Back to Weyl's Theorem:

Prove: For any submodule $W \subseteq V$ if a split exact sequence $0 \to W \to V \to W' \to 0$.

First: Enough consider W of codimension 1, i.e. $\dim V/W = 1$.

$0 \to W \to V \to \frac{V}{W} \to 0$ is exact.

L is semi-simple, so this must be trivial module by Lemma 1.

Why? Consider L-module $\text{Hom}_L(V, W)$

L-submodules

$U := \{ f \in \text{Hom}_L(V, W) \mid f|_W = 0 \} \subseteq \text{Hom}_L(V, W)$.

For $x \in L$, $w \in W$, $f \in U$:

$(x \cdot f)(w) = x \cdot (f(w)) = f(x \cdot w) = x \cdot (f(w)) = 0$.

so $L \cdot U \subseteq U$ so certainly U and W are L-modules.

$\dim \frac{U}{W} = 1$ since f maps to $0 \in \frac{W}{W}$.

If $0 \to W \to V \to \frac{V}{W} \to 0$ splits then

Let $f \in U = \text{Hom}_L(V, W)$ such that $\text{Span} \{ f \} = W'$. Can assume we chose f so that $f|_W = 1 \cdot \text{Id}$

know that $L \cdot f = 0$, so $f \in \text{Hom}_L(V, W) = \text{Hom}_L(V|_W)$.

$0 \to W \to V \to \frac{V}{W} \to 0$

So $c = \text{Id}$ so this splits.

So can assume $\text{codim} W = 1$.

Show: can assume W irreducible:

induction on $\dim W$.
W not imed. \implies W'

\[0 \to W \xrightarrow{w'} V \xrightarrow{v} \mathfrak{l} \to 0 \quad \text{splits by induction} \]

\[\text{dim } W'/W' < \text{dim } W \]

then \(W'/W' \) contains one-dim lile \(V'/W' \) = complement of \(W'/W' \)

\[0 \to W' \xrightarrow{v'} V' \xrightarrow{v} \mathfrak{l} \to 0 \quad \text{splits by induction} \]

\[\text{dim } W' < \text{dim } W \]

so \(V' \) contains L-invariant line

\[V' \leq V \] so \(V \) contains L-invariant line

so

\[0 \to W \xrightarrow{w} V \xrightarrow{v} \mathfrak{l} \to 0 \quad \text{splits} \]

New topic: \(\mathfrak{sl}_2 (\mathfrak{k}) \)

A fundamental object in rep theory

First: more on constructing representations.

Last week: tensor product \(V_1 \otimes V_2 \)

2nd symmetric power: consider \(V \otimes V \).

\[\text{Sym}^2 V = S^2 V = \frac{V \otimes V}{\sim} \]

where \(V \otimes V \sim w \otimes v \).

\(\{ \mathfrak{v}_1, \ldots, \mathfrak{v}_3 \} \) basis for \(V \). Then basis for \(S^2 V \):

\[\mathfrak{v}_i \cdot \mathfrak{v}_j \quad i \leq j \]

use \(\otimes \) in place of \(\otimes \) for elements of \(S^2 V \).

Has module structure arising from module structure on \(V \otimes V \).

Could write \(S^2 V = V \otimes V / I \) instead.
I is subspace generated by \(\{ v \otimes w - w \otimes v \} \)

\[
X(v \otimes w - w \otimes v) = (X \cdot v) \otimes w + v \otimes (X \cdot w) - (X \cdot w) \otimes v - w \otimes (X \cdot v)
\]

So I closed under \(L \)-action.

I is a submodule of \(V \otimes V \) in \(V \otimes V \) with \(L \)-module.

2nd exterior power: (alternating power)

\[
\Lambda^2 V = \Lambda^2 V = \overline{V \otimes V}
\]

where \(v \otimes v = 0 \)

\[
\Rightarrow v \otimes w \sim -w \otimes v \quad \text{if char } k \neq 2
\]

\(\{ v_1, \ldots, v_n \} \) basis for \(V \). Then basis for \(\Lambda^2 V \):

\[
v_i \wedge v_j \quad i < j
\]

Use \(\wedge \) in place of \(\otimes \) for elements of \(\Lambda^2 V \).

