
THE SINGULARITY OF ORBITAL MEASURES ON COMPACT LIE GROUPS

KATHRYN E. HARE AND WAI LING YEE

Abstract. We find the minimal real number k such that the kth power of the Fourier transform

of any continuous, orbital measure on a classical, compact Lie group belongs to l2. This results
from an investigation of the pointwise behaviour of characters on these groups. An application is

given to the study of Lp-improving measures.

1. Introduction

It is well known that there are many continuous, singular measures on the circle (or any compact
abelian group) all of whose convolution powers remain singular to L1. In contrast, Ragozin in
[5] proved the striking fact that if G was a compact, connected, simple Lie group and µ was any
central, continuous measure on G then µdim G ∈ L1(G). This fact obviously implies that the Fourier
transform of any such measure tends to zero, and was used to prove that compact, simple Lie groups
admit no infinite, central Sidon sets, again in contrast to the abelian case.

Ragozin’s result was first improved in [2] where it was shown that if k > dim G/2 and µ was a
continuous orbital measure on G then µk ∈ L2(G), while if µ was any central, continuous measure
then µk ∈ L1(G). In [3] estimates were made on the size of characters (in terms of their degrees)
from which one could determine the minimal integer k such that µk ∈ L2 for all continuous orbital
measures µ on the classical, compact Lie groups.

Our interest in this paper is to determine the precise size of the Fourier transform of continuous
orbital measures, i.e., to determine the minimal fractional power k for which µ̂k ∈ l2. The answer
depends on the Lie group type and is summarized below.

Main Theorem: Let G be a compact, connected, simple Lie group of type An, Bn, Cn or Dn.

Then µ̂k ∈ l2 for all continuous orbital measures µ on G if and only if

k > k0 ≡


n + 1/2 if G is type An

2n− 1/2 if G is type Bn

n− 1/4 if G is type Cn, n 6= 3
13/4 if G is type C3

n− 3/4 if G is type Dn.

The necessity of this choice of k0 follows easily from the earlier work as is shown in Corollary 3.2.
The proof of sufficiency is divided into two parts. In the first part of the proof we continue the

study of the pointwise behaviour of characters begun in [3]. This is relevant because if µg is the
orbital measure associated to g ∈ G, then the Fourier transform of µg at the representation λ is
given by µ̂g(λ) = Trλ(g)/ deg λ. Here we show that for many g ∈ G it is possible to improve the
pointwise bounds of characters found in [3]. Using these improved estimates, the orbital measures
corresponding to these points are easily seen to have the desired property. The arguments used to
establish these statements are similar to those of [3]; the details are sketched in Section 3 and the
results are summarized in Corollary 3.4. In the second part of the proof of sufficiency we consider
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the points g ∈ G where the pointwise bounds found in [3] are sharp. For the orbital measures
corresponding to these points a different, more direct approach to summing the Fourier transform is
taken. This approach depends on properties of the particular points g and is the content of Section
4.

Ricci and Stein in [6] proved that surface measures on compact, connected analytic manifolds
which generate the group act as convolution operators from Lp to L2 for some p < 2. In Section 5
we use our results to investigate the size of p for the particular case of continuous orbital measures.
Previously the minimal p was determined for regular orbital measures in [7].

2. Notation and Structural properties of Subroot Systems

The proof of the theorem relies significantly on the representation theory of simple Lie groups.
The main facts we need are recorded below.

2.1. Notation and Basic Facts. Let G be a compact, connected, simple, non-exceptional Lie
group of rank n. Let Z(G) denote its centre and W be its Weyl group. Denote by e1, . . . , em the
usual unit vectors in Rm where m = n + 1 in type An and m = n otherwise. We take a maximal
torus T with Φ the set of roots for (G, T ) described below.

