MATH 410/510 SOLVED PROBLEMS 3

1. Show that if $f \ge 0$ is improper Riemann integrable on $[0, \infty)$ then f is λ -integrable there and $\int_{[0,\infty)} f \ d\lambda = \int_0^\infty f(x) \ dx$.

Soln. Suppose f is improper Riemann integrable on $[0,\infty)$. Then, by definition, for all b>0, f is Riemann intrable on [0,b] and $\lim_b \int_0^b f \, dx$ exists in $\mathbb R$. This limit is what is meant by $\int_0^\infty f(x) \, dx$.

By the connection between Riemann and Lebesgue integrability, we know therefore that for each b>0, f is Lebesgue integrable on [0,b], with $\int_{[0,b]} f \, d\lambda = \int_0^b f(x) \, dx$. Now, since $\int_0^b f(x) \, dx$ is increasing as a function of b, we can just use limits over natural numbers: $\int_0^\infty f(x) \, dx = \lim_n \int_0^n f(x) \, dx$.

Put $f_n = f \mathbf{1}_{[0,n]}$. Then $0 \le f_n(x) \nearrow f(x)$, for all $x \in [0,\infty)$, so by the Monotone Convergence Theorem $\int_0^\infty f(x) \, dx = \lim_n \int_0^n f(x) \, dx = \lim_n \int_{[0,n]} f \, d\lambda = \lim_n \int f_n \, d\lambda = \int f \, d\lambda$, as required \square

2. If |f| is improper Riemann integrable on $[0, +\infty)$, then f is λ -integrable on $[0, \infty)$, but not necessarily improper Riemann integrable. On the other hand, f can be improper Riemann integrable but not Lebesgue integrable.

Soln. Consider $f:[0,+\infty)\to\mathbb{R}$, defined by $f(x)=\begin{cases} e^{-x}, & \text{if }x\text{ is rational}\\ -e^{-x}, & \text{if }x\text{ is irrational} \end{cases}$ Then, f is not Riemann integrable on [0,b], for any choice of b>0. But $|f|(x)=e^{-x}$, for all x. Thus, $\int_0^b |f|(x)=1-e^{-b}\xrightarrow[b\to\infty]{}1$, so $\int |f|\,d\lambda=\int_0^\infty |f(x)|,\,dx=1$.

On the other hand, the function $f(x) = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2} \mathbf{1}_{(n-1,n]}$ has improper Riemann integral $\sum_{n=1}^{\infty} (-1)^n 1/n$, which converges by the alternating series test, but cannot be Lebesgue integrable, because then |f| would be also, and this has integral $\sum_{n=1}^{\infty} \frac{1}{n}$ which diverges.

3. For a function $f: \mathbb{R} \longrightarrow \mathbb{R}$, if f is monotone, then f is Borel measurable.

Proof. We assume, without loss of generality, that f is increasing.

We show that for all $c \in \mathbb{R}$, $(f < c) = f^{-1}((-\infty, c)) \in \mathcal{B}(\mathbb{R})$, for then f will be Borel measurable, since the family of sets $(-\infty, c)$ for $c \in \mathbb{R}$ generates the Borel sets.

Let $c \in \mathbb{R}$. If $x \in (f < c)$, then f(x) < c and for all t < x, f(t) < f(x) < c, so $t \in (f < c)$ also.

This shows that (f < c) is an infinite interval.

More precisely, put $b = \sup(f < c)$. If f(b) < c, we have $(f < c) = (-\infty, b]$.

If $f(b) \ge c$, then $(f < c) = (-\infty, b)$.

Thus, in any case, for $c \in \mathbb{R}$, (f < c) is a Borel set, so f is $\mathcal{B}(\mathbb{R})$ -measurable. \square

4. Let \mathcal{S} be a σ -algebra in a space S. Let μ be a σ -finite measure on \mathcal{S} . (Thus, there exists a sequence (K_n) of elements of \mathcal{S} with $\mu(K_n)$ finite for all n, such that $\bigcup_{n\in\mathbb{N}} K_n = S$). If \mathcal{H} is a disjoint family of sets with $\mu(A) > 0$, for all $A \in \mathcal{H}$, then \mathcal{H} is countable.

Proof.