Again, has \(L \)-module structure from \(L \)-module structure on \(V \otimes V \):

\[
X \cdot (v_i \wedge v_j) = (X \cdot v_i) \wedge v_j + v_i \wedge (X \cdot v_j)
\]

HW. Exercise: Show \(V \otimes V \cong S^2 V \oplus \Lambda^2 V \).

Tensor powers:

\[
V^{\otimes 2} = V \otimes V
\]

\[
V^{\otimes 3} = V \otimes V \otimes V
\]

\[
V^{\otimes n} \quad n^{th} \text{ tensor power}
\]

Can generalize \(S^2 V \) to \(S^n V \):

\[
S^n V = \frac{V^{\otimes n}}{\sim}
\]

where \(v_1 \otimes \cdots \otimes v_i \otimes \cdots \otimes v_{i-1} \otimes v_i \otimes v_{i+1} \otimes \cdots \otimes v_n \sim v_{i+1} \otimes \cdots \otimes v_i \otimes \cdots \otimes v_{i-1} \otimes v_i \otimes v_{i+1} \otimes \cdots \otimes v_n \).
\[V_1 \otimes \cdots \otimes V_n \cong V_{\sigma(1)} \otimes \cdots \otimes V_{\sigma(n)} \]

for every permutation \(\sigma \in S_n \) of \(\{1, \ldots, n\} \).

Similarly, generalize \(\Lambda^2 V \):

\[\Lambda^n V = V^{\otimes n} / \sim \]

where

\[V_1 \otimes \cdots \otimes V_i \otimes V_{i+1} \otimes \cdots \otimes V_n \cong V_1 \otimes \cdots \otimes V_{i+1} \otimes V_i \otimes \cdots \otimes V_n \]

Swap \(V_i, V_{i+1} \).

(Recall: \(\det(\sigma) = \pm 1 \)) so have group homomorphism from \(S_n \to \mathbb{Z}_2 \) (cyclic group of order 2)

\[\Sigma(\sigma) = \text{Sgn}(\sigma) \]

\[\Sigma(\sigma) = \text{Cycl}(\sigma) \]

\[\Sigma(\sigma) = (-1)^{d(\sigma)} \]

\[d(\sigma) = \text{min. # of permutations of the form } (i \ i+1) \text{ required to write } \sigma = \text{product of these} \]

\[\text{Now, } \mathfrak{s}l_2(\mathbb{C}) \text{ Take & alg. closed, characteristic } 0 \]

we will use \(\mathbb{C} = \mathbb{C} \) in our discussion.

\[\mathfrak{s}l_2(\mathbb{C}) : \text{ basis } H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \]

Sometimes \(E \), sometimes \(F \)

\[[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H. \]

Consider an irreducible representation \(V \) of \(\mathfrak{s}l_2(\mathbb{C}) \).

Lie's Theorem applied to \(\text{Span} \{H^k\} = \mathbb{C} v \) \(v \in V \) an eigenvalue of \(H \) (really \(\alpha(H) \) say) but we'll leave about \(\alpha \)'s.

i.e.

\[H \cdot v = \alpha v \]

We call \(v \) a vector of weight \(\alpha \).
\[HXV = XHV + 2Xv = 2Xv + 2Xv = (\lambda + 2)Xv \]

\(Xv \) is a vector of weight \(\lambda + 2 \)

\[HYV = YHV - 2Yv = 2Yv - 2Yv = (\lambda - 2)Yv \]

\(Yv \) is a vector of weight \(\lambda - 2 \)

\(V \) is finitely dimed so can only have finitely many weights (eigenvectors)

So there is some \(k \) so that \(X^{k-1}v \neq 0 \) but \(X^k v = 0 \).
So if some non-zero weight vector \(v \) s.t. \(XV = 0 \).
\(v \) is called a singular vector.

From this \(V \), from the vector space generated by
\[V, \; YV, \; Y^2V, \ldots \]

Lemma: \(\langle V, \; YV, \; Y^2V, \ldots \rangle \) is an \(\mathbb{K}_2 \) submodule of \(V \).

\(hV = 2v \) for some \(2 \) since \(v \) is a weight vector

\[hY^k v = (\lambda - 2k)Y^k v \]

\(h \)-invariant \(\checkmark \)

\(Y \)-invariant: clear.

\(X \)-invariant: induction

Can show \(XY^k v = C_k Y^{k-1} v \) by induction on \(k \).