Type Root system Φ Base ∆ ={αj : j = 1, ..., n}
An {ei − ej : 1 ≤ i 6= j ≤ n + 1} αj = ej − ej+1

Bn {±ei,±(ei ± ej) : 1 ≤ i 6= j ≤ n} αj = ej − ej+1 for j 6= n
αn = en

Cn {±2ei,±(ei ± ej) : 1 ≤ i 6= j ≤ n} αj = ej − ej+1 for j 6= n
αn = 2en

Dn {±(ei ± ej) : 1 ≤ i 6= j ≤ n} αj = ej − ej+1 for j 6= n
αn = en−1 + en

The positive roots associated with the base of simple roots ∆ will be denoted by Φ+, the fundamental
dominant weights relative to ∆ will be denoted by λ1, . . . , λn, and Λ+ will be the set of all dominant
weights. The set Λ+ is in a 1-1 correspondence with Ĝ; σλ ∈ Ĝ is indexed by its highest weight
λ ∈ Λ+. The degree of σλ will be denoted by dλ. The weights of λ ∈ Λ+ are given by

Π(λ) = {µ ∈ Λ : w(µ) < λ for all w ∈ W}
where µ < λ means λ − µ is a non-negative integral sum of positive roots. We set ρ =

∑n
j=1 λj .

According to the Weyl dimension formula ([9]) the degree of λ is given by

(2.1)
∏

α∈Φ+

(ρ + λ, α)/(ρ, α).

For general facts about root systems we refer the reader to [4].
A measure µ on G is called central if µ commutes with all other measures on G under the action

of convolution. Central measures are characterized by the fact that their Fourier transforms are
scalar multiples of identity matrices:

µ̂(λ) = aλIdλ
where aλ =

∫
G

Trλ(x)
dλ

dµ.

We will simply write µ̂(λ) in place of aλ.
An interesting class of singular, central measures are the orbital measures. The orbital measure

µg, supported on the conjugacy class C(g) containing g ∈ G, is defined by∫
G

fdµg =
∫

G

f(tgt−1)dmG(t) for f ∈ C(G).
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Orbital measures are continuous if and only if g /∈ Z(G). One can easily see that µ̂g(λ) = Trλ(g)/dλ,
hence the behaviour of the Fourier transform of orbital measures is determined by the pointwise
behaviour of characters.

Since characters are class functions it suffices to know their values on the torus: For g in the torus
the Weyl character formula [9] states

Trλ(g) =
eiρ(g)

∑
w∈W detw exp i(ρ + λ, w(g))∏

α∈Φ+(eiα(g) − 1)

where this is understood to be a limit if it is an indefinite form. It is important to identify the
zeroes of the denominator and so given g ∈ T we let Φ(g) = {α ∈ Φ : α(g) ∈ 2πZ} and let
Φ+(g) = Φ(g)

⋂
Φ+. It is easily seen that Φ(g) is a subroot system of Φ and that Φ+(g) is a

complete set of positive roots of this subroot system. It is known that Φ(g) = Φ if and only if
g ∈ Z(G) (see [1] p. 189). When Φ(g) is empty g is called a regular element of G.

It was shown in [2] that one can evaluate the Weyl character formula (by considering suitable
directional derivatives if Φ+(g) is not empty) to obtain

(2.2)
|Trλ(g)|

dλ
= c(g)

∣∣∣∑w∈W det w
∏

α∈Φ+(g)(ρ + λ, w(α)) exp i(ρ + λ, w(g))
∣∣∣∏

α∈Φ+(ρ + λ, α)
.

¿From this one can immediately derive the key formula which we use to make estimates:

(2.3)
|Trλ(g)|

dλ
≤ c(g)

∑
w∈W

∣∣∣∏α∈Φ+(g)(ρ + λ, w(α))
∣∣∣∏

α∈Φ+(ρ + λ, α)
.

In order to use this formula at g /∈ Z(G) it is helpful to understand the structures of the proper
subroot systems Φ(g) and their Weyl conjugates. Clearly it suffices to analyze those subroot systems
which are maximal in the sense that there is no other proper subroot system containing it; we
provide a listing of these below for the convenience of the reader. For an explanation on how they
are determined see [3].

Type Maximal subroot systems
An An−1, Ak ×An−k : k, n− k ≥ 2
Bn Bn−1, Dn, A1 ×Dn−1, Dk ×Bn−k : k, n− k ≥ 2
Cn An−1, Ck × Cn−k : k, n− k ≥ 1
Dn Dn−1, An−1, Dk ×Dn−k : k, n− k ≥ 2.

