Recall:

\[L = H \oplus \bigoplus_{\alpha \in \Phi} L_{\alpha} \]

\[\Phi = \text{root system of } (L, H) \Rightarrow \text{abstract root system } \Phi \]

\[\alpha \in \Phi \quad \Rightarrow \quad S_{\alpha}(\beta) = \beta - \frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha \]

Reflection through hyperplane \(\perp \alpha \).

\[\alpha, \beta \in \Phi \quad \Rightarrow \quad S_{\alpha}(\beta) \in \Phi \]

Reflections \(S_{\alpha} \) of \(\Phi \) preserved.

\[\{ S_{\alpha} \}_{\alpha \in \Phi} \] generate a group called the Weyl group \(W \).

<table>
<thead>
<tr>
<th>(\langle \alpha, \beta \rangle)</th>
<th>(\langle \beta, \alpha \rangle)</th>
<th>(\frac{\pi}{2})</th>
<th>(\frac{\pi}{3})</th>
<th>(\frac{2\pi}{3})</th>
<th>(\frac{\pi}{4})</th>
<th>(\frac{3\pi}{4})</th>
<th>(\frac{\pi}{6})</th>
<th>(\frac{5\pi}{6})</th>
<th>(\frac{|\beta|^2}{|\alpha|^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>\frac{\pi}{2}</td>
<td>?</td>
<td>1</td>
<td>1.</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>\frac{2\pi}{3}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>\frac{\pi}{4}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>\frac{3\pi}{4}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>-1</td>
<td>3</td>
<td>\frac{\pi}{6}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>-1</td>
<td>-3</td>
<td>\frac{5\pi}{6}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Corollary: Let \(\alpha, \beta \) be nonproportional roots i.e. \(\beta \neq \alpha \).

1. If \(\langle \alpha, \beta \rangle > 0 \) then \(\alpha - \beta \) is a root.
2. If \(\langle \alpha, \beta \rangle < 0 \) then \(\alpha + \beta \) is a root. (Follows from 1)

Proof of 1: Either \(\langle \alpha, \beta \rangle = 1 \) or \(\langle \beta, \alpha \rangle = 1 \) from table.

\[S_{\alpha}(\beta) = \beta - \langle \beta, \alpha \rangle \alpha = \beta - \alpha \in \Phi \]

\[S_{\alpha}(\alpha) = \alpha - \langle \alpha, \beta \rangle \beta = \alpha - \beta \in \Phi \]
Properties:
- W is finite
- $(c_1, c_2) = 0 \Rightarrow s_{c_1}s_{c_2} = s_{c_2}s_{c_1}$
- $w_s w^{-1} = s_w$

Elements of W:
- e, s_1, s_2, s_3
- $s_1^2 = e, s_2^2 = e$
- $s_3^2 = e$

$s_2 s_1 = \text{rotate by } \frac{2\pi}{3}$
- clockwise

$s_1 s_2 = \text{rotate by } \frac{2\pi}{3}$
- counter-clockwise

$(s_2 s_1)^{-1}$

It is its own inverse.

Can see $s_1 s_2 s_1 = s_2 s_1 s_2 \Rightarrow \alpha_1 \mapsto -\alpha_2$
- $\alpha_2 \mapsto -\alpha_1$

Note: this is the same as refl. s_3 through remaining rot hyperplane. See lines of this page.

From A_2: $s_1 s_2 s_1 s_2 s_1 s_2 = e$

Strings in $s_1 s_2$ of length ≥ 4 can be rewritten to have length ≤ 3.

