MATH 410/510 SOLVED PROBLEMS 3

1. Show thatiff > 0 is improper Riemann integrable ¢f, co) then f is A-integrable there
andf[osoo) fdr=[° f(x)dx.

Soln. Supposef is improper Riemann integrable d6, co). Then, by definition, for all
b > 0, f is Riemann intrable of0, b] and limy, fob f dx exists inR. This limitis what is
meant by/;° f(x) dx.

By the connection between Riemann and Lebesgue integrability, we know therefore
that for eachh > 0, f is Lebesgue integrable df, b], with f[O’b] fdX = fob f(x)dx.

Now, sincefob f(x)dx is increasing as a function &f we can just use limits over natural
numbers:[;° f(x)dx = lim, [ f(x)dx.

Put f, = fljon. ThenO < f,(x),/ f(x), forall x € [0, c0), so by the Monotone
Convergence Theorefy~ f(x) dx = lim, [¢ f(x)dx = lim, fio 1 fdX=lim, [ fudX =
J fdX, as required O

2. If | f| is improper Riemann integrable g0, +o0), then f is A-integrable on0, co), but
not necessarily improper Riemann integrable. On the other hAroén be improper Rie-
mann integrable but not Lebesgue integrable.

Soln. Considerf : [0,+0c) — R, defined by f(x) { ¢, Ifxisrational
- : 9 % ) = . . . .

om o 7 —e™*,  if x isirrational

Then, f is not Riemann integrable 0, »], for any choice ob > 0. But| f|(x) = e~ ¥,

for all x,

Thus, [7 | f](x) = 1—e® —— Lsof |fldA = [5° /()] dx = 1.

On the other hand, the functiofi(x) = Z:L(—l)",%zl(n—l,n] has improper Rie-
mann integral_>> , (—1)"1/n, which converges by the alternating series test, but cannot
be Lebesgue integrable, because théhwould be also, and this has integral; - , %
which diverges.

3. Forafunctionf : R — R, if f is monotone, therf is Borel measurable.

Proof. We assume, without loss of generality, thats increasing.

We show that for alk € R, (f < ¢) = f~1((—o0,c)) € B(R), for then  will be
Borel measurable, since the family of sétsx, ¢) for ¢ € R generates the Borel sets.
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2 MATH 410/510 SOLVED PROBLEMS 3

Letc e R. If x € (f <c¢),thenf(x) < candforallr <x, f(t) < f(x) <c, S0
t € (f <c)also.
This shows thaf f < ¢) is an infinite interval.
More precisely, pub = sup(f < c¢). If f(b) < c,wehave(f < c¢) = (—o0, b].
If f(b) > c,then(f <c) = (—o00,b).
Thus, in any case, fare R, (f < ¢) is a Borel set, s¢ is 8(R)-measurable. O

. Let& be ac-algebra in a spacg. Let u be ac-finite measure oi. (Thus, there exists a
sequencéK, ) of elements of§ with w(K},) finite for all n, such that_J, . Kn = S). If
H is a disjoint family of sets withu(A4) > 0, for all A € J#, then# is countable.

Proof.

Let # be as stated. Choose a sequefi¢g) as stated. For each € N, let #, =
{A e ¥ :pnAN K, >0} ThenH = U,cp Hn. SO itis enough to prove, is
countable. For a fixed > 0, if A1, A,,..., Ay, With u(4; N K,) > ¢, for eachi, we

haveu(K,) > Zf\':l w(A4; NK,) > Ne, so#, can have no more than(K,)/e elements
with u((A N Ky) > e. Thus,

Hn = | 1A € Jy : p(AN Ky) > 1/},
keN

a countable union of finite families of sets, &6, is itself countable. O
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5. Let A be a Lebesgue measurable set of finite measure. Forseach, show that there
exists an open sét with A(AAG) < ¢. Then, improve this to show there exigfs a finite
union of open intervals, with (AAU) < e.

Proof. Lete > 0. By the open outer-regularity df, we have the existence of an open set
suchG D A andA(G \ A) < ¢. ButforsuchaG, GAA = G \ A, so this finishes the first
part. (Note: actually, one doesn't even need finite measure for this part. If you go back to
where we proved there is@s set containingd with the same measure, you will see that it

is the sigma-finiteness df that guarantees the existence of such.p

Now, if G is an open set ifR”, then there exist a countable fam{ily,, : n € N} of
open intervals withG = J,,cy In- Then(G \ U, -, 1i) \( 9, so if G is of finite measure,
we have lim A(G\J, -, I;)) = A(#) = 0, thus there exists such thak. (G \|J, -, ;) =
A(@) < e. For suchu, putU = | J;, I;. ThenU is a finite union of open intervals with
GDOUandAM(G\U) <e.