Here D2 is understood to mean {ei ± ej}, B1 = {ei}, C1 = {2ei}. C2 and D3 are the obvious root
systems.

3. Pointwise values of characters

The following theorem, which compares the value of a character to its degree, was obtained in [3].

Theorem 3.1. Let G be a compact, connected, simple Lie group of type An−1, Bn, Cn or Dn. For
every g /∈ Z(G) there is a constant c(g) such that∣∣∣∣Trλ(g)

deg λ

∣∣∣∣ ≤ c(g)(deg λ)−s
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for all λ ∈ Ĝ if and only if

s ≤ s0 ≡


1/(n− 1) if G is type An−1 or Dn

1/(2n− 1) if G is type Bn

2/(2n− 1) if G is type Cn, n 6= 3
1/3 if G is type C3.

Moreover, there is some g /∈ Z(G) such that
∣∣∣Trλ(g)

dλ

∣∣∣ ≥ c(g)d−s0
λ for the infinite family of represen-

tations λ = mλ1, m ∈ 2Z+ (mλ3 in type C3).

¿From the final statement of this theorem it is easy to prove the necessity of k0 in the main
theorem.

Corollary 3.2. Let G be a compact, connected, simple Lie group of type An, Bn, Cn or Dn. Then
there is some g /∈ Z(G) such that µ̂g

k0 /∈ l2 .

Proof. By definition, ∥∥∥µ̂g
k
∥∥∥2

2
=
∑
λ∈ bG

d2
λ

∣∣∣∣Trλ(g)
dλ

∣∣∣∣2k

,

thus for the choices of g for which Theorem 3.1 is optimal we obtain∥∥∥µ̂g
k
∥∥∥2

2
≥

∑
m even

d2
mλi

∣∣∣∣Tr mλi(g)
dmλi

∣∣∣∣2k

≥ c(g)
∑

m even

d2−2ks0
mλi

for i = 3 in type C3 and i = 1 otherwise. The degrees of the representations mλ1 are easily seen to
be O(mn) in type An, O(m2n−1) in type Bn and Cn, and O(m2n−2) in type Dn; the degree of mλ3

in C3 is O(m6). It is a routine exercise to check that d2−2k0s0
mλi

= m−1, and thus µ̂g
k0 /∈ l2.

Now we turn to the problem of proving the sufficiency of this choice of k0. Our first step is to
show that the pointwise bounds of Theorem 3.1 can be sharpened for many points of G.

Proposition 3.3. Suppose G is a classical, compact, connected, simple Lie group. Then∣∣∣∣Trλ(g)
deg λ

∣∣∣∣ ≤ c(g)(deg λ)−s

for all λ ∈ Ĝ provided G, Φ+(g) and s are as described below:

Type Type of Subroot System Φ(g)+ s

An Ak ×An−k−1
1

n−1

Bn Bn−1
1

2n−2

A1 ×Dn−1
1
n

Dk ×Bn−k; k, n− k ≥ 2 1
2n−4

Cn An−1
2

n+1

Ck × Cn−k; k, n− k ≥ 2 2
2n−3 ( 1

3 ;n = 4)

Dn An−1; n ≥ 5 1
n−2 ( 2

7 ;n = 5)

Dk ×Dn−k; k, n− k ≥ 2 1
n−2 .
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Proof. The arguments used to show this are similar to those used in [3], but more delicate. We first
note that inequality (2.3), together with the Weyl dimension formula (2.1), show that it is sufficient
to prove that there is some constant c = c(g) such that for all representations λ,

(3.1)
∣∣∣∣ ∏α∈Φ′+(ρ + λ, α)∏

α∈Φ+(ρ + λ, α)1−s

∣∣∣∣ =
∣∣∣∣∣∣
∏

α∈Φ′+

(ρ + λ, α)s
∏

α∈Φ+\Φ′+

(ρ + λ, α)s−1

∣∣∣∣∣∣ ≤ c,

whenever Φ′+ is the set of positive roots of a maximal subroot system Weyl conjugate to Φ+(g).
One should observe that the action of the Weyl group preserves the type and basic structure of the
subroot system.

