Tim Traynor^{*}, Department of Mathematics, University of Windsor, Windsor, ON, N9B 3P4, Canada, (e-mail: tt@uwindsor.ca) Isidore Fleischer, University of Windsor and Centre de Recherche Mathématiques Univérsité de Montréal, (e-mail: fleischi@crm.umontreal.ca)

Denjoy vs Kurzweil-Henstock Integration in \mathbb{R}^m

Throughout, K will be a fixed non-degenerate compact interval of \mathbb{R}^m and \mathcal{I} its family of non-degenerate closed sub-intervals; λ will denote Lebesgue measure. A tagged interval is a pair (x, J) with $x \in J \in \mathcal{I}$; a finite set π of non-overlapping tagged intervals is a partition; it is a partition of I, if the union of its intervals is I. For a bounded subset A of \mathbb{R}^m , the regularity of A is the ratio of its Lebesgue measure to that of the smallest cube containing it. For (non-degenerate) intervals, which is what we will mainly consider here, one can as well use the ratio of the length of the smallest side to that of the largest.

For a family \mathcal{H} of tagged interval and a subset A of K, $\mathcal{H}[A]$ is the set of those (x, J) in \mathcal{H} with the tag $x \in A$, $\mathcal{H}(A)$ those with $J \subset A$. A gauge on E is a positive real function δ on E.

For a function φ of tagged intervals and a tagged partition π , $\varphi(\pi)$ denotes $\sum_{(x,J)\in\pi}\varphi(J)$. An interval function F yields a tagged interval function, by simply dropping the tags. Thus, $F(\pi)$ will mean $\sum_{(x,J)\in\pi}F(J)$. For a point function f, $(f\lambda)(x, J) = f(x)\lambda(J)$ defines a tagged interval function and $(f\lambda)(\pi)$ becomes the Riemann sum $\sum_{(x,J)\in\pi}f(x)\lambda(J)$.

By a *basis* (used for both differentiation and integration) we will mean a filterbase \mathcal{B} in the space of tagged intervals such that for each $\beta \in \mathcal{B}$ and $x \in K$, there is a J with $(x, J) \in \beta$. For purposes of the talk, rather than postulate abstractly the conditions we will need, we concentrate on the following cases.

1. The *full basis*, consisting of the families

$$\beta_{\delta} = \{ (x, J) : x \in J \in \mathcal{I}, \ J \subset B(x, \delta(x)) \},\$$

 δ a gauge on K.

Key Words: Kurzweil Henstock Integral, Generalized Riemann Integral, Denjoy Integral

2. The *r*-regular basis (for a fixed $r \in (0, 1]$), consisting of the families

$$\beta^r_{\delta} = \{ (x, J) : x \in J \in \mathcal{I}, \ J \subset B(x, \delta(x)), \ \operatorname{reg}(J) \ge r \},\$$

 δ a gauge on K.

3. The regular basis, consisting of the families

$$\beta^{\rho}_{\delta} = \{ (x, J) : x \in J \in \mathcal{I}, \ J \subset B(x, \delta(x)), \operatorname{reg}(J) \ge \rho(x) \},\$$

 δ a gauge on K, ρ a function on K to (0,1).

In each of these cases (provided r < 1 in case 2), each β contains a partition of K; and any partition contained in β of an element $I \in \mathcal{I}$ can be extended to a partition of K, still in β . These are versions of Cousin's lemma. See [Pfe86] for case 3. Unless otherwise stated, we exclude from the discussion the 1-regular (that is, cubic) base.

For a fixed basis \mathcal{B} , an interval function F, and an $x \in K$, we define the derivative (when it exists) by $\mathbf{D}F(x) = \mathcal{B} \cdot \mathbf{D}F(x) = \lim_{J \to x} \frac{F(J)}{\lambda(J)}$, in the sense that for all $\epsilon > 0$, there exists $\beta \in \mathcal{B}$ with

$$\left|\frac{F(J)}{\lambda(J)} - \mathbf{D}F(x)\right| < \epsilon$$
, whenever $(x, J) \in \beta$.