Now, lete > 0 and letA have finite measure. Choose an openeb A, with
AG \ A) < ¢/2. ThenA(G) is finite. Choose a finite unio of open intervals with
G DU andA(G \U) < ¢/2. Then,

i<n

AMAAU) = MA\U) + AU\ A) < AG\U) + A(G\ A) <e/2+¢/2=e.
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6. Prove thatB(R?) = o({B; x B, : B, B, Borel sets oRR}). (Suggestion: The identity
map onR? can be written(rr,, 7,), wherer; is the projection onto thé! coordinate.

[Note: o ({B1 x B» : B1, B> Borel sets ofR}) is known asB(R) ® B(R), the product
sigma-ring of 8(R) with itself, also denoted3 (R)? or 82.]

Proof. Let€ = {By x B, : By, B, € B(R)}, and letg be the family of open sets &>.

For eachB; € B(R), n7'(B1) = Bi xR € € C o(€) = B2, son is B2-
measurable. Similarly, is 82-measurable. Thus the identity map;, 7,) is

B?—8B(R?)- measurable
This shows that ifB € 8(R?), thenB = (1, m2)"!(B) € B2:

B(R?) c 82

Now, eachr; is continuous, hence Borel measureable. ThuB; it 8(R),
B xR = 77'(B)) € B(R?),
and similarly if B, € 8(R),
R x By, = m; 1(By) € B(R?).

Thus,
B1 x B, = (B; x R) N (R x By) € B(R?).

This shows
€ C i)’(Rz),

and hence also
B? =0(€) C B(R?

SinceB(R?) c 82 andB? c B(R?), we have equality, as required]
Note: For the first part of this proof, we used the fact that a functjprwvith val-

ues inR? is M-measurable if and only if its coordinate functioffs, > are measurable.
Alternatively, we can use the argument used in establishing this, as follows:

If U = U, x U, is an open interval oR?, thenU; andU, are Borel sets, so
Ue€cCco(®) =8
Every open set is the union of a countable family of open intervals, so
g Co(C),

and therefore,
BR?) =0(8) Co(E).

11/12/2007 571 mam



7.

10.

MATH 410/510 SOLVED PROBLEMS 3 5

O

Using Fatou’s Lemma, one can actually remove the monotonicity from the Monotone Con-
vergence Theorem, just as long as the approximation is from below( f,¢tbe an se-
guence of non-negative real-valued measurable functions converging pointwisemn

the (real-valued) functiorf”. If f,(x) < f(x), forall x, then[ f, du — [ f du.

Proof. Foreachm,0 < f, < f, so

Iimnsup/ fodu < /fdu.

On the other hand, by Fatou’s lemma
/fdu = /Iiminf fadp < Iiminf/f,, du,

so we have equality throughout aridf diw = lim,, [ f, du. O

. If f is integrable and: > 0 show that{x : | f(x)| > a} has finite measure and that

{x : f(x) # 0} haso-finite measure (that is, is a union of a countable family of sets of
finite measure).

Proof. If f isintegrable, soi$f|, sou{x : |f(x)| > a} < 1/a [|f|du < +oco. But
{x: f#£0={x:|f]>0} =Urentlf| = 1/k}, sois the union of a countable number
of sets of finite measure, as required.]

. If fisintegrable and > O then [ | f — ¢| du < e, for some integrable simple function

Q.

Proof. Let f be integrable. Therf + and f~ are both integrable. Lat > 0. By defini-
tion of [ f du, there is a non-negative simple functipn < f* such that/ ¢, du >
[ ftdun—e/2. g1 is integrable, since * is.

Similarly, there exists a non-negative integrable simple funciion< f~ such that
Jo2> [ f~—¢/2. Putp = @1 —¢>. Then,
f=el =1/ ===l < If T —al+If == o)+ ([ —¢)
Hence,

/|f—<ﬂ|dﬂS/f+—¢1du+/f_—<p2du<e. O

Let f/ be integrable and be its indefinite integralv(4) = [, f du, for A € M. Prove
v(4) =0, forall A € Miff f =0 p-a.e.
Proof. We already knowf = 0, p-a.e. implies/ f du = 0.

Conversely, supposg4) = 0, forall A € M. Putd = (f > 0). Thenf+ = f14,
sof ftdu = [, fdu = v(A) = 0; hence,f* = 0, u-a.e. Similarly,/ f~dp =
—v(f <0),s0f~ =0,u-ae. Thusf = f* — f~ =0, u-ae. O
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11. Letu; = po be counting measure on all subset®ofLet f(m,n) = 1ifn =m, -1ifn =

m+1and 0 otherwise. Thefi [ f(m,n)ui(dm)pz(dn) # [ [ f(m,n)pz(dn) p1 (dm),
though both are finite. Why does this not contradict the Fubini theorem?

