
Fermat’s Little Theorem and Chinese Remainder Theorem Solutions

Notation:
a divides b: a|b
a does not divide b: a 6 | b

(1)

f(n) ≡ 5n + 9an (mod 13)

≡ (5 + 9a)n (mod 13)

≡ 0 (mod 13) for any n and therefore

5 + 9a ≡ 0 (mod 13)

9a ≡ 8 (mod 13)

−4a ≡ 8 (mod 13)

a ≡ −2 ≡ 11 (mod 13)

f(n) ≡ 13n + 9an (mod 5)

≡ (3 + 4a)n (mod 5)

4a ≡ 2 (mod 5)

a ≡ 3 (mod 5)

If a ≡ 11 (mod 13), a ≡ 3 (mod 5), what is a ≡? (mod 65)?

a ≡ 33 (mod 65)

a ≡ 33 (mod 65)

(2) If p = 2:

22 + 32 = 131

which cannot be of the form an where n > 1.
Otherwise, if p is odd:

2p + 3p = (2 + 3)︸ ︷︷ ︸(2p−1 − 2p−2 × 31 + 2p−3 × 32 + · · ·+ 3p−1)

5

Rightmost factor ≡ 2p−1 − 2p−2 × 31 + 2p−3 × 32 + · · ·+ 3p−1 (mod 5)

≡ 2p−1 + 2p−1 + 2p−1 + · · ·+ 2p−1 (mod 5)

≡ p · 2p−1 (mod 5)
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If p 6= 5, then we see that the rightmost factor is not divisible by 5, so:

5|2p + 3p but 52 6 | 2p + 3p

⇒ 2p + 3p cannot be an where a ∈ Z, n ∈ Z, n > 1.

When p = 5,

25 + 35 = 32 + 243

= 275

= 52 × 111 -also 6= an.

(3)

111 · · · 1︸ ︷︷ ︸ =
10k − 1

9
k ones

When p = 3: 111, 111111, 111111111, . . . (where the number of digits is divisible by
three) are numbers that are divisible by three.
If p > 5: It suffices to show that infinitely many integers of the form 10k − 1 where
k ∈ Z+ are divisible by p since 9 is not divisible by p.

10a(p−1) ≡ (10p−1)a (mod p)

≡ 1a ≡ 1 (mod p) by FLT since p > 5 ⇒ gcd(10, p) = 1

so 10a(p−1) − 1 ≡ 0 (mod p) for any a ∈ Z+.

Dividing by 9, this gives us infinitely many numbers of the form 11 · · · 1 which are
divisible by the prime p.

(4) (m, n) = (1, 1) is one obvious solution to

3m − 1 = 2n.

It is the only solution for which n = 1.
Now suppose n ≥ 2.

3m − 1 ≡ (−1)m − 1 (mod 4)

Therefore if (m, n) is a solution with n ≥ 2 so that 4|2n, then 4 must divide 3m−1 = 2n

and the equation above indicates m must be even. This allows us to factor:

(3m/2 + 1)(3m/2 − 1) = 2n.

Thus:
a) (3m/2 + 1) and (3m/2 − 1) are both powers of 2
b) (3m/2 + 1)− (3m/2 − 1) = 2

What powers of 2 have difference 2? Only 4, 2. So we must have 3m/2 +1 = 4, 3m/2−
1 = 2, i.e. m = 2.
Therefore (m, n) = (2, 2) is the only solution for which n ≥ 2.
When n ≤ 0 it is easy to see there are no solutions in this case.
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(5) It suffices to show n must be a power of p in the case where p 6 | a, b. Write n = prm
where p 6 |m.

pk = an + bn = (apr

)m + (bpr

)m

n is odd ⇒ m is odd. Therefore we can factor:

pk = an + bn = (apr

)m + (bpr

)m

= (apr

+ bpr

)
(
(apr

)m−1 − (apr

)m−2bpr

+ (apr

)m−3(bpr

)2 − · · ·+ (bpr

)m−1
)

(∗)
Factoring again,

pk = an + bn = (a + b)(an−1 − an−2b− · · ·+ bn−1)