Let \mathcal{H} be as stated. Choose a sequence (K_n) as stated. For each $n \in \mathbb{N}$, let $\mathcal{H}_n = \{A \in \mathcal{H} : \mu(A \cap K_n) > 0\}$. Then $\mathcal{H} = \bigcup_{n \in \mathcal{H}} \mathcal{H}_n$. So it is enough to prove \mathcal{H}_n is countable. For a fixed $\varepsilon > 0$, if A_1, A_2, \ldots, A_N , with $\mu(A_i \cap K_n) > \varepsilon$, for each i, we have $\mu(K_n) \geq \sum_{i=1}^N \mu(A_i \cap K_n) > N\varepsilon$, so \mathcal{H}_n can have no more than $\mu(K_n)/\varepsilon$ elements with $\mu((A \cap K_n) > \varepsilon$. Thus,

$$\mathcal{H}_n = \bigcup_{k \in \mathbb{N}} \{ A \in \mathcal{H}_n : \mu(A \cap K_n) > 1/k \},$$

a countable union of finite families of sets, so \mathcal{H}_n is itself countable. \square

5. Let A be a Lebesgue measurable set of finite measure. For each $\varepsilon > 0$, show that there exists an open set G with $\lambda(A \triangle G) < \varepsilon$. Then, improve this to show there exists U, a finite union of open intervals, with $\lambda(A \triangle U) < \varepsilon$.

Proof. Let $\varepsilon > 0$. By the open outer-regularity of λ , we have the existence of an open set such $G \supset A$ and $\lambda(G \setminus A) < \varepsilon$. But for such a G, $G \triangle A = G \setminus A$, so this finishes the first part. (Note: actually, one doesn't even need finite measure for this part. If you go back to where we proved there is a G_{δ} set containing A with the same measure, you will see that it is the sigma-finiteness of λ that guarantees the existence of such a G.)

Now, if G is an open set in \mathbb{R}^n , then there exist a countable family $\{I_n:n\in\mathbb{N}\}$ of open intervals with $G=\bigcup_{n\in\mathbb{N}}I_n$. Then $(G\setminus\bigcup_{i\leq n}I_i)\setminus\emptyset$, so if G is of finite measure, we have $\lim_n\lambda(G\setminus\bigcup_{i\leq n}I_i))=\lambda(\emptyset)=0$, thus there exists n such that $\lambda(G\setminus\bigcup_{i\leq n}I_i))=\lambda(\emptyset)<\varepsilon$. For such n, put $U=\bigcup_{i\leq n}I_i$. Then U is a finite union of open intervals with $G\supset U$ and $\lambda(G\setminus U)<\varepsilon$.

Now, let $\varepsilon>0$ and let A have finite measure. Choose an open set $G\supset A$, with $\lambda(G\setminus A)<\varepsilon/2$. Then $\lambda(G)$ is finite. Choose a finite union U of open intervals with $G\supset U$ and $\lambda(G\setminus U)<\varepsilon/2$. Then,

$$\lambda(A \triangle U) = \lambda(A \setminus U) + \lambda(U \setminus A) < \lambda(G \setminus U) + \lambda(G \setminus A) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

6. Prove that $\mathcal{B}(\mathbb{R}^2) = \sigma(\{B_1 \times B_2 : B_1, B_2 \text{ Borel sets of } \mathbb{R}\})$. (Suggestion: The identity map on \mathbb{R}^2 can be written (π_1, π_2) , where π_i is the projection onto the i^{th} coordinate.

[Note: $\sigma(\{B_1 \times B_2 : B_1, B_2 \text{ Borel sets of } \mathbb{R}\})$ is known as $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$, the product sigma-ring of $\mathcal{B}(\mathbb{R})$ with itself, also denoted $\mathcal{B}(\mathbb{R})^2$ or \mathcal{B}^2 .]

Proof. Let $\mathcal{C} = \{B_1 \times B_2 : B_1, B_2 \in \mathcal{B}(\mathbb{R})\}$, and let \mathcal{G} be the family of open sets of \mathbb{R}^2 .

For each $B_1 \in \mathcal{B}(\mathbb{R})$, $\pi_1^{-1}(B_1) = B_1 \times \mathbb{R} \in \mathcal{C} \subset \sigma(\mathcal{C}) = \mathcal{B}^2$, so π_1 is \mathcal{B}^2 -measurable. Similarly π_2 is \mathcal{B}^2 -measurable. Thus the identity map (π_1, π_2) is

$$\mathcal{B}^2 - \mathcal{B}(\mathbb{R}^2)$$
- measurable.