Soln.. For eachm € N,

Yo fmmy= D> 0+ fm.m)+ fmm+1)=0+1-1=0.

neN n¢{m,m+1}

and for eactn € N\ {1},

Yo fmmy= > 0+ fun)+ fa—1n)=0—1+1=0,

meN mé¢{n,n—1}

butforn =1, ,,cy f(m,n) =1, sincen — 1 ¢ N. Thus,

[ [ sonmm@mpaan = 33 sonn

neNmeN
=) Iy =1
neN
but
[ [ ronmizam s @my = 33 sonnm
meNneN

=Y 0=0

This does not violate the Fubini Theorem, sinfés not integrable with respect to product
measure. Indeed, for all m, 1 @ u({(n,m)} = p1{niu{m} = 1. Since|f|is 1 on
an infinite set of pairs, its integral with respect to product measuesis

Alternatively, we could use iterated integrals pfi.

[ [ 17 mla@mp@n = 3 31 on.m)

meNneN
= Z 2=+o0c0. O
meN
12. For(x, y) inthe unit squarg0, 1] x [0, 1], define
X2 — yz
flx.y) = el

except a0, 0), and definef (0, 0) = 0. Prove that

/01 /01 For,y)dxdy = —n/4,
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but
1,1
//f(x,y)dydx:n/4.
o Jo

Show that this doesn’t violate the Fubini Theorem, sirfcis not integrable of0, 1]x[0, 1].

Proof. Since%ﬁ = f(x,y),

1 el 1
/ / fx,y)dxdy = / —1dy = —arctanl = —x /4.
o Jo o 1+

Similarly, fol fol f(x,y)dy dx = arctanl = z/4.

To compare these outcomes with the Fubini Theorem, we need a choice of measure.
Let us takel to be Lebesgue one-dimensional measure restricted to the Lebesgue measur-
able subsets db, 1]. We know that any function defined which is defined and (improper)
Riemann integrable off), 1] is also Lebesgue integrable to the same value.

Now,
S y), x>y, (x,y)€[0,1]x[0, 1]\ {(0,0)}
+ _
ST y) = { 0, otherwise
and
f_(x )_{ _f(xv)’), Ifxfyv (X,y)E[O,l]X[O,l]\{(0,0)}
Y=o, otherwise :

Thus, by the Fubini Theorem,

[ o= [ [ rreoranian = [ | " fry)dy Adx)

1 X
y
:/0 [7x2+y21| dx
y=0

/1 Y /lld L im (log 1 — logr) = +
= —ax = —ax = — —_ =
0 X2+X2 0 2x 2 t—0 g g o

Similarly [ f~d A® = +o0, so f is not integrable, and hence the Fubini Theorem is
not contradicted.

By the way,A ® A = A,, 2 dimensional Lebesgue measure restrictet(jo® M .

Letu; be Lebesgue measure on the Borel set®of] and letu, be counting measure,
again on the Borel sets ¢, 1]. Let
I, x=y
flx.y) = { 0. x4y,

Prove thatf is product measurable — that is, is measurable with respeB() ® 8 (R)
—yet

[ [ sy # [ [ fema@ma.
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8 MATH 410/510 SOLVED PROBLEMS 3
What hypothesis of the Fubini Theorem doesn't hold?

Proof. SinceB := {(x,y) : x = y} is a closed set, itis a Borel set; henfe= 13 is
a Borel measurable. Sin®(R) ® B(R) is the Borel sigma algebra @&, f is product
measurable. (By the way; is only defined orj0, 1] x [0, 1], but the definition still makes
sense; we just havg 1 (R) = [0, 1] x [0, 1]. Thus, f is actuallyB([0, 1] x [0,1]) =
B([0, 1]) ® B([0, 1]) measurable.)

Now, for fixed y, f(x,y) = 1gy(x), forall x, so [ f(x, y)u1(dx) = u1({y}) =0,
for all y and hence,

/ / £ ) (dx)pa(dy) = 0.

Similarly for fixed x, f(x,y) = 1y (p), forall y, so [ f(x, y)u2(dx) = 1, for all x;
hence,

[ [ remma@man = 3 1=+

x€[0,1]

The reason the Fubini Theorem doesn’t apply is thais not sigma-finite. Indeed, [D, 1]
is written as a union of a sequence of sdtsof finite measure, then each, is finite so
[0, 1] would be countable, which is false [
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14. Prove the following version dCavellieri’s Principle. Letu, u, beo-finite measures
ongc-algebrasMy, M, in S1, S, respectively. Prove thatit, F are subsets f = S; xS,
such thatu,(E(x1)) = p2(F(x1)), for pi-almost allx; € Sy, then(u; ® u2)(E) =

(1 ® p2)(F).