$W = \{ e, s_1, s_2, s_1 s_2, s_2 s_1, s_1 s_2 s_1 s_2 \}$

A concrete realization of this:

$E = \text{Span}\{e_1 - e_2, e_2 - e_3\} \subset \mathbb{R}^3$

$
\begin{bmatrix}
1 & 1 \\
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
\xi_1 \\
\xi_2 \\
\xi_3
\end{bmatrix}
= e_2 - e_1$

$E_i(h_i, h_2) = h_3$

$\alpha_1 = e_1 - e_2$

$\alpha_2 = e_2 - e_3$

$\alpha_3 = e_1 - e_3$

Thick of root system associated to α_3 $\Rightarrow e_1 - e_3$

$E_{ij} = e_i - e_j$

See picture on next page
$S_1 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$

$S_1 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} - 2 \left(\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$

$S_1 \begin{pmatrix} e_1 - e_2 \end{pmatrix} = e_2 - e_1$

$S_2 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - 2 \left(\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

$S_2 \begin{pmatrix} e_2 - e_3 \end{pmatrix} = e_1 - e_3$

$S_2 \begin{pmatrix} e_2 - e_3 \end{pmatrix} = e_2 - e_3$

$S_2 \begin{pmatrix} e_2 - e_3 \end{pmatrix} = e_3 - e_2$

S_1: Swap indices 1, 2.

S_2: Swap indices 2, 3.

S_1, S_2: generate group of permutations of $\{1, 2, 3\} = S_3$

$S_1 \leftarrow (12)$

$S_2 \leftarrow (23)$

Hexagon
Note: \(W = \langle s_1, s_2 : s_1^2 = s_2^2 = 1, (s_1 s_2 s_1)^2 = (s_2 s_1 s_2)^2 = 1 \rangle \)

Related to idea of a base:

Def'n: \(\Delta \subset \Phi \) is a base if

\(\beta_1 \) \(\Delta \) is a basis of \(E \)

\(\beta_2 \) \(\forall \beta \in \Phi, \beta = \sum_{\alpha \in \Delta} c_{\alpha} \alpha \)

Either: all \(c_{\alpha} \geq 0 \)

or all \(c_{\alpha} \leq 0 \).

eg. \(\alpha_2 \)

\(-\alpha_1 \)

\(-\alpha_3 \)

\(\alpha_3 = \alpha_1 + \alpha_2 \)

\(\Delta = \{ \alpha_1, \alpha_2 \} \) is a base.

\(\alpha_3 = \alpha_1 + \alpha_2 \).

Bases are not unique.

eg. \(\alpha_2 \)

\(\alpha_1 \)

\(-\alpha_1 \)

\(-\alpha_2 \)

\(-\alpha_3 \)

\(\alpha_3 = \alpha_1 + \alpha_2 \)

\(\Delta = \{ \alpha_1, \alpha_2, \alpha_3 \} \) is a base.

\(\alpha_3 = \alpha_1 + \alpha_2 \).

\(\gamma \in E \) in regular if \((\gamma, \alpha) \neq 0 \) \(\forall \alpha \in \Phi \)

eg.

\(\Delta \) anywhere but hyperplanes

\(= \) regular elements

\(E \setminus \bigcup_{\alpha} H_\alpha = \) regular elements

\(H_\alpha = \{ x \in E : (x, \alpha) = 0 \} \)

Connected components are called Weyl chambers.
If γ regular, then either $(\gamma, x) > 0$ or $(\gamma, x) < 0$.

$\Phi = \Phi_+(x) \cup \Phi_-(x)$

$\Phi_+(x) = \{ x \in \Phi : (x, x) > 0 \}$

$\Phi_-(x) = \{ x \in \Phi : (x, x) < 0 \}$

$\alpha \in \Phi_+(x)$ then $-\alpha \in \Phi_-(x)$.

$\Delta(x) =$ set of indecomposable roots in $\Phi_+(x)$

cannot be expressed as sum of two roots of $\Phi_+(x)$.

Theorem: $\Delta(x)$ is a base and any base is

of this form.

Proof: In steps.

1) Every $\alpha \in \Phi^+(x)$ is \mathbb{Z}-linear comb of elements of $\Delta(x)$.

Suppose not, and suppose (γ, x) minimal with this property.