(Thus, $\mathbf{D}F(x)$ is the limit of the quotient $\frac{F(J)}{\lambda(J)}$ as J follows the filterbase \mathcal{B}_x consisting of families $\{J: (x, J) \in \beta\}, \beta \in \mathcal{B}.$)

For a function $f: K \to \mathbb{R}$, the Kurzweil-Henstock integral of f over $I \in \mathcal{I}$ (with respect to the basis \mathcal{B}) is given by $\int_I f = \mathcal{B} \cdot \int_I f = \lim_{\pi} (f\lambda)(\pi)$ as π runs over the tagged partitions of I following \mathcal{B} : for every $\epsilon > 0$, there exists $\beta \in \mathcal{B}$ with

$$\sum_{(x,J)\in\pi} f(x)\boldsymbol{\lambda}(J) - \int_I f \left| < \epsilon, \right.$$

whenever π is a partition of *I* contained in β .

For the bases we've mentioned, if a function f is KH integrable on K, then it is also KH integrable on each sub-interval, and thus determines an additive function F on \mathcal{I} , called the *indefinite integral* of f. We would like conditions under which an additive function F is the indefinite integral of a K-H integrable function f if and only if F is differentiable with derivative f(almost everywhere).

For a tagged-interval function φ , and a fixed basis, define the \mathcal{B} -variational measure on the subsets X of K by

$$V\varphi(X) = \mathcal{B} \cdot V\varphi(X) = \inf_{\beta} \sup_{\pi \subset \beta} |\varphi|(\pi),$$

where π runs over partitions tagged in X.

Key Lemma. For an additive function F on \mathcal{I} and a function f on K,

- 1. If $\mathbf{D}F = f$ outside N where $VF(N) = V(f\boldsymbol{\lambda})(N) = 0$, then $F(I) = \int_I f$, for all $I \in \mathcal{I}$.
- 2. If $F(I) = \int_{I} f$, for $I \in \mathcal{I}$, then

$$||F|(\pi) - |f\lambda|(\pi)| \le |F - f\lambda|(\pi) \to 0,$$

so that $VF = V(\lambda f)$.

In the language of [LV00], [Bar01], VF(N) = 0 becomes F is of negligible variation on N.

Proof. (1) Suppose $\mathbf{D}F = f$ on N^c and $VF(N) = V(f\boldsymbol{\lambda})(N) = 0$. Then for each $\epsilon > 0$, and each $x \in N^c$, there exists $\beta \in \mathcal{B}$ with

$$|F(J) - f(x)\lambda(J)| \le \epsilon \lambda(J),$$

for $(x, J) \in \beta$. For each partition $\pi \subset \beta$ of $I, F(I) = F(\pi)$ and

$$\begin{aligned} |F(I) - (f\boldsymbol{\lambda})(\pi)| &\leq |F - f\boldsymbol{\lambda}|(\pi[N^c]) + |F|(\pi[N]) + |f\boldsymbol{\lambda}|(\pi[N]) \\ &\leq \epsilon\boldsymbol{\lambda}(I) + |F|(\pi[N]) + |f\boldsymbol{\lambda}|(\pi[N]) \end{aligned}$$

Since the variations VF(N) and $V(f\lambda)(N)$ are both 0, the latter terms can be made arbitrarily small, so that $F(I) = \int_{I} f$.

(2) That $|F - f\boldsymbol{\lambda}|(\pi) \to 0$, when $F(I) = \int_{I} f$ is Henstock's Lemma. This is merely being combined with the triangle inequality $||F(J)| - |f\boldsymbol{\lambda}|(J)| \leq |F(J) - (f\boldsymbol{\lambda})(J)|$.

For a tagged interval function φ to \mathbb{R} and $X \subset \mathbb{R}^m$, we say φ is AC_{*} on X if for every $\epsilon > 0$, there exists $\eta > 0$ such that $|\varphi|(\pi) < \epsilon$, whenever π is a partition with tags in X with $\lambda(\pi) < \eta$; φ is ACG_{*} on X if X can be written as the union of countably many sets on which φ is AC_* .