This shows that if $B \in \mathcal{B}(\mathbb{R}^2)$, then $B = (\pi_1, \pi_2)^{-1}(B) \in \mathcal{B}^2$:

$$\mathcal{B}(\mathbb{R}^2) \subset \mathcal{B}^2$$
.

Now, each π_i is continuous, hence Borel measureable. Thus, if $B_1 \in \mathcal{B}(\mathbb{R})$,

$$B_1 \times \mathbb{R} = \pi_1^{-1}(B_1) \in \mathcal{B}(\mathbb{R}^2),$$

and similarly if $B_2 \in \mathcal{B}(\mathbb{R})$,

$$\mathbb{R} \times B_2 = \pi_2^{-1}(B_2) \in \mathcal{B}(\mathbb{R}^2).$$

Thus,

$$B_1 \times B_2 = (B_1 \times \mathbb{R}) \cap (\mathbb{R} \times B_2) \in \mathcal{B}(\mathbb{R}^2).$$

This shows

$$\mathcal{C} \subset \mathcal{B}(\mathbb{R}^2)$$
.

and hence also

$$\mathcal{B}^2 = \sigma(\mathcal{C}) \subset \mathcal{B}(\mathbb{R}^2)$$

Since $\mathcal{B}(\mathbb{R}^2) \subset \mathcal{B}^2$ and $\mathcal{B}^2 \subset \mathcal{B}(\mathbb{R}^2)$, we have equality, as required. \square

Note: For the first part of this proof, we used the fact that a function f with values in \mathbb{R}^2 is \mathcal{M} -measurable if and only if its coordinate functions f_1 , f_2 are measurable. Alternatively, we can use the argument used in establishing this, as follows:

If $U = U_1 \times U_2$ is an open interval of \mathbb{R}^2 , then U_1 and U_2 are Borel sets, so

$$U \in \mathcal{C} \subset \sigma(\mathcal{C}) = \mathcal{B}^2$$

Every open set is the union of a countable family of open intervals, so

$$\mathcal{G} \subset \sigma(\mathcal{C}),$$

and therefore,

$$\mathcal{B}(\mathbb{R}^2) = \sigma(\mathcal{G}) \subset \sigma(\mathcal{C}).$$

7. Using Fatou's Lemma, one can actually remove the monotonicity from the Monotone Convergence Theorem, just as long as the approximation is from below: Let (f_n) be an sequence of non-negative real-valued measurable functions converging pointwise on S to the (real-valued) function f. If $f_n(x) \le f(x)$, for all x, then $\int f_n d\mu \to \int f d\mu$.

Proof. For each $n, 0 \le f_n \le f$, so

$$\limsup_{n} \int f_n d\mu \leq \int f d\mu.$$

On the other hand, by Fatou's lemma

$$\int f d\mu = \int \liminf_{n} f_n d\mu \le \liminf_{n} \int f_n d\mu,$$

so we have equality throughout and $\int f d\mu = \lim_n \int f_n d\mu$. \square

8. If f is integrable and a > 0 show that $\{x : |f(x)| > a\}$ has finite measure and that $\{x : f(x) \neq 0\}$ has σ -finite measure (that is, is a union of a countable family of sets of finite measure).

Proof. If f is integrable, so is |f|, so $\mu\{x: |f(x)| > a\} \le 1/a \int |f| d\mu < +\infty$. But $\{x: f \ne 0\} = \{x: |f| > 0\} = \bigcup_{k \in \mathbb{N}} \{|f| \ge 1/k\}$, so is the union of a countable number of sets of finite measure, as required. \square

9. If f is integrable and $\varepsilon > 0$ then $\int |f - \varphi| d\mu < \varepsilon$, for some integrable simple function φ .

Proof. Let f be integrable. Then f^+ and f^- are both integrable. Let $\varepsilon > 0$. By definition of $\int f^+ d\mu$, there is a non-negative simple function $\varphi_1 \leq f^+$ such that $\int \varphi_1 d\mu > \int f^+ d\mu - \varepsilon/2$. φ_1 is integrable, since f^+ is.

Similarly, there exists a non-negative integrable simple function $\varphi_2 < f^-$ such that $\int \varphi_2 > \int f^- - \varepsilon/2$. Put $\varphi = \varphi_1 - \varphi_2$. Then,

$$|f - \varphi| = |f^+ - \varphi_1 - (f^- - \varphi_2)| \le |f^+ - \varphi_1| + |f^- - \varphi_2| = (f^+ - \varphi_1) + (f^- - \varphi_2)$$

Hence,

$$\int |f - \varphi| \, d\mu \le \int f^+ - \varphi_1 \, d\mu + \int f^- - \varphi_2 \, d\mu < \varepsilon. \quad \Box$$

10. Let f be integrable and ν be its indefinite integral: $\nu(A) = \int_A f d\mu$, for $A \in \mathcal{M}$. Prove $\nu(A) = 0$, for all $A \in \mathcal{M}$ iff f = 0 μ -a.e.

