1,1.
Suppose S ⊂ {1, 2, . . . , n} and |S| ≥ 2. Then ri1Ci2−1 and ri1Ci2 lie in the Wallach
region, and thus ε(ri1Ci2−1, ri1Ci2) = 0. Therefore ε(S) = 0 for |S| ≥ 2. For our
choice of path, note that Ci ⊃ (n − i, n − i + 1), whence ε({i}) = ε(Ci−1, Ci) =
ε(Hα1,n−i+1, s1) = δn−i+1

α1
= 1 (see Definition 5.2.16 and Lemma 5.2.17 or Theorem

6.12 of [Yee05]). Substituting these values into Theorem 3.2.4:

RA(nλ1,w0) = chsM(λ) =

∑n
i=1 2eririλ−ρ + eλ−ρ

∏

α∈∆+(p,t)

(1 − e−α)
∏

α∈∆+(k,t)

(1 − e−α)

=

∑n
i=1 2eλ−iα1−ρ + eλ−ρ

1 + e−α1

=

∑n
i=1 eλ−(i−1)α1−ρ + eλ−iα1−ρ

1 + e−α1

= eλ−ρ + eλ−ρ−α1−ρ + · · · + eλ−(n−1)α1−ρ +
eλ−nα1−ρ

1 + e−α1
.

Irreducible highest weight modules: Let λ = −nλ1 for some n ∈ Z+. Since λ is
in the Wallach region, taking n = 0 in the above formula:

chsL(λ) = chsM(λ) =
eλ−ρ

1 + e−α
.

According to Theorem 4.6.10,

1 = Pλ,w0
w0,w0

= sgn(−w0ρ, α1)ε(Hα1,n, s1)P
λ,w
w0s1,w0

= δn
α1

Pλ,w
w0s1,w0

= Pλ,w0
w0s1,w0

by Lemma 5.2.17 or Theorem 6.12 of [Yee05]. Substituting the values we have
computed into Theorem 3.2.3:

chsL(s1λ) = RA(s1λ,w0)(s1λ) − Pλ,w
w0s1,w0

RA(λ,w0)(λ)

= RA(nλ1,w0)(s1λ) − RA(−nλ1,w0)(s1λ − nα1)

= RA(nλ1,w0)(s1λ) − RA(0λ1,w0)(s1λ − nα1)

=

(
es1λ−ρ + · · · + es1λ−(n−1)α1−ρ +

es1λ−nα1−ρ

1 + e−α1

)
−

(
es1λ−nα1−ρ

1 + e−α1

)

= es1λ−ρ + es1λ−α1−ρ + · · · + es1λ−(n−1)α1−ρ.
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eµ eµ eµ

+eµ−α1 +eµ−α1

+eµ−2α1 · · ·

λ1 2λ1 3λ1

• • •

Hα1,1 Hα1,2 Hα1,3

eµ eµ eµ eµ · · ·

−eµ−α1 +eµ−α1 +eµ−α1 +eµ−α1

+eµ−2α1 −eµ−2α1 +eµ−2α1 +eµ−α1

−eµ−3α1 +eµ−3α1 −eµ−3α1 +eµ−3α1

+eµ−4α1 −eµ−4α1 +eµ−4α1 −eµ−4α1

...
...

...
...

chsL(µ)

chsM(µ)

µ

Figure 1. su(2)

Example 2: g0 = sl(2, R). We may proceed as in the previous example, but
substitute δα1 = −1 instead of δα1 = 1.

Irreducible Verma modules: For λ ∈ h∗ such that (λ, α∨
1 ) ∈ (n, n + 1) where

n ∈ Z≥0:

chsM(λ) = RA(nλ1,w0)(λ) =

∑n
i=1(−1)n−i+12eririλ−ρ + eλ−ρ

∏

α∈∆+(p,t)

(1 − e−α)
∏

α∈∆+(k,t)

(1 + e−α)

=

∑n
i=1(−1)i2eλ−iα1−ρ + eλ−ρ

1 − e−α1

= eλ−ρ − eλ−ρ−α1−ρ + · · · + (−1)n−1eλ−(n−1)α1−ρ + (−1)n eλ−nα1−ρ

1 − e−α1
.

Irreducible highest weight modules: For λ = −nλ1 where n ∈ Z+:

chsL(λ) = chsM(λ) =
eλ−ρ

1 − e−α1
.

Since Pλ,w0
w0s1,s0

= (−1)n, we have

chsL(s1λ) = RA(s1λ,w0)(s1λ) − Pλ,w0
w0s1,w0

RA(λ,w0)(λ)

=

(
n−1∑

i=0

(−1)ies1λ−iα1−ρ + (−1)n es1λ−nα1−ρ

1 − e−α1

)
− (−1)n

(
es1λ−nα1−ρ

1 − e−α1

)

= es1λ−ρ − es1λ−α1−ρ + · · · + (−1)n−1es1λ−(n−1)α1−ρ.
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[BGG76] I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand. A certain category of g-modules.
Functional Anal. Appl., 10:87–92, 1976.

[BK81] J.-L. Brylinski and M. Kashiwara. Kazhdan-Lusztig conjecture and holonomic systems.
Invent. Math., 64(3):387–410, 1981.

[Dix96] Jacques Dixmier. Enveloping Algebras. Number 11 in Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 1996.

[DL77] Vinay Deodhar and James Lepowsky. On multiplicity in the Jordan-Hölder series of
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