Throughout the proof we will assume ρ+λ can be expressed in terms of the fundamental dominant
weights as

∑n
i=1 miλi. We will also assume mM = maxi=1,...,n mi. The letter c will denote a constant

which may vary from one line to another.
The proof proceeds by considering each Lie type separately. We give the details here for type Cn

and maximal proper subroot system Ck × Cn−k, k, n − k ≥ 2 to illustrate the ideas. This subroot
system has positive roots

Φ′+ = {2el, ei ± ej : i < j, l ∈ J1}
⋃
{2el, ei ± ej : i < j, l ∈ J2}

where J1, J2 are disjoint subsets of {1, ..., n}, |J1| = k, |J2| = n− k. By symmetry we may assume
1 ∈ J1. Let Ψ+ be the set of roots in Φ+ on the letters {2, . . . , n} and Ψ′+ = Ψ+

⋂
Φ′+. Then (3.1)

can be written as PQ where

P ≡ (ρ + λ, 2e1)s
∏

j∈J1\{1}

(ρ + λ, e1 ± ej)s
∏
j∈J2

(ρ + λ, e1 ± ej)s−1

and
Q =

∏
α∈Ψ′+

(ρ + λ, α)s
∏

α∈Ψ+\Ψ′+

(ρ + λ, α)s−1.

As Ψ+ is a root system of type Cn−1 containing Ψ′+ a subroot system of type Ck−1 × Cn−k (with
k ≥ 1, n − k ≥ 2) it follows from Theorem 3.1 that Q is bounded if s ≤ 2/(2n − 3) and n − 1 ≥ 4,
or if s ≤ 1/3 and n− 1 = 3.

Since (ρ + λ, e1 + ej) = O(mM ) for all j,

P ≤ cm
s(1+2(|J1|−1))+|J2|(s−1)
M ,

and because 2 ≤ |J1| , |J2| ≤ n− 2, this expression is bounded for s ≤ 2/ (2n− 3).
Modifications of these arguments are needed for types An, Bn and Dn.

We will refer to the maximal subroot systems of the proposition as the better maximal subroot
systems and the others as the worst maximal subroot systems. To summarize, the worst maximal
subroot systems are: type An−1 in An; Dn in Bn; C1 × Cn−1 in Cn; Dn−1 in Dn and A3 in D4.
(See the list in section 2 of maximal subroot systems.)

Notice that any proper subroot system is either one of the worst types or is contained in one of the
better types. For example, a proper subroot system of An which is not type An−1 is either contained
in one of the better subroot systems Ak × An−k−1, or is contained in a proper subroot system of
type An−1. We can show, in fact, that the second case falls within the first. The two maximal
subroot systems of An−1 are An−2, which is contained in the better subroot system A1×An−2, and
Ak ×An−1−k−1, which is contained in the better subroot system Ak ×An−k−1. The arguments for
the other types are similar.
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Clearly Proposition 3.3 continues to hold if Φ+(g) is only assumed to be contained in one of the
better maximal subroot systems. These observations imply that as long as Φ+(g) is not one of the
worst maximal subroot systems, then there is a constant c(g) such that for all λ ∈ Ĝ,∣∣∣∣Trλ(g)

dλ

∣∣∣∣ ≤ c(g)(dλ)−s,

provided s is as stated in the proposition.
As a consequence, for many orbital measures a stronger result than the main theorem can be

proved.

Corollary 3.4. Suppose G is a classical, compact, connected, simple Lie group, g /∈ Z(G) and
Φ+(g) is not one of the worst maximal subroot systems. Then µ̂g

k0 ∈ l2.

Proof. The previous corollary implies that∥∥∥µ̂g
k
∥∥∥2

2
=
∑
λ∈ bG

d2
λ

∣∣∣∣Trλ(g)
dλ

∣∣∣∣2k

≤ c(g)
∑
λ∈ bG

d2−2ks
λ

(for s as in the chart). It was shown in [2, Cor. 9] that
∑

λ∈ bG dt
λ < ∞ whenever t < −rank G/ |Φ+|

and it is a straightforward calculation to check that 2− 2k0s < −rank G/ |Φ+|.