Proof. We already know f = 0, μ -a.e. implies $\int f d\mu = 0$.

Conversely, suppose $\nu(A)=0$, for all $A\in\mathcal{M}$. Put $A=(f\geq 0)$. Then $f^+=f\mathbf{1}A$, so $\int f^+d\mu=\int_A f\,d\mu=\nu(A)=0$; hence, $f^+=0$, μ -a.e. Similarly, $\int f^-d\mu=-\nu(f<0)$, so $f^-=0$, μ -a.e. Thus, $f=f^+-f^-=0$, μ -a.e. \square

11. Let $\mu_1 = \mu_2$ be counting measure on all subsets of \mathbb{N} . Let f(m,n) = 1 if n = m, -1 if n = m+1 and 0 otherwise. Then $\int \int f(m,n)\mu_1(dm)\mu_2(dn) \neq \int \int f(m,n)\mu_2(dn)\mu_1(dm)$, though both are finite. Why does this not contradict the Fubini theorem?

Soln.. For each $m \in \mathbb{N}$,

$$\sum_{n \in \mathbb{N}} f(m,n) = \sum_{n \notin \{m,m+1\}} 0 + f(m,m) + f(m,m+1) = 0 + 1 - 1 = 0.$$

and for each $n \in \mathbb{N} \setminus \{1\}$,

$$\sum_{m \in \mathbb{N}} f(m,n) = \sum_{m \notin \{n,n-1\}} 0 + f(n,n) + f(n-1,n) = 0 - 1 + 1 = 0,$$

but for n = 1, $\sum_{m \in \mathbb{N}} f(m, n) = 1$, since $n - 1 \notin \mathbb{N}$. Thus,

$$\int \int f(m,n)\mu_1(dm)\mu_2(dn) = \sum_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}} f(m,n)$$
$$= \sum_{n \in \mathbb{N}} \mathbf{1}_{\{1\}} = 1$$

but

$$\int \int f(m,n)\mu_2(dn) \,\mu_1(dm) = \sum_{m \in \mathbb{N}} \sum_{n \in \mathbb{N}} f(m,n)$$
$$= \sum_m 0 = 0$$

This does not violate the Fubini Theorem, since f is not integrable with respect to product measure. Indeed, for all $n, m, \mu_1 \otimes \mu_2(\{(n, m)\} = \mu_1\{n\}\mu_2\{m\} = 1$. Since |f| is 1 on an infinite set of pairs, its integral with respect to product measure is $+\infty$.

Alternatively, we could use iterated integrals on |f|.

$$\int \int |f(m,n)| \mu_2(dm) \mu_1(dn) = \sum_{m \in \mathbb{N}} \sum_{n \in \mathbb{N}} |f(m,n)|$$
$$= \sum_{m \in \mathbb{N}} 2 = +\infty. \quad \Box$$

12. For (x, y) in the unit square $[0, 1] \times [0, 1]$, define

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2},$$

except at (0,0), and define f(0,0) = 0. Prove that

$$\int_0^1 \int_0^1 f(x, y) \, dx \, dy = -\pi/4,$$

but

$$\int_0^1 \int_0^1 f(x, y) \, dy \, dx = \pi/4.$$

Show that this doesn't violate the Fubini Theorem, since f is not integrable on $[0, 1] \times [0, 1]$.

Proof. Since $\frac{\partial}{\partial x} \frac{-x}{x^2 + y^2} = f(x, y)$,

$$\int_0^1 \int_0^1 f(x, y) \, dx \, dy = \int_0^1 \frac{-1}{1 + y^2} \, dy = -\arctan 1 = -\pi/4.$$

Similarly, $\int_{0}^{1} \int_{0}^{1} f(x, y) \, dy \, dx = \arctan 1 = \pi/4$.

To compare these outcomes with the Fubini Theorem, we need a choice of measure. Let us take λ to be Lebesgue one-dimensional measure restricted to the Lebesgue measurable subsets of [0, 1]. We know that any function defined which is defined and (improper) Riemann integrable on [0, 1] is also Lebesgue integrable to the same value.

