(1) Prove for odd primes p that $\left(\frac{-3}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1(\bmod 6) \\ -1 & \text { if } p \equiv-1(\bmod 6)\end{cases}$
(2) Find all primes p for which $\frac{2^{p-1}-1}{p}$ is a perfect square.
(3) Prove that if r is a quadratic residue of m where $m>2$, then $r^{\phi(m) / 2} \equiv 1(\bmod m)$.
(4) For any prime p of the form $4 k+3$, prove that $x^{2}+(p+1) / 4(\bmod p)$ is not solvable.
(5) Let $1,2, \ldots, p-1(\bmod p)$ be divided into two disjoint sets S and T such that $s_{1} s_{2} \in$ $S, t_{1} t_{2} \in T$, and $s_{1} t_{1} \in T$ for all $s_{i} \in S$ and all $t_{i} \in T$. Prove that S must be the set of quadratic residues.
(6) Show that if p is a prime of the form $4 k+1$ then the sum of the quadratic residues $(\bmod p)$ in the interval $[1, p)$ is $p(p-1) / 4$.
(7) Prove that if the prime p is of the form $3 k+2$, then all residues are cubic residues. Prove that if p is of the form $3 k+1$, then only one third of non-zero residues are cubic residues.
(8) Prove that for any arbitrary prime number $p>5$, the equation

$$
x^{4}+4^{x}=p
$$

has no solution in whole numbers.
(9) Prove for all primes p that $x^{8} \equiv 16(\bmod p)$ is solvable.
(10) Let p be an odd prime. Prove that every primitive root of p is a quadratic nonresidue. Prove that every quadratic nonresidue is a primitive root if and only if p is of the form $2^{2^{n}}+1$ where n is a non-negative integer: i.e. $p=3$ or p is a Fermat number.
(11) Show that if p is an odd prime and $\operatorname{gcd}(a, p)=1$, then $x^{2}=a\left(\bmod p^{a}\right)$ has exactly $1+\left(\frac{a}{p}\right)$ solutions.
(12) Suppose that m is an odd number. Show that if $\operatorname{gcd}(a, p)=1$ then the number of solutions to $x^{2} \equiv a(\bmod m)$ is

$$
\prod_{p \mid m}\left(1+\left(\frac{a}{p}\right)\right)
$$

Prove that if m is an odd square-free number, then the equation holds for all integers
(13) Find all primes p such that $\left(\frac{10}{p}\right)=1$.
(14) Prove that there are infinitely many primes of the form $3 n+1$ and infinitely many of th form $3 n-1$.
(15) Show that if $p=2^{2^{n}}+1$ is prime, then 3 is a primitive root $(\bmod p)$ and that 5 and 7 are primitive roots if $n>1$.
(16) Given that 1111118111111 is prime, determine whether 1001 is a quadratic residue $(\bmod 1111118111111)$.
(17) Show that if x is not divisible by 3 , then $4 x^{2}+3$ has at least one prime factor of the form $12 n+7$. Deduce that there are infinitely many primes of this sort.
(18) Suppose that $\operatorname{gcd}(a b, p)=1$ and that $p>2$. Show that the number of solutions (x, y) to $a x^{2}+b y^{2} \equiv 1(\bmod p)$ is $p-\left(\frac{-a b}{p}\right)$.