Lemma 1. The tagged interval function $f\lambda$ is ACG_* on K.

Proof. Indeed, for π tagged in $(|f| \le n)$, $\lambda(\pi) < \epsilon/n$ implies $|f\lambda|(\pi) < \epsilon$. \Box

It may not follow that the indefinite \mathcal{B} -KH integral is ACG_{*}. It seems we need to strengthen the hypothesis of ACG_{*} to get the desired descriptive characterization of KH integrals by derivatives. Say that φ is \mathcal{B} -AC on X, if for every $\epsilon > 0$, there exists $\eta > 0$ and a $\beta \in \mathcal{B}$, such that $|\varphi|(\pi) < \epsilon$, whenever π is a partition with tags in X, with $\lambda(\pi) < \eta$ and with $\pi \subset \beta$; φ is \mathcal{B} -ACG_{*} on X, if X can be written as the union of countably many sets on which φ is \mathcal{B} -ACG_{*}.

The bases \mathcal{B} of our 3 cases are compatible with the topology, or "fine", in the sense that if G is open, there exists a $\beta \in \mathcal{B}$ such that for each $x \in G$, if $(x, J) \in \beta$, then $J \subset G$. They also are σ -decomposable [Tho02] (or of σ -local character [Ost86]), in the sense that if (β_n) is a sequence of members of \mathcal{B} and (X_n) is a disjoint sequence of subsets of K, then there is a $\beta \in \mathcal{B}$ with $\beta[X_n] \subset \beta_n[X_n]$, for all $n \in \mathbb{N}$.

Lemma 2. If a tagged interval function φ is \mathcal{B} - ACG_* on K, then \mathcal{B} - $V\varphi(N) = 0$, for each Lebesgue nullset N.

That is, $V\varphi$ is absolutely continuous with respect to Lebesgue measure.

Proof. One really only needs \mathcal{B} -ACG_{*} on the nullset N. Write N as a disjoint union $\bigcup_n N_n$, where φ is \mathcal{B} -AC_{*} on N_n . For a given $\epsilon > 0$, choose $\eta_n > 0$ and $\beta_n \in \mathcal{B}$ such that for each partition tagged in N_n of total measure $\lambda(\pi) < \eta_n$, with $\pi \subset \beta_n$, $|\varphi|(\pi) < \epsilon/2^n$. Cover each N_n with an open G_n set of measure less that η_n , then choose a $\beta'_n \subset \beta_n$ such that $x \in G_n$ and $(x, J) \in \beta'_n$ implies $J \subset G_n$. Now find a new β' such that $\beta[X_n] \subset \beta_n[X_n]$, for all $n \in \mathbb{N}$, so that $x \in G_n$ and $(x, J) \in \beta'$ implies $J \subset G_n$. Now any partition $\pi \subset \beta'$ will have $\lambda(\pi[N_n]) < \eta_n$, so $|\varphi|(\pi[N_n]) < \epsilon/2^n$, and hence $|\varphi|(\pi[N] < \epsilon$. This shows $V\varphi(N) = 0$, as required

As a consequence, the Key Lemma yields an \mathbb{R}^m version of Bartle's Theorem [LV00], 3.9.1. [Bar01], 5.12

Theorem 3. An additive function F is the indefinite integral of a \mathcal{B} -KH integrable f if $\mathbf{D}F = f$ except on a nullset N with VF(N) = 0. In that case, VF vanishes on every nullset; that is, is absolutely continuous with respect to λ .

Proof. If N is null, then $f\lambda(N) = 0$, since $f\lambda$ is ACG_{*}. So if also VF(N) = 0, F is the indefinite integral of f, by the Key Lemma (1). But the second half then says $VF = V(f\lambda)$, which is 0 at each nullset.

Call a function $f \mathcal{B}$ -Denjoy integrable if it is almost everywhere equal to the \mathcal{B} -derivative of an additive function F which is \mathcal{B} -ACG_{*}. The function Fwill be called the *primitive* of f. Let \mathcal{B} be the *r*-regular basis for 0 < r < 1, or the regular basis, so that the Vitali Covering Theorem holds. We obtain the descriptive characterization of the \mathcal{B} -KH integral as a Denjoy integral.