Now.

$$f^{+}(x,y) = \begin{cases} f(x,y), & \text{if } x \ge y, \quad (x,y) \in [0,1] \times [0,1] \setminus \{(0,0)\} \\ 0, & \text{otherwise} \end{cases}$$

and

$$f^{-}(x, y) = \begin{cases} -f(x, y), & \text{if } x \le y, \quad (x, y) \in [0, 1] \times [0, 1] \setminus \{(0, 0)\} \\ 0, & \text{otherwise} \end{cases}$$

Thus, by the Fubini Theorem,

$$\int f^{+} d\lambda \otimes \lambda = \int \int f^{+}(x, y)\lambda(dy)\lambda(dx) = \int \int_{0}^{x} f(x, y) \, dy \, \lambda(dx)$$

$$= \int_{0}^{1} \left[\frac{y}{x^{2} + y^{2}} \right]_{y=0}^{x} dx$$

$$= \int_{0}^{1} \frac{x}{x^{2} + x^{2}} \, dx = \int_{0}^{1} \frac{1}{2x} \, dx = \frac{1}{2} \lim_{t \to 0} (\log 1 - \log t) = +\infty$$

Similarly $\int f^- d \lambda \otimes \lambda = +\infty$, so f is not integrable, and hence the Fubini Theorem is not contradicted.

By the way, $\lambda \otimes \lambda = \lambda_2$, 2 dimensional Lebesgue measure restricted to $\mathcal{M}_{\lambda} \otimes \mathcal{M}_{\lambda}$.

13. Let μ_1 be Lebesgue measure on the Borel sets of [0, 1] and let μ_2 be counting measure, again on the Borel sets of [0, 1]. Let

$$f(x, y) = \begin{cases} 1, & x = y \\ 0, & x \neq y. \end{cases}$$

Prove that f is product measurable — that is, is measurable with respect to $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ — yet

$$\iint f(x,y)\mu_1(dx)\mu_2(dy) \neq \iint f(x,y)\mu_2(dy)\mu_1(dx).$$

What hypothesis of the Fubini Theorem doesn't hold?

Proof. Since $B := \{(x,y) : x = y\}$ is a closed set, it is a Borel set; hence $f = \mathbf{1}_B$ is a Borel measurable. Since $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ is the Borel sigma algebra of \mathbb{R}^2 , f is product measurable. (By the way, f is only defined on $[0,1] \times [0,1]$, but the definition still makes sense; we just have $f^{-1}(\mathbb{R}) = [0,1] \times [0,1]$. Thus, f is actually $\mathcal{B}([0,1] \times [0,1]) = \mathcal{B}([0,1]) \otimes \mathcal{B}([0,1])$ measurable.)

Now, for fixed y, $f(x, y) = \mathbf{1}_{\{y\}}(x)$, for all x, so $\int f(x, y)\mu_1(dx) = \mu_1(\{y\}) = 0$, for all y and hence,

$$\int \int f(x,y)\mu_1(dx)\mu_2(dy) = 0.$$

Similarly for fixed x, $f(x, y) = \mathbf{1}_{\{x\}}(y)$, for all y, so $\int f(x, y)\mu_2(dx) = 1$, for all x; hence,

$$\int \int f(x,y)\mu_2(dy)\mu_1(dx) = \sum_{x \in [0,1]} 1 = +\infty.$$

The reason the Fubini Theorem doesn't apply is that μ_2 is not sigma-finite. Indeed, if [0, 1] is written as a union of a sequence of sets A_n of finite measure, then each A_n is finite so [0, 1] would be countable, which is false. \square

14. Prove the following version of **Cavellieri's Principle**. Let μ_1 , μ_2 be σ -finite measures on σ -algebras \mathcal{M}_1 , \mathcal{M}_2 in S_1 , S_2 respectively. Prove that if E, F are subsets of $S = S_1 \times S_2$ such that $\mu_2(E(x_1)) = \mu_2(F(x_1))$, for μ_1 -almost all $x_1 \in S_1$, then $(\mu_1 \otimes \mu_2)(E) = (\mu_1 \otimes \mu_2)(F)$.

