FERMAT’S LITTLE THEOREM AND CHINESE REMAINDER THEOREM SOLUTIONS

Notation:
a divides b: alb
a does not divide b: a b

(1)
f(n) = dn+9an (mod 13)

= (5+9a)n (mod 13)
= 0 (mod 13) for any n and therefore
549 = 0 (mod 13)
9¢a = 8 (mod 13)
—4a = 8 (mod 13)
a = —2 =11 (mod 13)

f(n) = 13n+9an (mod 5)
= (3+4a)n (mod 5)

2 (mod 5)

a = 3 (mod?5)

=~
S
Il

Ifa=11 (mod 13),a=3 (mod 5), whatis a=? (mod 65)?
a = 33 (mod 65)
a = 33 (mod 65)
(2) If p=2:
22 43> =13
which cannot be of the form a” where n > 1.

Otherwise, if p is odd:

2P+ 3 =(2+3) (2P =272 x 3 4203 x 3 4+ 37T
N——
5

Rightmost factor = 2°7' —2P72 x 3! 42073 x 32 4 ... 43771 (mod 5)
2Pty op=l 4 or=l 4o 4 2771 (mod 5)
= p-2"' (mod 5)
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If p # 5, then we see that the rightmost factor is not divisible by 5, so:
5127 + 3° but 5% J2P 4 3P
= 2P + 3” cannot be a" where a € Z,n € Z,n > 1.
When p = 5,
2°+3° = 324243

= 275
= 52 x 11! -also #a™.

111---1 =
—
k ones
When p = 3: 111,111111, 111111111, ... (where the number of digits is divisible by
three) are numbers that are divisible by three.
If p > 5: It suffices to show that infinitely many integers of the form 10* — 1 where
k € Z* are divisible by p since 9 is not divisible by p.
10°=Y = (10P"H*  (mod p)

1“=1 (mod p) by FLT since p > 5 = gcd(10,p) =1
so 10P"Y —1 = 0 (modp) foranyac Z".

Dividing by 9, this gives us infinitely many numbers of the form 11---1 which are
divisible by the prime p.
(4) (m,n) = (1,1) is one obvious solution to

3 1=2"

It is the only solution for which n = 1.
Now suppose n > 2.

3"—1=(—1)"—=1 (mod 4)

Therefore if (m, n) is a solution with n > 2 so that 4|2", then 4 must divide 3" —1 = 2"
and the equation above indicates m must be even. This allows us to factor:

(3m/2 4 1)(3m% — 1) = 2",

Thus:
a) (3™2+1) and (3™/2 — 1) are both powers of 2
b) (3™/2 4 1) — (3™?2 —1) =2
What powers of 2 have difference 2?7 Only 4, 2. So we must have 3™/2+1 = 4, 3"/2 —
1=21ie m=2.
Therefore (m,n) = (2,2) is the only solution for which n > 2.

When n < 0 it is easy to see there are no solutions in this case.
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k

p
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It suffices to show n must be a power of p in the case where p fa,b. Write n = p"m
where p fm.

pk — an T bn — (apr)m i (pr)m
n is odd = m is odd. Therefore we can factor:
= a" 40" = ()" + (")
= (a” +07) ((@)" 7 = ()P0 4 (@) = ()T ()

Factoring again,

pk = "+ = (a_i_b)(anfl _aanb_ _'_bnfl)
=a+b = 0 (modp) sincea+b>1
=b = —a modp

Substituting b = —a mod p into the righthand factor of (x):
R.S. (@)™t = (@)™ 20" + (@ )" 2 (0" ) — -+ (B)™)  (mod p)
= (@ )" '+ @)+ + (@)™ (mod p)
= m(a®)™' (mod p)
#Z 0 (mod p)

Therefore in order for the whole product to be a power of p, this factor above must
equal 1. The only way this is possible is if m = 1. Thus, we see that n = p" xm = p".
We see that this is true for p = 2. Thus we assume p > 2.

Suppose ¢ is a prime divisor of 27 — 1. Then

2’ =1 (mod q).
Let d be the smallest positive integer such that
29=1 (mod q).

Then if 2* =1 mod g, then d|a.
(This is true since if d does not divide a, then a = ¢d + r where 1 < r < d — 1-think
of r as the remainder when you divide a by d. Then

1=2=2“.2"=2" (mod¢q)=2"=1 (mod q)

but r < d and d was supposed to be the smallest such integer—contradiction.)

Thus d|p. Observe that d # 1, and so d = p.

Now by Fermat’s Little Theorem, 277! = 1 (mod q), so d = p divides ¢ — 1. This
implies that p < ¢ —1, so ¢ > p.

A consequence of this result is the fact that there are infinitely many prime numbers.
This was known by the mathematicians of ancient Greece.

n=1: 1,2 work

n=2: 512 works

Assume by induction that we've found k such that the last N digits of 2¥ are 1s and
2s. Let’s construct another number whose last N + 1 digits are 1s and 2s from this
number. We can also assume by induction that k£ > N.

2k = q10N + b
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where b is an N-digit number consisting of 1s and 2s.
Let 7 := ¢(5") =5V — 58"t =4.5N"1,
(Note: the Euler phi function counts the number of integers between 1 and 5V with
ged 1 with 5V.)
By Euler-Fermat’s Theorem,
2"=1 (mod 5).

Now 2k, 2kt ok+2r  9k+47 a]] have b as last IV digits: in order to show this, we only
need to show that they are congruent modulo 2V and 5" so that they are congruent
modulo 107,
Congruent mod 2V: k > N and so 2%, 287 . 24 are all = 0 mod 2V
Congruent mod 5V: 2" =1 (mod 5V) so 2¥" =2k .1 = 2% (mod 5V) etc.

Claim: N + 1% digits different for above five numbers.
Proof: If two are the same, then 28+ = 284" (mod 5N*1) where ¢ > d

then Ftdr e (279" —1) = 0 (mod 5V )
—~ NS/
no factors of 5 (2" —1) X (2 4 (20 1)
N—— N ~ ',
572" — 1 (FLT) =1+1+---+1=c—d (mod5)

but 5V f2r —1

by induction

Thus 2k+07' = 2k+d7‘ (mod 5N+1)
=c¢ = d (mod?5)
Thus 2%, 2k+7 . 2F+4" Jeave different residues modulo 57! and so their N + 1%

digits are distinct.
Now the five numbers are divisible by 2¢ > 2V

= the N + 1* digits are : 0,2,4,6,8
or 1,3,5,7,9
in some order.

= one of the numbers 2¥*¢" only has 1s and 2s as its last N+1 digits. If k+cr < N+1,
we can repeat the above process until we get some k +cr > N + 1.