\(k = 1 \):
\[XYv = YXv + Hv = 0 + 2v - 2v \]

\(v \) is singular.

General \(k \):
\[XY^k v = YXY^{k-1} v + HY^{k-1} v \]
\[= YC_{k-1} Y^{k-2} v + (\lambda - 2(k-1))Y^{k-1} v \]
\[= C_k Y^{k-1} v \]

\(C_k = C_{k-1} + \lambda - 2(k-1) = k (\lambda - k + 1) \).

So \(\langle v, \; Yv, \; Y^2v, \ldots \rangle \)

For some \(m \), \(Y^m v \neq 0 \) but \(Y^{m+1} v = 0 \).

Basis for \(V \):
\[V, \; Yv, \; Y^2v, \ldots, \; Y^m v \]

different weights

\[\dim V = m + 1 \].
Last class: saw irreducible finite dim'l reps. of the form
\[x^r A x^s B y \]
\[x^r x^s y \]
\[x^r y \]

\[H_v = \lambda_v \]
\[H Y^k v = (\lambda - 2k) Y^k v \]
\[X_v = 0 \]

Theorem: For any \(m \in \mathbb{Z}^+ \), there exists a unique irreducible \(\mathfrak{sl}_2 \) rep. \(V(m) \) of dimension \(m+1 \).

Proof:
- \(m = 1 \):
 \[V(1) = \mathbb{C}^2 \]
 canonical rep. of \(\mathfrak{sl}_2 (\mathbb{C}) \)
- General \(m \):
 \[V(m) = S^m V(1) \]

Basis of \(S^m V(1) \):
\[v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]
\[j \text{ times} \]
\[m-j \text{ times} \]

\[\dim S^m V(1) = m+1 \]

Just need to show irreducibility.

\[\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]
\[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

\[Y_{(w \circ v \circ w)} v_1 = v_2, \quad Y v_2 = 0 \]

\[Y_{(w \circ v \circ w)} \begin{pmatrix} 1 \\ j+1 \\ \vdots \end{pmatrix} = \begin{pmatrix} W_1 \\ Y v_1 \\ \vdots \end{pmatrix} \]

\[Y_{(w \circ v \circ w)} \begin{pmatrix} 1 \\ j+1 \\ \vdots \end{pmatrix} = \begin{pmatrix} W_1 \\ Y v_1 \\ \vdots \end{pmatrix} + \begin{pmatrix} 1 \\ j+1 \\ \vdots \end{pmatrix} + \begin{pmatrix} 1 \\ j+1 \\ \vdots \end{pmatrix} + \cdots \]

etc.
Apply Y to v_i^m repeatedly. Get all basis vectors
along with $x_i (v_i^j, v_2^{(m-j)}) = (m-j) v_i^j, v_2^{(m-j)}$

\[
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]

$H \cdot v_1 = v_1$
$H \cdot v_2 = -v_2$

So $H \cdot (v_i^j, v_2^{(m-j)}) = j v_i^j, v_2^{(m-j)} - (m-j) v_i^j, v_2^{(m-j)}$

\[= (2j - m) v_i^j, v_2^{(m-j)}\]

Weights: $m, m-2, m-4, \ldots, -m$

Singular vector: $v = v_i^m$
$\lambda = m$

We have shown existence.

Uniqueness: Need to show that λ in diagram on first page is always $\lambda = m$.

Last class:

$XY^k v = \kappa (\lambda-k+1) Y^{k-1} v$

Applying repeatedly:

$XY^k v = \kappa (\lambda-k+1) (\lambda-k+2) Y^{k-2} v$

$XY^k v = \kappa ! \lambda (\lambda-1) (\lambda-2) \cdots (\lambda-k+1) v$

Now if $\kappa = m+1$, then $Y^{m+1} v = 0$.

So $\kappa (\lambda-1) (\lambda-2) \cdots (\lambda-m) = 0$.

Each $XY^k v$ for $k = 1, \ldots, m$ is non-zero.

Or else you would $Y^k v$

in a singular vector

which generates subrep:

$\left< Y^k v, Y^{k+1} v, \ldots \right>$

So $\lambda, \lambda-1, \ldots, \lambda-m+1$ are non-zero. (See *)

Forces $\lambda = m$ in (*)