4. Completion of the Proof of the Main Theorem

In this section we will complete the proof of the main theorem.

Theorem 4.1. Let G be a compact, connected, simple Lie group of type An, Bn, Cn or Dn. Then
µ̂g

k ∈ l2 for all continuous orbital measures on G if

k > k0 ≡


n + 1/2 if G is type An

2n− 1/2 if G is type Bn

n− 1/4 if G is type Cn, n 6= 3
13/4 if G is type C3

n− 3/4 if G is type Dn.

Proof. It remains only to prove this theorem for orbital measures µg with Φ+(g) one of the worst
maximal subroot systems: type An−1 in An, type Dn in Bn, type C1×Cn−1 in Cn, type Dn−1 in Dn

and type A3 in D4. The previous method will not work for these orbital measures as the (optimal)
pointwise estimates on the trace function are not adequate. Instead we will find an upper bound on
the l2 norm of µ̂g

k by appealing to (2.3) and using the fact that∥∥∥µ̂g
k
∥∥∥2

2
=
∑
λ∈ bG

d2
λ

∣∣∣∣Trλ(g)
dλ

∣∣∣∣2k

≤ c
∑

Φ′=w(Φ(g))

∑
λ∈ bG

∏
α∈Φ′+

(ρ + λ, α)2
∏

α∈Φ+\Φ′+

(ρ + λ, α)2−2k

where the outer sum is taken over the finitely many subroot systems, Φ′, Weyl conjugate to Φ(g).
Thus it suffices to show that for k > k0,

(4.1)
∑
λ∈ bG

 ∏
a∈Φ′+

(ρ + λ, α)2
∏

α∈Φ+\Φ′+

(ρ + λ, α)2−2k

 < ∞

for each such positive subroot system Φ′+. This alternate approach will allow us to take advantage
of the fact that while |Trλ(g)| /dλ = O(d−s0

λ ) for certain λ, it is much smaller for others.
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We will continue to adhere to the convention that mM = maxi mi, where ρ + λ =
∑

miλi and c
will denote a constant which may vary. Our strategy requires us to consider each type separately.
Again, we will give the details for type Cn and sketch the main ideas for the other types.

Type C1 × Cn−1 in Cn: We will leave C3 for the reader and proceed inductively. So assume
n ≥ 4, k > n − 1/4, and Φ′+ is a type C1 × Cn−1 subroot system in type Cn. It will have positive
roots

{2en0}
⋃
{ei ± ej , 2el : 1 ≤ i < j ≤ n, 1 ≤ l ≤ n : i, j, l 6= n0}

for some n0 ∈ {1, ..., n}.
Case M < n0 : Let Ψ+ be the set of all positive roots on the letters {2, ..., n}, i.e.,

Ψ+ = {ei ± ej , 2el : 2 ≤ i < j ≤ n, 2 ≤ l ≤ n}
and let Ψ′+ = Φ′+ ∩Ψ+. With this notation we may factor∏

α∈Φ+\Φ′+

(ρ + λ, α)2−2k
∏

α∈Φ′+

(ρ + λ, α)2

as PQ, where
P ≡ (ρ + λ, e1 ± en0)

2−2k(ρ + λ, 2e1)2
∏

j 6=1,n0

(ρ + λ, e1 ± ej)2

and
Q ≡

∏
α∈Ψ+\Ψ′+

(ρ + λ, α)2−2k
∏

α∈Ψ′+

(ρ + λ, α)2.

Since M < n0, we have (ρ+λ, e1± en0) = O(mM ). This ensures that P ≤ cm4n−2−4k
M ≤ cm4n−2−4k

1 .
Now Ψ′+ is a type C1 × Cn−2 subroot system in a type Cn−1 root system Ψ+ (on the letters

{2, . . . , n}). For α ∈ Ψ+, (ρ+λ, α) = (
∑n

i=2 miλi, α), thus the induction assumption may be applied
to Q to give the conclusion∑

m2,...,mn

∏
α∈Ψ+\Ψ′+

(ρ + λ, α)2−2k
∏

α∈Ψ′+

(ρ + λ, α)2 < ∞.

