FERMAT'S LITTLE THEOREM AND CHINESE REMAINDER THEOREM SOLUTIONS

(1)

a divides b: a|ba does not divide b: $a \not\mid b$ $f(n) \equiv 5n + 9an \pmod{13}$ $\equiv (5 + 9a)n \pmod{13}$ $\equiv 0 \pmod{13} \text{ for any } n \text{ and therefore}$ $5 + 9a \equiv 0 \pmod{13}$ $9a \equiv 8 \pmod{13}$ $-4a \equiv 8 \pmod{13}$ $a \equiv -2 \equiv 11 \pmod{13}$ $f(n) \equiv 13n + 9an \pmod{5}$ $\equiv (3 + 4a)n \pmod{5}$ $4a \equiv 2 \pmod{5}$

 $a \equiv 3 \pmod{5}$

If $a \equiv 11 \pmod{13}$, $a \equiv 3 \pmod{5}$, what is $a \equiv ? \pmod{65}$? $a \equiv 33 \pmod{65}$ $a \equiv 33 \pmod{65}$ $a \equiv 33 \pmod{65}$

(2) If p = 2:

$$2^2 + 3^2 = 13^3$$

which cannot be of the form a^n where n > 1. Otherwise, if p is odd:

$$2^{p} + 3^{p} = \underbrace{(2+3)}_{5} (2^{p-1} - 2^{p-2} \times 3^{1} + 2^{p-3} \times 3^{2} + \dots + 3^{p-1})$$

Rightmost factor
$$\equiv 2^{p-1} - 2^{p-2} \times 3^1 + 2^{p-3} \times 3^2 + \dots + 3^{p-1} \pmod{5}$$

 $\equiv 2^{p-1} + 2^{p-1} + 2^{p-1} + \dots + 2^{p-1} \pmod{5}$
 $\equiv p \cdot 2^{p-1} \pmod{5}$

If $p \neq 5$, then we see that the rightmost factor is not divisible by 5, so:

 $5|2^p + 3^p$ but $5^2 \not| 2^p + 3^p$

 $\Rightarrow 2^p + 3^p$ cannot be a^n where $a \in \mathbb{Z}, n \in \mathbb{Z}, n > 1$.

When p = 5,

$$2^5 + 3^5 = 32 + 243$$

= 275
= $5^2 \times 11^1$ -also $\neq a^n$.

(3)

$$\underbrace{111\cdots 1}_{k \text{ ones}} = \frac{10^k - 1}{9}$$

When p = 3: 111, 111111, 11111111, ... (where the number of digits is divisible by three) are numbers that are divisible by three.

If p > 5: It suffices to show that infinitely many integers of the form $10^k - 1$ where $k \in \mathbb{Z}^+$ are divisible by p since 9 is not divisible by p.

$$10^{a(p-1)} \equiv (10^{p-1})^a \pmod{p}$$

$$\equiv 1^a \equiv 1 \pmod{p} \text{ by FLT since } p > 5 \Rightarrow gcd(10, p) = 1$$

so $10^{a(p-1)} - 1 \equiv 0 \pmod{p}$ for any $a \in \mathbb{Z}^+$.

Dividing by 9, this gives us infinitely many numbers of the form $11 \cdots 1$ which are divisible by the prime p.

(4) (m, n) = (1, 1) is one obvious solution to

$$3^m - 1 = 2^n.$$

It is the only solution for which n = 1. Now suppose $n \ge 2$.

$$3^m - 1 \equiv (-1)^m - 1 \pmod{4}$$

Therefore if (m, n) is a solution with $n \ge 2$ so that $4|2^n$, then 4 must divide $3^m - 1 = 2^n$ and the equation above indicates m must be even. This allows us to factor:

$$(3^{m/2} + 1)(3^{m/2} - 1) = 2^n$$

Thus:

a) $(3^{m/2}+1)$ and $(3^{m/2}-1)$ are both powers of 2

b) $(3^{m/2} + 1) - (3^{m/2} - 1) = 2$

What powers of 2 have difference 2? Only 4, 2. So we must have $3^{m/2} + 1 = 4$, $3^{m/2} - 1 = 2$, i.e. m = 2.

Therefore (m, n) = (2, 2) is the only solution for which $n \ge 2$.

When $n \leq 0$ it is easy to see there are no solutions in this case.