Proof. With the approach we took in this course, this is a triviality.
By definition,

(11 ® pa)(E) = / b2 (E G (dxy) = / 1o (FGe)) i (dx) = (1 @ pa)(F).

Alternatively, one could use Fubini’s theorem. The result then amounts to checking that
f 15 (x1, x2)u2(dx1) = pu2(E(x1)) and the corresponding result fér.

15. Suppose: is a sigma-finite measure on tlealgebraM in S, and theA is Lebesgue
measure irR, restricted to the Borel sets. For a non-negatiéemeasurable functiorf,
prove thatthe sel = {(x,y) : 0 < y < f(x)} is measurable with respectid ® B(R)
and/ fdu = pA(A).

Proof. Let f, = Zlio=1 2%1[(k_1)/2n<f§k/2n]. Now, f, > fu,4+1 and f, — f. Indeed,
for eachn, if k is the firstinteger withk: > f(x), then f,(x) = £ > f(x) and there are
2 possibilities: Either,

() f(x) > 25 — 5k = 244, inwhich case fy11(x) = fu(x) = 2, or
(i) 21 = f(x) > 25 = 521 inwhich casefy41(x) = fu(x) — 1/2"F1.
Thus, in all cases,(x) > fu+1(x).

As for convergence, the formulg — 1)/2" < f(x) < k/2" shows thatf,(x) —
f(x) < 57 — 0, soinfactf, — £, uniformly.

Now, for eachn € N, put4, = {(x,y) : 0 <y < fu(x)}. Then, 4, =
Indeed, sincef,, > f, A, D A, foralln, so(, A, D A, and sincef,, - f,(), 4n C

EachA,, can be written
Urentx s B21 < f(x) < £ x [0, &7 U {x 1 f(x) = 0} x {0}

Since f is measurabléx : &1 < f(x) < £} € Mand{x : f(x) = 0} € M, sO

Ap, € M ® B(R). Hence A is also in the product sigma-algebra.

A.
A.

Finally, the x-section of4 is

Ax) ={y:(x.y) e A} ={y: 0=y =< f()} =[0, f(x)].

so by the definition of product measure,

H@A(A) = / A(A() p(dx) = / A0, £ p(dx) = / Fe)p(d). O

Note. Since not everyone uses that definition of product measure, we can invoke the Fu-
bini Theorem instead and wrife ® A(4) = [14du® A = [ [14(x, y) A(dy)u(dx) =
S Yo renMAy)n(dx) = [A([0, f)Du(dx) = [ f(x) p(dx).
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For functionsf,,, f € £°, f, — f u-almost everywhere iff for a6 > 0, u(| f, — f| >
8, for infinitely manyn) = 0.

Proof. For clarity,

(| fn — f1 > 6, forinfinitely manyn) = (Vm e N, 3n > m, | f, — f| > 9).

By definition, f, — f w-almost everywhere if and only if there isianull set N
such thatf, — f on N€¢. Sincef, and f are given measurable, we can taketo be

o fu(x) 2 fOO) = (fa 7 /)

Supposef, — f, u-almosteverywhere and l1&t> 0 then,(| f,— f| > 8, for infinitely manyn} C

(fu 7~ f),so(| fu— f| > 4, forinfinitely manyn) has measure O.

Conversely, ifforalll > 0, u(| fn— f| > &, forinfinitely manyn) = 0, thenu(f,, 4

) = nUgen(fn — f| > 1/k, forinfinitely manyn) = 0, so f, — f, pn-almost
everwhere. [

For0 < p < oo deduce from the Dominated Convergence Theorem#(ij the £7
version: If f, — f a.e. and there exisgse £7? such that f,| < g pointwise (or a.e.)
then f, — fin £7.

Soln. Let0 < g € £7. Theng? € £'. Supposé f,| < g u-a.e. andf, — f a.e. Then
|f| <gae.,sdf, — f|? < (2g)? a.e. and2g)? € £!. Moreover,| f, — f|? — 0, so
S 1fn = f|? dp — 0, by the Dominated Convergence Theorem. Thaf,is> f in £7.

If ¢ is uniformly continuous orR to R, and f, converges in measure o, theng o f,
converges in measure oo f .

Proof.