Since 4n− 2− 4k < −1, we can combine these facts to obtain∑
λ:M<n0

∏
α∈Φ+\Φ′+

(ρ + λ, α)2−2k
∏

α∈Φ′+

(ρ + λ, α)2

≤ c
∑
m1

m4n−2−4k
1

∑
m2,...,mn

∏
α∈Ψ+\Ψ′+

(ρ + λ, α)2−2k
∏

α∈Ψ′+

(ρ + λ, α)2 < ∞.

Type An−1 in An or Type Dn−1 in Dn: Before explaining the case M ≥ n0 we remark that
a similar induction argument works for these two types, as well. We again factor the summands
in (4.1) as PQ, where bounds on Q can be obtained by the induction assumption and P can be
bounded by finding a suitable number of roots α with (ρ + λ, α) ≥ mM . For type An we take Q
to be the product of the factors involving positive roots built on either the letters {2, ..., n + 1} or
{1, ..., n}, depending on whether M < n0 or M ≥ n0 (giving the problem of type An−2 in An−1). In
the first case we can use the fact that (ρ + λ, α) ≥ mM for α = e1 − en0 to bound P . In the second
case, the root α = en0 − en+1 has the desired property.

For type Dn one can observe that it suffices to assume n0 > 1 and thus we may apply an
induction argument by taking Q to be the product of the factors involving the roots built on the
letters {2, ..., n}. Finding a suitable number of roots α with (ρ + λ, α) ≥ mM is somewhat more
delicate in this case. For example, if M ≥ n0, then (ρ + λ, α) ≥ mM for α = ei + en0 for all i 6= n0

(or i 6= n0, n) provided M 6= n− 1 (M = n− 1) and for α = en0 − en if M = n− 1.
Type C1 × Cn−1 in Cn (ctd):
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Case M ≥ n0 : Here we take a different approach and instead factor∏
α∈Φ+\Φ′+

(ρ + λ, α)2−2k
∏

α∈Φ′+

(ρ + λ, α)2

as P ′Q′ where

P ′ =
∏

i 6=n0

(ρ + λ, ei + en0)
2−2k

∏
i

(ρ + λ, 2ei)2
∏

i<j;i,j 6=n0

(ρ + λ, ei + ej)2

and
Q′ =

∏
i 6=n0

(ρ + λ, ei − en0)
2−2k

∏
i<j;i,j 6=n0

(ρ + λ, ei − ej)2.

Note that (ρ + λ, ei − ej) = (
∑n−1

k=1 mkλk, ei − ej) for any j > i. Thus Q′ is the summand in (4.1)
which arises from a subroot system of type An−2 in An−1, on the letters {1, . . . , n}. As k > n− 1/2
it follows from the analysis for this case that∑

m1,...,mn−1

∏
i 6=n0

(ρ + λ, ei − en0)
2−2k

∏
i<j;i,j 6=n0

(ρ + λ, ei − ej)2 < ∞.

Thus it suffices to prove P ′ ≤ cm−t
n for some t > 1, and this is what we will verify. It is convenient

to let bi = maxl≥i ml. Then (ρ + λ, 2ei) and (ρ + λ, ei + ej) for j > i are O(bi), so

P ′ ≤ c
∏

j<n0

b2−2k
j

∏
j>n0

b2−2k
n0

∏
i

b2
i

∏
i<j;i,j 6=n0

b2
i

=
∏

i<n0

b
2(n−i−1)+4−2k
i

∏
i>n0

b
2+2(n−i)
i

(
b2+(2−2k)(n−n0)
n0

)
.

Now bi ≤ mM and 2 + 2(n− i) > 0, thus∏
i>n0

b
2+2(n−i)
i ≤

∏
i>n0

m
2+2(n−i)
M = m

(n−n0+1)(n−n0)
M .

Since M ≥ n0, bi = mM for i ≤ n0, hence∏
i<n0

b
2(n−i−1)+4−2k
i = m

(2n+2−2k−n0)(n0−1)
M .