Proof. With the approach we took in this course, this is a triviality. By definition,

$$(\mu_1 \otimes \mu_2)(E) = \int \mu_2(E(x_1))\mu_1(dx_1) = \int \mu_2(F(x_1))\mu_1(dx_1) = (\mu_1 \otimes \mu_2)(F).$$

Alternatively, one could use Fubini's theorem. The result then amounts to checking that $\int \mathbf{1}_E(x_1, x_2) \mu_2(dx_1) = \mu_2(E(x_1))$ and the corresponding result for F.

15. Suppose μ is a sigma-finite measure on the σ -algebra \mathcal{M} in S, and the λ is Lebesgue measure in \mathbb{R} , restricted to the Borel sets. For a non-negative \mathcal{M} -measurable function f, prove that the set $A = \{(x,y) : 0 \le y \le f(x)\}$ is measurable with respect to $\mathcal{M} \otimes \mathcal{B}(\mathbb{R})$ and $\int f d\mu = \mu \otimes \lambda(A)$.

Proof. Let $f_n = \sum_{k=1}^{\infty} \frac{k}{2^n} \mathbf{1}_{[(k-1)/2^n < f \le k/2^n]}$. Now, $f_n \ge f_{n+1}$ and $f_n \to f$. Indeed, for each n, if k is the first integer with $\frac{k}{2^n} \ge f(x)$, then $f_n(x) = \frac{k}{2^n} \ge f(x)$ and there are 2 possibilities: Either.

(i)
$$f(x) > \frac{k}{2^n} - \frac{1}{2^{n+1}} = \frac{2k-1}{2^{n+1}}$$
, in which case, $f_{n+1}(x) = f_n(x) = \frac{k}{2^n}$, or

(ii)
$$\frac{2k-1}{2^{n+1}} \ge f(x) > \frac{2k-1-1}{2^{n+1}} = \frac{k-1}{2^n}$$
, in which case $f_{n+1}(x) = f_n(x) - 1/2^{n+1}$.

Thus, in all cases $f_n(x) \ge f_{n+1}(x)$.

As for convergence, the formula $(k-1)/2^n < f(x) \le k/2^n$ shows that $f_n(x) - f(x) \le \frac{1}{2^n} \to 0$, so in fact $f_n \to f$, uniformly.

Now, for each $n \in \mathbb{N}$, put $A_n = \{(x,y) : 0 \le y \le f_n(x)\}$. Then $\bigcap_n A_n = A$. Indeed, since $f_n \ge f$, $A_n \supset A$, for all n, so $\bigcap_n A_n \supset A$, and since $f_n \to f$, $\bigcap_n A_n \subset A$.

Each A_n can be written

$$\bigcup_{k \in \mathbb{N}} \{x : \frac{k-1}{2^n} < f(x) \le \frac{k}{2^n} \} \times [0, \frac{k}{2^n}] \cup \{x : f(x) = 0\} \times \{0\}.$$

Since f is measurable $\{x: \frac{k-1}{2^n} < f(x) \le \frac{k}{2^n}\} \in \mathcal{M}$ and $\{x: f(x) = 0\} \in \mathcal{M}$, so $A_n \in \mathcal{M} \otimes \mathcal{B}(\mathbb{R})$. Hence, A is also in the product sigma-algebra.

Finally, the x-section of A is

$$A(x) = \{y : (x, y) \in A\} = \{y : 0 < y < f(x)\} = [0, f(x)],$$

so by the definition of product measure,

$$\mu \otimes \lambda(A) = \int \lambda(A(x)) \,\mu(dx) = \int \lambda([0, f(x)]) \,\mu(dx) = \int f(x) \,\mu(dx). \quad \Box$$

Note. Since not everyone uses that definition of product measure, we can invoke the Fubini Theorem instead and write $\mu \otimes \lambda(A) = \int \mathbf{1}_A d\mu \otimes \lambda = \int \int \mathbf{1}_A(x, y) \lambda(dy) \mu(dx) = \int \int \mathbf{1}_{[0, f(x)]}(y) \lambda(dy) \mu(dx) = \int \lambda([0, f(x)]) \mu(dx) = \int f(x) \mu(dx).$

16. For functions f_n , $f \in \mathcal{L}^0$, $f_n \longrightarrow f$ μ -almost everywhere iff for all $\delta > 0$, $\mu(|f_n - f| > \delta)$, for infinitely many n = 0.

Proof. For clarity,

$$(|f_n - f| > \delta, \text{ for infinitely many } n) = (\forall m \in \mathbb{N}, \exists n \ge m, |f_n - f| > \delta).$$

By definition, $f_n \to f$ μ -almost everywhere if and only if there is a μ -null set N such that $f_n \to f$ on N^c . Since f_n and f are given measurable, we can take N to be $\{x: f_n(x) \not\to f(x)\} = (f_n \not\to f)$.

