Theorem: Let Δ be a base of Φ.

a) $\gamma \in E$ regular $\implies \exists w \in W$ s.t. $w(\gamma) \succ 0 \quad \forall \alpha \in \Delta$ (W acts transitively on Weyl chambers)

b) Δ' another base $\implies \exists w \in W : w(\Delta') = \Delta$

c) $\alpha \in \Delta = \exists w \in W : w(\alpha) \subset \Delta$

d) W is generated by simple reflections

e) $w(\Delta) = \Delta \implies w = 1$ (W acts simply transitively on Weyl chambers)

Proof: Let $W' \subset W$ be the group generated by simple reflections.

a) Choose $w \in W'$ so that $(w(\gamma), \rho)$ is smallest possible. For $\alpha \in \Delta$:

$$ (s_\alpha w(\gamma), \rho) = (w(\gamma), s_\alpha \rho) = (w(\gamma), \rho - \alpha) $$

Will show on final exam:

$$ (s_\alpha, \rho) = (\gamma, \rho) $$

w is invariant under simple reflections.

$$ \implies (w(\gamma), \alpha) > 0 \quad \forall \alpha \in \Delta $$

γ regular $\implies (w(\gamma), \alpha) > 0 \quad \forall \alpha \in \Delta$.

b) This implies $w(\gamma)$ is a fundamental Weyl chamber for Δ. Then if $\Delta' = \Delta(w(\gamma))$, then

$\Delta = \Delta(w(\gamma))$, proving (b).

c) $H_\alpha = H_\beta \iff \beta = \pm \alpha$.

So pick α regular so that α is very close to H_α but far away from H_β. Do so in such a way that

$$ 0 < (\gamma, \alpha) < \varepsilon $$

but $| (\gamma, \beta) | > \varepsilon$ for some $\varepsilon > 0$.

\begin{center}
\includegraphics[width=0.5\textwidth]{diagram.png}
\end{center}
Then \(\alpha \in \Delta(\Phi) \) and you can choose \(w \) using (2).
\[
(\Phi, x) > 0 \implies \alpha \in \Phi^+(\Phi)
\]
\[
(\Phi, \beta) > (\Phi, \alpha) \quad \text{for any other } \beta \in \Phi^+(\Phi) \quad \beta \neq \alpha
\]
\[
\implies \alpha \text{ must be indecomposable } \implies \alpha \in \Delta(\Phi).
\]

d) \(W = \langle s_{\alpha} : \alpha \in \Phi \rangle \) so it suffices to show that every reflection \(s_{\alpha} \) \(\alpha \in \Phi \in W' \).

Given \(\alpha \in \Phi \), let \(w = W' \) so that \(w(\alpha) = \beta \in \Delta \setminus \{ \alpha \} \).

Then \(s_{\alpha w} = w s_{\alpha} w^{-1} \)
\[
= s_{\beta} \quad \text{so } \quad s_{\alpha} = w^{-1}s_{\beta}w \in W'.
\]

e) Choose \(w = s_{\alpha} \cdots s_{\alpha} \) so that \(t \) is minimal.

If \(t > 0 \), then the string is non-empty, then

\(W(\alpha_t) < 0 \) - contradiction.

So \(w = 1 \).

We've already seen that root systems have very restrictive properties:

- finite list of possible angles between two roots
- finite # of possible root length ratios.

Let's try to classify all root systems.

Defn. \(\Phi \) is **irreducible** if \(\Phi \) cannot be written as

a union of two root systems \(\Phi_1, \Phi_2 \), \(\Phi_1 \perp \Phi_2 \).

eg. \(A_1 \times A_1 \) is reducible, \(A_2 \) is irreducible.

Proposition. \(\Phi \) is irreducible \(\iff \Delta \) cannot be decomposed
\[
\Delta = \Delta_1 \cup \Delta_2
\]
\[
\Delta_1 \perp \Delta_2
\]

Proof: \(\iff \Delta_1 = \Phi_1 \cap \Delta \quad \Delta_2 = \Phi_2 \cap \Delta \).
\[\Rightarrow: \quad \Delta = \Delta_1 \cup \Delta_2. \]

Define \(\Delta_1 = \{ x \in \Delta \mid \exists w \in \Delta, \, w \cdot x \in \Delta \} \)
\[\Delta_2 = \{ x \in \Delta \mid \forall w \in \Delta, \, w \cdot x \in \Delta \}. \]

Claim: \(\Delta_1 \subset \text{Span} \Delta \).

Consider: \(s_x(\Delta) = \Delta - 2 (\Delta, x) x \).

\[\alpha \in \Delta_1 \Rightarrow s_x(\Delta_1) \subset \text{Span} \Delta_1. \]
\[\alpha \in \Delta_2 \Rightarrow s_x(\Delta_1) \subset \text{Span} \Delta_1 \quad \text{also since} \quad \Delta_2 \perp \Delta_1. \]

Insert into prev. page:

\[w = s_{i_1} s_{i_2} \ldots s_{i_t} \quad \text{product of simple reflections} \]

called reduced expression when \(t \) is minimal. Can then write \(l(w) = t \) for the length of \(w \) relative to \(\Delta \).