⇒ a + b ≡ 0 (mod p) since a + b > 1

⇒ b ≡ −a mod p

Substituting b ≡ −a mod p into the righthand factor of (∗):
R.S. ≡

(
(apr

)m−1 − (apr

)m−2bpr

+ (apr

)m−3(bpr

)2 − · · ·+ (bpr

)m−1
)

(mod p)

≡ (apr

)m−1 + (apr

)m−1 + · · ·+ (apr

)m−1 (mod p)

≡ m(apr

)m−1 (mod p)

6≡ 0 (mod p)

Therefore in order for the whole product to be a power of p, this factor above must
equal 1. The only way this is possible is if m = 1. Thus, we see that n = pr×m = pr.

8) We see that this is true for p = 2. Thus we assume p > 2.
Suppose q is a prime divisor of 2p − 1. Then

2p ≡ 1 (mod q).

Let d be the smallest positive integer such that

2d ≡ 1 (mod q).

Then if 2a ≡ 1 mod q, then d|a.
(This is true since if d does not divide a, then a = cd + r where 1 ≤ r ≤ d− 1–think
of r as the remainder when you divide a by d. Then

1 ≡ 2a ≡ 2cd · 2r ≡ 2r (mod q) ⇒ 2r ≡ 1 (mod q)

but r < d and d was supposed to be the smallest such integer–contradiction.)
Thus d|p. Observe that d 6= 1, and so d = p.
Now by Fermat’s Little Theorem, 2q−1 ≡ 1 (mod q), so d = p divides q − 1. This
implies that p ≤ q − 1, so q > p.
A consequence of this result is the fact that there are infinitely many prime numbers.
This was known by the mathematicians of ancient Greece.

9) n = 1 : 1, 2 work
n = 2 : 512 works
Assume by induction that we’ve found k such that the last N digits of 2k are 1s and
2s. Let’s construct another number whose last N + 1 digits are 1s and 2s from this
number. We can also assume by induction that k > N .

2k = a10N + b
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where b is an N -digit number consisting of 1s and 2s.

Let r := φ(5N) = 5N − 5N−1 = 4 · 5N−1.

(Note: the Euler phi function counts the number of integers between 1 and 5N with
gcd 1 with 5N .)
By Euler-Fermat’s Theorem,

2r ≡ 1 (mod 5N).

Now 2k, 2k+r, 2k+2r, . . . , 2k+4r all have b as last N digits: in order to show this, we only
need to show that they are congruent modulo 2N and 5N so that they are congruent
modulo 10N .
Congruent mod 2N : k > N and so 2k, 2k+r, . . . , 2k+4r are all ≡ 0 mod 2N

Congruent mod 5N : 2r ≡ 1 (mod 5N) so 2k+r ≡ 2k · 1 ≡ 2k (mod 5N) etc.
Claim: N + 1st digits different for above five numbers.

Proof: If two are the same, then 2k+cr ≡ 2k+dr (mod 5N+1) where c > d

then 2k+dr︸ ︷︷ ︸ ×
(
2(c−d)r − 1

)︸ ︷︷ ︸ ≡ 0 (mod 5N+1)

no factors of 5 (2r − 1)︸ ︷︷ ︸ ×
(
2r)c−d−1 + (2r)c−d−2 + · · ·+ 1

)︸ ︷︷ ︸
5N |2r − 1 (FLT) ≡ 1 + 1 + · · ·+ 1 ≡ c− d (mod 5)

but 5N+1 6 | 2r − 1

by induction

Thus 2k+cr ≡ 2k+dr (mod 5N+1)

⇒ c ≡ d (mod 5)

Thus 2k, 2k+r, . . . , 2k+4r leave different residues modulo 5N+1 and so their N + 1st

digits are distinct.
Now the five numbers are divisible by 2k > 2N

⇒ the N + 1st digits are : 0, 2, 4, 6, 8

or 1, 3, 5, 7, 9

in some order.
⇒ one of the numbers 2k+cr only has 1s and 2s as its last N+1 digits. If k+cr ≤ N+1,
we can repeat the above process until we get some k + cr > N + 1.

4