$\alpha = \beta_1 + \ldots + \beta_k$

$\beta_i \in \Phi^+(x)$

$(\gamma, \alpha) = (\gamma, \beta_1) + \ldots + (\gamma, \beta_k)$

smaller than (γ, x)

so β_i s must be in \mathbb{Z}-span $\Delta(x)$

But then $\alpha = \beta_1 + \ldots + \beta_k \in \Phi^+(x)$ too

-- contradiction --

2) $x, y \in \Delta(x)$ $x \neq y \Rightarrow (x, y) \leq 0$

(i.e. angle between two roots in base $\geq 90^\circ$)

If $(x, y) > 0$ then $x - y \in \Phi$ (Corollary)

If $x - y \in \Phi^+(x)$ then

$x = (x - y) + y$ -- but x not decomposable.

If $y - x \in \Phi^+(x)$ then

$y = (y - x) + x$ -- but x not decomposable.
Contradiction both cases. So \(\Delta(x) \leq 0 \).

3) \(\Delta(x) \) linearly independent.

Suppose not. Then \(\sum_{\alpha \in \Delta(x)} r_{\alpha} \alpha = 0 \) for some constants \(r_{\alpha} \).

Split \(r_{\alpha} \)'s into \(> 0 \) and \(< 0 \).

Then \(\sum_{\alpha} a_{\alpha} \alpha = \sum_{\beta} t_{\beta} \beta \) = \(\varepsilon \)

\((\varepsilon, \varepsilon) = \sum_{\alpha, \beta} a_{\alpha} t_{\beta} (\alpha, \beta) \leq 0\)

\((\alpha, \alpha) \geq 0 \) always with equality only when \(\alpha = 0 \).

So: \(\varepsilon = 0 \) \(\Rightarrow \) \((\varepsilon, \varepsilon) = \sum_{\alpha} a_{\alpha} (\alpha, \alpha) = 0 \)

\(\Rightarrow \) all \(a_{\alpha} = 0 \).

Similarly, all \(t_{\beta} = 0 \), so all \(r_{\alpha} = 0 \).

We've now shown \(\Delta(x) \) is a basis (B1) and (B2) follows from 1).

4) All bases of \(\mathfrak{A} \) are of the form \(\Delta(x) \) for some regular \(x \).

For a base \(\Delta \in \mathfrak{A} \), choose \(x \) s.t.

\((x, x) > 0 \) \(\forall \alpha \in \Delta \) (possible - Exercise).

\(\Delta = \Delta(x) \).

\(\Delta(x) \) therefore only depends on which connected component of \(E \setminus \bigcup_{x \in E} H_{-} \) \(x \) belongs to.

Conclusion: bases \(\xrightarrow{1-1} \) Weyl chambers.
If \((\gamma, \gamma) > 0\) \(\forall \gamma \in \Delta\),
then the Weyl chamber containing \(\gamma\) is called the fundamental Weyl chamber w.r.t. \(\Delta\).

Elements of \(\Delta\) are called simple roots \(\alpha \in \Delta\) & called simple reflection \(W\) is generated by simple reflections.

Show later. First some lemmas:

Lemma A:
If \(\alpha \in \Phi^+\) is not simple, then \(\alpha - \beta \in \Phi^+\) for some \(\beta \in \Delta\).

Proof: Recall that \((\alpha, \beta) > 0 \Rightarrow \alpha - \beta \in \Phi^+\).

Enough to prove \((\alpha, \beta) > 0\) for some \(\beta \in \Delta\).

If \((\alpha, \beta) \leq 0\) for every \(\beta \in \Delta\), then \(\alpha\) is linearly independent to \(\Delta\) by step 3 of our previous proof where we showed that the properties:
1) \(\Delta(\beta)\) consists of positive roots by def'n.
2) \((\beta, \beta) > 0\) for every \(\beta \in \Delta\).
\(\Rightarrow\) \(\Delta(\beta)\) linearly indep.

Corollary: Any \(\beta \in \Phi^+\) can be written as \(\alpha\) a sum of simple roots (not necessarily uniquely):
\[\beta = \alpha_1 + \alpha_2 + \ldots + \alpha_k, \quad \alpha_i \in \Delta\]

such that \(\alpha_1, \alpha_1 + \alpha_2, \ldots, \alpha_1 + \alpha_2 + \ldots + \alpha_k \in \Phi^+\).