Suppose $f_n \to f$, μ -almost everywhere and let $\delta > 0$ then, $(|f_n - f| > \delta)$, for infinitely many $n \in (f_n \to f)$, so $(|f_n - f| > \delta)$, for infinitely many $n \in (f_n \to f)$ has measure 0.

Conversely, if for all $\delta > 0$, $\mu(|f_n - f| > \delta)$, for infinitely many n = 0, then $\mu(f_n \not\rightarrow f) = \mu(\bigcup_{k \in \mathbb{N}} (|f_n - f| > 1/k)$, for infinitely many n = 0, so $f_n \rightarrow f$, μ -almost everwhere. \square

17. For $0 deduce from the Dominated Convergence Theorem (in <math>\mathcal{L}^1$) the \mathcal{L}^p version: If $f_n \longrightarrow f$ a.e. and there exists $g \in \mathcal{L}^p$ such that $|f_n| \leq g$ pointwise (or a.e.) then $f_n \longrightarrow f$ in \mathcal{L}^p .

Soln. Let $0 \le g \in \mathcal{L}^p$. Then $g^p \in \mathcal{L}^1$. Suppose $|f_n| \le g$ μ -a.e. and $f_n \to f$ a.e. Then $|f| \le g$ a.e., so $|f_n - f|^p \le (2g)^p$ a.e. and $(2g)^p \in \mathcal{L}^1$. Moreover, $|f_n - f|^p \to 0$, so $\int |f_n - f|^p d\mu \to 0$, by the Dominated Convergence Theorem. That is $f_n \to f$ in \mathcal{L}^p .

18. If φ is uniformly continuous on \mathbb{R} to \mathbb{R} , and f_n converges in measure to f, then $\varphi \circ f_n$ converges in measure to $\varphi \circ f$.

Proof.

Let φ be uniformly continuous on \mathbb{R} to \mathbb{R} . Then, for each $\delta > 0$, there exists $\eta > 0$ such that $|y - y'| \le \eta$ implies $|\varphi(y) - \varphi(y')| \le \delta$. Then,

$$\{x: |\varphi(f_n(x)) - \varphi(f(x))| > \delta\} \subset \{x: |f_n(x) - f(x)| > \eta\}$$

If $f_n \to f$ in μ -measure, then the μ -measure of the right side converges to 0, hence $\mu(|\varphi \circ f_n - \varphi \circ g| > \delta)$, which is the measure of the left side also converges to 0. Thus, $\varphi \circ f_n \to \varphi \circ g$ in μ -measure. \square

19. Find a sequence of functions on [0, 1] that converges to 0 almost everywhere (for Lebesgue measure) but not in \mathcal{L}^1 , and another that converges to 0 in \mathcal{L}^1 , but does not converge anywhere.

Soln.

- (a) For each n, choose $f_n = n\mathbf{1}[0, 1/n]$. Then, for $\delta > 0$, $\lambda(|f_n 0| > \delta) \le \lambda([0, 1/n]) = 1/n \to 0$. Thus, $f_n \to 0$ in λ -measure. On the other hand, $||f_n||_1 = \int f_n d\lambda = n\lambda([0, 1/n]) = 1$, which does not converge to 0, so f_n does not converge to 0 in \mathcal{L}^1 .
- (b) Let $g_1 = \mathbf{1}[0, 1)$, $g_2 = \mathbf{1}[0, 1/2)$, $g_2 = \mathbf{1}[1/2, 1)$, $g_3 = \mathbf{1}[0, 1/4)$, $g_4 = \mathbf{1}[1/4, 2/4)$, $g_5 = \mathbf{1}[2/4, 3/4)$ Thus, g_n , runs through the indicator functions of 1 interval of length 1, then 2 intervals of length 1/2, then 4 intervals of length 1/4, ... k intervals of length $1/2^k$. The norm $||g_n||_1$, is the measure of the interval where $g_n \neq 0$, which tends to 0, but for each x, $g_n(x)$ takes on the values 0 and 1 infinitely many times, so $\{x : (g_n(x)) \text{ converges }\} = \emptyset$.
- 20. Let (f_n) and (h_n) be sequences in $\mathcal{L}^0(\mu)$, $f \in \mathcal{L}^0$. Suppose (h_n) is a decreasing sequence converging to 0 in μ -measure, and $|f_n f| \le h_n$, for all n. Prove that $f_n \longrightarrow f$ μ -almost uniformly.