(5) It suffices to show n must be a power of p in the case where $p \not| a, b$. Write $n = p^r m$ where $p \not\mid m$.

$$p^{k} = a^{n} + b^{n} = (a^{p^{r}})^{m} + (b^{p^{r}})^{m}$$

 $n \text{ is odd} \Rightarrow m \text{ is odd}$. Therefore we can factor:

$$p^{k} = a^{n} + b^{n} = (a^{p^{r}})^{m} + (b^{p^{r}})^{m}$$

= $(a^{p^{r}} + b^{p^{r}}) ((a^{p^{r}})^{m-1} - (a^{p^{r}})^{m-2}b^{p^{r}} + (a^{p^{r}})^{m-3}(b^{p^{r}})^{2} - \dots + (b^{p^{r}})^{m-1})$ (*)
Factoring again.

actoring again,

$$p^{k} = a^{n} + b^{n} = (a+b)(a^{n-1} - a^{n-2}b - \dots + b^{n-1})$$

$$\Rightarrow a+b \equiv 0 \pmod{p} \text{ since } a+b > 1$$

$$\Rightarrow b \equiv -a \mod{p}$$

Substituting
$$b \equiv -a \mod p$$
 into the righthand factor of (*):
 $R.S. \equiv ((a^{p^r})^{m-1} - (a^{p^r})^{m-2}b^{p^r} + (a^{p^r})^{m-3}(b^{p^r})^2 - \dots + (b^{p^r})^{m-1}) \pmod{p}$
 $\equiv (a^{p^r})^{m-1} + (a^{p^r})^{m-1} + \dots + (a^{p^r})^{m-1} \pmod{p}$
 $\equiv m(a^{p^r})^{m-1} \pmod{p}$
 $\not\equiv 0 \pmod{p}$

Therefore in order for the whole product to be a power of p, this factor above must equal 1. The only way this is possible is if m = 1. Thus, we see that $n = p^r \times m = p^r$.

8) We see that this is true for p = 2. Thus we assume p > 2. Suppose q is a prime divisor of $2^p - 1$. Then

$$2^p \equiv 1 \pmod{q}.$$

Let d be the smallest positive integer such that

$$2^d \equiv 1 \pmod{q}.$$

Then if $2^a \equiv 1 \mod q$, then d|a.

(This is true since if d does not divide a, then a = cd + r where $1 \le r \le d - 1$ -think of r as the remainder when you divide a by d. Then

$$1 \equiv 2^a \equiv 2^{cd} \cdot 2^r \equiv 2^r \pmod{q} \Rightarrow 2^r \equiv 1 \pmod{q}$$

but r < d and d was supposed to be the smallest such integer-contradiction.)

Thus d|p. Observe that $d \neq 1$, and so d = p.

Now by Fermat's Little Theorem, $2^{q-1} \equiv 1 \pmod{q}$, so d = p divides q - 1. This implies that $p \leq q - 1$, so q > p.

A consequence of this result is the fact that there are infinitely many prime numbers. This was known by the mathematicians of ancient Greece.

9) n = 1: 1, 2 work

> n = 2: 512 works

Assume by induction that we've found k such that the last N digits of 2^k are 1s and 2s. Let's construct another number whose last N + 1 digits are 1s and 2s from this number. We can also assume by induction that k > N.

$$2^k = a10^N + b$$

where b is an N-digit number consisting of 1s and 2s.

Let
$$r := \phi(5^N) = 5^N - 5^{N-1} = 4 \cdot 5^{N-1}$$
.

(Note: the Euler phi function counts the number of integers between 1 and 5^N with gcd 1 with 5^N .)

By Euler-Fermat's Theorem,

$$2^r \equiv 1 \pmod{5^N}.$$

Now $2^k, 2^{k+r}, 2^{k+2r}, \ldots, 2^{k+4r}$ all have b as last N digits: in order to show this, we only need to show that they are congruent modulo 2^N and 5^N so that they are congruent modulo 10^N .

Congruent mod 2^N : k > N and so $2^k, 2^{k+r}, \ldots, 2^{k+4r}$ are all $\equiv 0 \mod 2^N$ Congruent mod 5^N : $2^r \equiv 1 \pmod{5^N}$ so $2^{k+r} \equiv 2^k \cdot 1 \equiv 2^k \pmod{5^N}$ etc. Claim: $N + 1^{\text{st}}$ digits different for above five numbers.

Proof: If two are the same, then $2^{k+cr} \equiv 2^{k+dr} \pmod{5^{N+1}}$ where c > d

then
$$2^{k+dr} \times (2^{(c-d)r} - 1) \equiv 0 \pmod{5^{N+1}}$$

no factors of 5 $(2^r - 1) \times (2^r)^{c-d-1} + (2^r)^{c-d-2} + \dots + 1)$
 $5^N | 2^r - 1 \text{ (FLT)}$
but $5^{N+1} \not/ 2^r - 1$
by induction $\equiv 1 + 1 + \dots + 1 \equiv c - d \pmod{5}$

Thus
$$2^{k+cr} \equiv 2^{k+dr} \pmod{5^{N+1}}$$

 $\Rightarrow c \equiv d \pmod{5}$

Thus $2^k, 2^{k+r}, \ldots, 2^{k+4r}$ leave different residues modulo 5^{N+1} and so their $N + 1^{\text{st}}$ digits are distinct.

Now the five numbers are divisible by $2^k > 2^N$

⇒ the
$$N + 1^{st}$$
 digits are : 0, 2, 4, 6, 8
or 1, 3, 5, 7, 9

in some order.

 \Rightarrow one of the numbers 2^{k+cr} only has 1s and 2s as its last N+1 digits. If $k+cr \leq N+1$, we can repeat the above process until we get some k + cr > N + 1.