Lemma B: If \(\alpha\) is simple, then so permutes \(\Phi^+ \setminus \{\alpha\}\).

Proof: Write \(\beta \in \Phi^+ \setminus \{\alpha\}\) as \(\beta = \sum_{\gamma \in \Delta} \gamma \in \mathbb{Z}^\alpha\).
For some \(\delta \), \(r_\delta > 0 \). Now
\[
S_\delta \beta = \beta - \langle \beta, \alpha \rangle \alpha
\]
only changes coefficient in front of \(\alpha \)

so \(r_\delta \) for \(S_\delta \beta \) doesn't change - still \(> 0 \).

One coefficient \(> 0 \) \(\Rightarrow \) all coefficients \(\geq 0 \)

so \(S_\delta \beta \in \overline{\mathbb{H}}^+ \).

\(S_\delta (\alpha) = -\alpha \) while \(S_\delta (S_\delta \beta) = \beta \neq \alpha \)

so \(S_\delta \beta \in \overline{\mathbb{H}}^+ \setminus 2\overline{\mathbb{H}}. \)

Corollary: Let \(\rho = \frac{1}{2} \sum \beta \) \(\in \) element of \(\mathbb{H}^+ \).

Then \(S_{\rho} \beta = \rho - \alpha \).

Lemma C: Given \(\alpha_1, \ldots, \alpha_t \in \Delta \) (not necessarily distinct)

If \(S_1 S_2 \cdots S_{t-1} (\alpha_t) < 0 \), then for some index \(1 \leq j < t \),

\(S_1 S_2 \cdots S_t = S_1 \cdots S_{j-1} S_{j+1} \cdots S_{t-1} \).

Proof: Let \(\beta_i = S_{i+1} \cdots S_{t-1} (\alpha_t) \), \(0 \leq i \leq t-2 \).

Let \(\beta_{t-1} = \alpha_t \).

\(\beta_0 = S_1 \cdots S_{t-1} (\alpha_t) < 0 \) but \(\beta_{t-1} = \alpha_t > 0 \)

so there is a smallest index \(j \) such that \(\beta_j > 0 \).

\(S_j \beta_j = S_j S_{j+1} \cdots S_{t-1} (\alpha_t) = \beta_{j-1} < 0 \)

so by Lemma \(\beta_j \), \(\beta_j = \alpha_j \) simple...
Recall that for \(w \in W \), \(s_{w x} = w s_x w^{-1} \).

\[
\alpha_j - \beta_j = \underbrace{s_{j+1} \cdots s_{t-1}}_{W}(\alpha_t) \alpha
\]

\[
S_j = s_{j+1} \cdots s_{t-1} s_t s_{t-1} s_{t-2} \cdots s_{j+1}
\]

Thus
\[
S_i \cdots S_j \cdots S_t = S_i \cdots S_{j-1} \underbrace{(S_{j+1} \cdots S_t s_{t-1} \cdots s_{j+1})}_{S_{j+1} \cdots S_t}
\]

\[
= S_i \cdots S_{j-1} S_{j+1} \cdots S_{t-1}
\]

Corollary: If \(w = s_i \cdots s_t \) is such that \(t \) is as small as possible, then \(W(\alpha_t) < 0 \).

(Note: leads to definition for length of elements of Weyl group. \(s_i \cdots s_t \) is called a reduced expression for \(w \).

Theorem: Let \(\Delta \) be a base of \(\Phi \).

a) \(\sigma \in E \) regular \(\Rightarrow \exists w \in W \) s.t.
\[
(w(\sigma), \alpha) > 0 \quad \forall \alpha \in \Delta.
\]

b) \(\Delta' \) another base \(\Rightarrow \exists w \in W : w(\Delta') = \Delta. \)

c) \(\alpha \in \Phi \Rightarrow \exists w \in W \quad w(\alpha) \in \Delta \)

d) \(W \) is generated by simple reflections

e) \(w(\Delta) = \Delta \Rightarrow w = 1 \)

(i.e. Weyl group acts simply transitively on bases)

Proof: next week.