Combining these observations, and using the fact that n ≥ 4, gives the bound

P ′ ≤ m2k+n2+n−2kn
M ≤ m−5/2

n ,

completing the proof of this case.
Type Dn in Bn: In this case Φ+ \ Φ′+ consists of all the positive roots of length one. If α = ei

is such a root, then
(ρ + λ, α) = O(mi + ... + mn) ≥ (ρ + λ, β)

for β = ei ± ej and any i < j. From this it follows that (4.1)

∑
λ

∏
α∈Φ+\Φ′+

(ρ + λ, α)2−2k
∏

α∈Φ′+

(ρ + λ, α)2 ≤ c
∑

m1,...,mn

(
n∏

i=1

(mi + ... + mn)

)4n−4i−2k+2

≤ c
∑

m1,...,mn

(
n∏

i=1

mi

)4n−2k−2

,

and this is finite as 4n− 2k − 2 < −1.



SINGULARITY OF ORBITAL MEASURES 9

Type A3 in D4: This type can be done by explicit calculation. Alternatively, one can effectively
reduce the problem to that of type D3 in D4 by considering a suitable automorphism of the root
system.

Remark 4.1. The main theorem stated in the introduction results from Corollary 3.2 and Theorem
4.1. It would be interesting to know if there was a less computational proof of this result, or a proof
which did not involve consideration of each Lie type separately. Also, it remains to carry out the
analysis for the exceptional groups. The maximal subroot systems of E6, E7 and E8 seem to be too
cumbersome for our approach.

5. Applications

5.1. Convolutions. Since the convolution of two L2 functions is continuous we immediately obtain
the following corollary of the theorem.

Corollary 5.1. If µ is a continuous orbital measure, then µ2n−1 is a continuous function if G is
type An−1 or Dn, µ2n is continuous if G is type Cn, n ≥ 4, and µ4n−1 is a continuous function if
G is type Bn.

A similar result will hold for any central, continuous measure compactly supported on the conju-
gates of a set of the form {x ∈ T : Φ+(x) = Φ+} for some fixed set Φ+ (c.f., [2], Cor. 7).

5.2. Lp-Improving Measures. A measure µ is called Lp-improving if there is some p < 2 such
that µ ∗ Lp ⊆ L2. Young’s inequality implies that all functions in Lq, for some q > 1, are examples
of Lp-improving measures. A question of current interest is to understand which singular measures
on compact groups are Lp-improving.

In [6] surface measures on compact, connected analytic submanifolds which generate the group
were shown to be Lp-improving. Continuous orbital measures are an example of this phenomena.
The measure µg is supported on the conjugacy class containing g, and this manifold generates G

since a suitable k-fold product supports the non-zero, absolutely continuous measure µk
g and thus

must have positive Haar measure.
A more refined problem is to determine the minimal p such that µ ∗ Lp ⊆ L2. This was done for

for orbital measures corresponding to regular elements (those with Φ+(g) empty) in [7] where it was
shown that µg ∗ Lp ⊆ L2 if and only if p ≥ 1 + r/(2 dim G − r). Our theorem gives results for all
continuous orbital measures.

Proposition 5.2. If g /∈ Z(G) then µg ∗ Lp ⊆ L2 for p > p0 where:

(i) p0 = 2− 4/ (2n + 3) when G is type An;
(ii) p0 = 2− 4/ (4n + 1) when G is type Bn;
(iii) p0 = 2− 8/ (4n + 3) when G is type Cn, n 6= 3; p0 = 26/17 if n = 3;
(iv) p0 = 2− 8/ (4n + 1) when G is type Dn.

Proof. The main theorem implies that for k > k0 the operator Tk(f) = µk
g ∗ f maps L1(G) into

L2(G) whenever g /∈ Z(G). Since the identity map obviously maps L2(G) into L2(G), an application
of Stein’s interpolation theorem [8] gives that µg ∗ Lp ⊆ L2 for the choices of p0 listed.

Remark 5.1. It would be interesting to know if these results are optimal for the orbital measures
corresponding to the worst subroot systems. Clearly they are not optimal for other continuous, orbital
measures as better results can be obtained by invoking Proposition 3.3.
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