Let ¢ be uniformly continuous ofR to R. Then, for eactd > 0, there existg; > 0
such thaty — y’| < nimplies|g(y) — ¢(y’)| < 6. Then,

{x o(fu(x) —@(f )] > 8} C{x 2| fa(x) = f(X)] > n}

If f, — f in u-measure, then the-measure of the right side converges to 0, hence

w(lg o fu — @ o gl > 8, which is the measure of the left side also converges tdhus,
@o f, — @oginu-measure. O

11/12/2007 571 mam



19.

20.

21.

MATH 410/510 SOLVED PROBLEMS 3 11

Find a sequence of functions i 1] that converges to 0 almost everywhere (for Lebesgue
measure) but not ii2!, and another that converges to 04, but does not converge

anywhere.

Soln.

(a) For eactm, choosef, = nl[0,1/n]. Then, foré > 0, A(|f, — 0| > §) <
A(0,1/n]) = 1/n — 0. Thus, f, — 0in A-measure. On the other harjdf,|1 =
J fadA = nA([0,1/n]) = 1, which does not converge to 0, ¢ does not converge
to0inLl.

(b) Let gy = 1[0,1), g2 = 1[0,1/2), g2 = 1[1/2,1), g3 = 1[0,1/4), g4 =
1{1/4,2/4), g5 = 1{2/4,3/4) ... . Thus,g,, runs through the indicator functions
of 1 interval of length 1, then 2 intervals of length 1/2, then 4 intervals of length 1/4,
... k intervals of lengthl /2%. The norm|g,||1, is the measure of the interval where
gn # 0, which tends to O, but for each, g, (x) takes on the values 0 and 1 infinitely
many times, sdx : (g,(x)) converges = .

Let( f,) and(h,) be sequences ii°(11), f € £°. Supposéh,) is a decreasing sequence
converging to O inu-measure, angf,, — f| < hy, for all n. Prove thatf, — f p-almost
uniformly.

Proof. The sequenceéf,) converges almost uniformly tg if and only if for each§ > 0,
w@Gk > n, | fi — f| > §) — 0. But, by hypothesis,

|fi = fl <hk <h,, fork=>n
Hence,

s = f1>8) € (hn > 8).

k>n

Since(h,) converges to 0 in measure,
u(U@ﬁ—ﬂ>&)sM%>&ea
k>n
as required. O

Concerning thé® quasinorm|| f |lo = inf{§ > 0 : u(| f| > §) < 8}, prove
@) [/ llo = 1f llo A (S # 0). Need there be equality?
(b) If o <1, lefllo < IIfllo

Soln.. (@) First,u(| f| > || flloo) = 0 < || flloo- Since| f |0 is the least with w(| f| >
8) = 0 < 4, this shows
I/ llo = 11 flloo-

Also, if § = u(f # 0), thenu(|f] > 8) < u(f #0)=24§,s0
Ifllo = w(f #0).
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Thus, || fllo < | flleo A (S # 0).

To see that there need not be equality, taktd be Lebesgue measure on the Borel

sets ofR, and put
I, 0<x<2
f(x):{3, 2<x =<3

0, otherwise

Thenu(|f| > 1) =1 < l,and if§ < 1, u(|f| > 8 =3 > &, 50| fllo = 1 <
1/ lloo A p(f #0) =3.
(b) If || < 1, thenjaf| < | f], SO

plaf > 1/l = w(f1>111o) = I1f llo.
soflefllo < [l fllo. O

Supposg: is a finite measure. Defingf e = ||| f| A 1|1, for f € £% andd(f.g) =
If =gl

(@) Show that thig/ is a semimetric oi°.

(b) Show that a sequencg;,) in £° converges tof in measure ifid( f,, f) — 0.

Soln.. (&) Remember the means minimum. For numbeass > 0,
(a+b)rl<anl+bnl,

because if one af andb is > 1, the left side is 1 and the right side is 1, while if both
a,b are< 1, then the inequality reduces ta + ) A1 < a + b. Applying this to the
functions f andg, and integrating we have

I+ el ATl < IATA T+ lHgl A T

that is
If+glle =11/ lle + llglle-

It follows as usual tha/( £, g) = || f — gll. defines a semimetric.

(b) Now, if f, — f inmeasure, thep(|fu — fIA1>68) <u(fu—f|>38) —0,
and|f, — f| A1 < 1. Butthe function 1 is integrable, singeis a finite measure. Thus,
by the convergence in measure version of the DG, — flle = [ | fu — fI A ldpu — 0.

Conversely, since convergencesin implies convergence in measurel| ifp— f |l¢ —
0,|f. — f| A1 — 0inmeasure, and hent¢g, — f| does so also.
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