Chapter 4

Inclusion-Exclusion

4.1 The Principle of Inclusion-Exclusion

Let S be a set with |S| = N. Let c_1, c_2, \ldots, c_t be a collection of conditional properties each of which may be satisfied by some of the elements of S.

Let $N(c_i), i = 1,, t$	=	the number of elements of S that satisfy
		C _i .
Let $N(c_i c_j), ij = 1, \dots, t$	=	the number of elements of S that satisfy
		c_i and c_j .
Let $N(c_i c_j c_k), ijk = 1, \dots, t$	=	the number of elements of S that satisfy
		$c_i, c_j, \text{ and } c_k.$
Let $N(\bar{c}_i), i = 1, \dots, t = N - N(c_i)$	=	the number of elements of S that do not
		satisfy c_i .
Let $N(\bar{c}_i \bar{c}_j), i = 1, \dots, t = N - N(c_i c_j)$	=	the number of elements of S that do not
		satisfy c_i and do not satisfy c_j .

Theorem 4.1.1

$$\overline{N} = N(\overline{c}_1 \overline{c}_2 \dots \overline{c}_t) = N - (N(c_i) + N(c_2) + \dots + N(c_t)) + (N(c_1 c_2) + N(c_1 c_3) + \dots + N(c_{t-1} c_t)) - (N(c_1 c_2 c_3) + N(c_1 c_2 c_4) + \dots) + \dots + (-1)^t N(c_1 c_2 \dots c_t)$$

Let $S_0 = N$ Let $S_1 = N(c_1) + N(c_2) + \dots + N(c_t)$ Let $S_2 = N(c_1c_2) + N(c_1c_3) + \dots + N(c_{t-1}c_t)$ Let $S_3 = N(c_1c_2c_3) + N(c_1c_2c_4) + \dots$

then

$$\overline{N} = S_0 - S_1 + S - 2 - S_3 + \dots + (-1)^t S_t$$

Proof:

- If x satisfies none of the conditions then x is counted once in \overline{N} and once in N and not in any other term of S. Hence, it contributes 1 to both sides.
- If x satisfies exactly r of the conditions (r < t) then x does not contribute to \overline{N} , in the RHS x is counted.
 - 1. one time in N
 - 2. r times in $\sum N(c_i)$
 - 3. $\binom{r}{2}$ times in $\sum N(c_i c_j)$
 - 4. $\binom{r}{3}$ times in $\sum N(c_i c_j c_k)$: $\binom{r}{2}$ times in $\sum N(c_i c_j)$

$$\binom{r}{r}$$
 times in $\sum N(c_1c_2\ldots c_r)$

 \therefore in the RHS we have

$$1 - \binom{r}{1} + \binom{r}{2} - \binom{r}{3} + \dots + (-1)^r \binom{r}{r} = (1-1)^r = 0$$

Example 4.1.1 Determine the number of positive integers $n \leq 100$ and n is not divisible by 2, 3, or 5.

Solution

 $S = \{1, 2, ..., 100\}, N = 100$ $c_1 =$ the property that *n* is divisible by 2. $c_2 =$ the property that *n* is divisible by 3. $c_3 =$ the property that *n* is divisible by 5.

The answer is $N(\bar{c}_1\bar{c}_2\bar{c}_3)$

$$N(c_{1}) = \left\lfloor \frac{100}{2} \right\rfloor = 50, \qquad N(c_{2}) = \left\lfloor \frac{100}{3} \right\rfloor = 33, \qquad N(c_{3}) = \left\lfloor \frac{100}{5} \right\rfloor = 20$$
$$N(c_{1}c_{2}) = \left\lfloor \frac{100}{6} \right\rfloor = 16, \qquad N(c_{1}c_{3}) = \left\lfloor \frac{100}{10} \right\rfloor = 10, \qquad N(c_{2}c_{3}) = \left\lfloor \frac{100}{15} \right\rfloor = 6$$
$$N(c_{1}c_{2}c_{3}) = \left\lfloor \frac{100}{30} \right\rfloor = 3$$

: the answer is $N(\bar{c}_1\bar{c}_2\bar{c}_3) = 100 - (50 + 33 + 20) + (16 + 10 + 6) - 3 = 26$

The numbers are:

1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97