Another characterization of length:

\[n(w) = \# \{ \alpha \in \pm \Delta^+: \, w \cdot \alpha < 0 \}. \]

Proposition: \(l(w) = n(w) \)

E.g. For \(\alpha \) simple,
\[\{ \beta \in \pm \Delta^+: s_x \beta < 0 \} = \{ \pm s_x \}. \]
\[l(s_x) = 1 = n(s_x). \]

Proof of Proposition: Induction on \(l(w) \).

\[l(w) = 0, \quad 1 \quad \text{clear.} \]

Suppose the proposition holds for all \(v \) s.t. \(l(v) < l(w) \).

Let \(w = s_{i_1} \ldots s_{i_t} \) be a reduced expression for \(w \). Then
\[w \cdot \alpha < 0. \]

Now \(w \Delta^+ = s_{i_1} \ldots s_{i_t} \Delta^+ = s_{i_1} s_{i_t}(\Delta^+ \cap s_{i_1}^{-1} \Delta^+ \cup \Delta^+ \setminus s_{i_1}^{-1} \Delta^+) \]
\[= w s_{i_t} (\Delta^+ \cap s_{i_1}^{-1} \Delta^+ \cup \Delta^+ \setminus s_{i_1}^{-1} \Delta^+) \]
\[\text{and } s_{i_1} \ldots s_{i_{t-1}} \alpha > 0 \quad (\text{Corollary, from last class}) \]
\[n(w) = n(ws_{x_t}) + 1 \]

Now \(l(ws_{x_t}) = l(s_{x_t}) = t-1 \implies l(w) = t \)

So by induction, \(l(ws_{x_t}) - n(ws_{x_t}) = t-1 \).

Then \(\diamondsuit \) \(n(w) = t = l(w) \)

End insert

Lemma: If \(\Phi \) is irreducible:

1. \(E \) is any fixed subspace of \(N \)
2. \(w\)-orbit of any not \(\alpha \) spans \(E \)

Proof: Span \(w\alpha \) is a \(W \)-invariant subspace of \(E \) so (a) \(\implies \) (b).

To prove (a): let \(E' \subset E \) be a non-zero \(W \)-invariant subspace of \(E \), \(E'' \) - orthogonal complement.

For \(\beta \in E \), \(s_{\beta} = 1 \implies s_{\beta} E' = E' \)

and \(W \)-invariance of \(E' \)

\[\exists \beta \in E \text{ or } E' \subset H_0 \implies \beta \in E'' \]

\[E = E' \oplus E'' \text{ - decomposed.} \]

partitions \(E \) into two \(\perp \) subspaces

\(\Phi \)-irred. \(E' \neq 0 \implies E'' = 0 \).

\[\implies E' = E. \]

Lemma: If \(\Phi \) is irreducible, then at most 3

- \(W \)-orbits of root lengths occur in \(\Phi \) and
- all roots of a given length are conjugate under \(W \).

Proof: \(\forall \alpha, \beta \in \Phi \). Not all \(Wx \perp \beta \) since the \(Wx \) span \(E \) by prev. lemma. So assume \((\alpha, \beta) \neq 0 \).

Possible squares of root length ratios are \(1, 2, 3, 4, 1/2, 1/3 \).

If there were 3 or more root lengths, get ratios \(6, 3, 2, 3/2, 2/3, \text{ or } 1 \)

- contradiction.

If \(\Phi \) is irreducible with two distinct root lengths, roots are
called *short roots* or *long roots*

\[\Delta \rightarrow \text{Dynkin diagram} \]

\[\Delta = \{ \alpha_1, \ldots, \alpha_n \} \]

\(n \) vertices labelled 1, \ldots, \(n \)

\(i \text{th} \) and \(j \text{th} \) vertices joined by

\(\langle \alpha_i, \alpha_j \rangle \langle \alpha_j, \alpha_i \rangle \) edges

\[
\frac{\langle \alpha_i, \alpha_j \rangle}{\| \alpha_i \|^2 \| \alpha_j \|^2} = 0, 1, 2, 3
\]

Need more info. to determine which of \(\alpha_1, \alpha_2 \) is long, which \(\alpha_1, \alpha_2 \) is short

Add arrow pointing to shorter root on double and triple edges

Theorem: If \(\Phi \) is an irreducible root system of rank \(n \), (i.e. \(|\Delta| = n \)) then its Dynkin diagram is one of the following:

- \(A_n \):
 \[
 \begin{array}{ccccccc}
 0 & - & - & - & - & - & 0 \\
 1 & 2 & \cdots & n
 \end{array}
 \]

- \(B_n \):
 \[
 \begin{array}{ccccccc}
 0 & - & - & - & - & - & 0 \\
 1 & 2 & \cdots & n-2 & n-1 & n
 \end{array}
 \]
Type A_n, B_n, C_n, D_n are infinite families of classical root systems.

E_6:

```
  0  1  2  3  4  5  6
```

E_7:

```
  0  1  2  3  4  5  6  7
```

E_8:

```
  0  1  2  3  4  5  6  7  8
```

F_4:

```
  0  1  2  3  4
```

G_2:

```
  0  1  2
```

Next class: Finite dim'l reps of semi-simple Lie algebras.