Proof. The sequence (f_n) converges almost uniformly to f if and only if for each $\delta > 0$, $\mu(\exists k \geq n, |f_k - f| > \delta) \to 0$. But, by hypothesis,

$$|f_k - f| \le h_k \le h_n$$
, for $k \ge n$

Hence,

$$\bigcup_{k\geq n}(|f_k-f|>\delta)\subset (h_n>\delta).$$

Since (h_n) converges to 0 in measure,

$$\mu\left(\bigcup_{k>n}(|f_k-f|>\delta)\right)\leq \mu(h_n>\delta)\to 0,$$

as required. \square

- 21. Concerning the \mathcal{L}^0 quasinorm, $||f||_0 = \inf\{\delta \ge 0 : \mu(|f| > \delta) \le \delta\}$, prove
 - (a) $||f||_0 \le ||f||_\infty \land \mu(f \ne 0)$. Need there be equality?
 - (b) If $|\alpha| \le 1$, $||\alpha f||_0 \le ||f||_0$

Soln.. (a) First, $\mu(|f| > ||f||_{\infty}) = 0 \le ||f||_{\infty}$. Since $||f||_{0}$ is the least δ with $\mu(|f| > \delta) = 0 \le \delta$, this shows

$$||f||_0 \le ||f||_{\infty}.$$

Also, if $\delta = \mu(f \neq 0)$, then $\mu(|f| > \delta) \leq \mu(f \neq 0) = \delta$, so

$$||f||_0 \le \mu(f \ne 0).$$

Thus, $||f||_0 \le ||f||_\infty \land \mu(f \ne 0)$.

To see that there need not be equality, take μ to be Lebesgue measure on the Borel sets of \mathbb{R} , and put

$$f(x) = \begin{cases} 1, & 0 \le x \le 2\\ 3, & 2 < x \le 3\\ 0, & \text{otherwise} \end{cases}$$

Then $\mu(|f| > 1) = 1 \le 1$, and if $\delta < 1$, $\mu(|f| > \delta) = 3 > \delta$, so $||f||_0 = 1 < ||f||_{\infty} \land \mu(f \ne 0) = 3$.

(b) If
$$|\alpha| \le 1$$
, then $|\alpha f| \le |f|$, so

$$\mu(|\alpha f| > ||f_0||) \le \mu(|f| > ||f||_0) \le ||f||_0$$

so
$$\|\alpha f\|_{0} \leq \|f\|_{0}$$
.

- 22. Suppose μ is a finite measure. Define $||f||_{\bullet} = |||f| \wedge 1||_{1}$, for $f \in \mathcal{L}^{0}$ and $d(f,g) = ||f g||_{\bullet}$.
 - (a) Show that this d is a semimetric on \mathcal{L}^0 .
 - (b) Show that a sequence (f_n) in \mathcal{L}^0 converges to f in measure iff $d(f_n, f) \longrightarrow 0$.

Soln.. (a) Remember the \land means minimum. For numbers $a, b \ge 0$,

$$(a+b) \wedge 1 \leq a \wedge 1 + b \wedge 1$$
,

because if one of a and b is > 1, the left side is 1 and the right side is > 1, while if both a, b are ≤ 1 , then the inequality reduces to $(a + b) \land 1 \le a + b$. Applying this to the functions f and g, and integrating we have

$$|||f + g| \wedge 1||_1 \le |||f| \wedge 1||_1 + ||g| \wedge 1||_1;$$

that is

$$||f + g||_{\bullet} \le ||f||_{\bullet} + ||g||_{\bullet}.$$

It follows as usual that $d(f, g) = ||f - g||_{\bullet}$ defines a semimetric.

(b) Now, if $f_n \to f$ in measure, then $\mu(|f_n - f| \land 1 > \delta) < \mu(|f_n - f| > \delta) \to 0$, and $|f_n - f| \land 1 \le 1$. But the function 1 is integrable, since μ is a finite measure. Thus, by the convergence in measure version of the DCT, $||f_n - f||_{\bullet} = \int |f_n - f| \land 1 d\mu \to 0$.

Conversely, since convergence in \mathcal{L}^1 implies convergence in measure, if $||f_0 - f||_{\bullet} \to 0$, $|f_n - f| \land 1 \to 0$ in measure, and hence $|f_n - f|$ does so also.