Theorem 4. A function f on K is \mathcal{B} -Denjoy integrable with primitive F if and only if it is \mathcal{B} -KH integrable, with indefinite integral F.

Proof. If $\mathbf{D}F = f$ outside a nullset N and F is \mathcal{B} -ACG_{*}, then $VF(N) = V(f\lambda)(N) = 0$, so by the Key Lemma, F is a KH-primitive of f.

For the converse, if F is a KH-primitive of f and $N = (\mathbf{D}F \neq f)$, Henstock's Lemma and the Vitali property yield N is null as in [Ost86], page 37. $\mathbf{D}F = f$ almost everywhere and the fact that $|F|(\pi) - |\lambda f|(\pi) \to 0$ yields Fis \mathcal{B} -ACG_{*}.

If the r-regular base (call it \mathcal{B}^r) is used, we may refer to the r-derivative, the r-Denjoy integral, and the r-KH-integral. If all the r-derivatives r-**D**F(x), 0 < r < 1, exist, they must be equal and their common value is the ordinary derivative [Sak64]. Actually, Kurzweil and Jarník [KJ92] have shown that r-differentiability for some r implies ordinary differentiability, but that r-integrability depends on the choice of r. We will call a function f ordinary Denjoy integrable if it is r-Denjoy integrable for each regularity r. It is important that this includes the condition that F is \mathcal{B}^r -ACG_{*}, for each r separately. If all the r-KH-integrals of f exist, they also must have a common value. This value is known as the M-integral [BDPS01],[DP01] after Mahwin, who introduced it in an equivalent form [Maw81].

Corollary 5. A function f on K is M-integrable with indefinite integral F, if and only if it is ordinary Denjoy integrable with primitive F.

One might note that since ACG_* implies \mathcal{B} - ACG_* , for any choice of interval basis, it follows that each ACG_* ordinary differentiable additive F is the indefinite M-integral of its derivative and also the KH-integral with respect to the regular basis.

Remarks

Recall that throughout, VF referred to \mathcal{B} -VF, the \mathcal{B} -variational measure. Since the talk, we learned that Di Piazza [DP01] defines $V_{\mathcal{M}}F = \sup_{r \in (0,1)} \mathcal{B}^r VF$ and proves that the ordinary derivative of F exist almost everywhere and F is its indefinite M-intgegral if and only if $V_{\mathcal{M}}F$ is absolutely continuous.

In the one-dimensional case (where all 3 bases coincide), Gordon [Gor94] refers to \mathcal{B} -ACG_{*} as ACG_{δ} . Chew [Che90], working with the regular basis, uses the notation ACG^{*}, with the asterisk raised instead of lowered. Chew, Lemma 1, shows that for a continuous additive function of intervals these coincide with the classical definition.

We have been unable to determine, for any of the 3 bases, whether every additive \mathcal{B} -ACG_{*} function on \mathcal{I} is ACG_{*}.

Open Problem. For what bases do the notions of ACG_* and \mathcal{B} - ACG_* coincide for additive interval functions? (... for indefinite \mathcal{B} -KH integrals?)

Further discussion of these matters appear on

http://timtraynor.com (http://www.uwindsor.ca/traynor).

We would like to thank Professors Di Piazza and Skvortsov for several of the following references, which we have not had time to examine.

References

- [Bar01] Robert G. Bartle, A modern theory of integration, Graduate Studies in Mathematics, vol. 32, American Mathematical Society, Providence, RI, 2001. MR 2002d:26001
- [BDPS01] Benedetto Bongiorno, Luisa Di Piazza, and Valentin Skvortsov, On the n-dimensional Perron integral defined by ordinary derivates, Real Anal. Exchange 26 (2000/01), no. 1, 371–380. MR 2002b:26006
- [BDPS00] B. Bongiorno, L. Di Piazza, and V. A. Skvortsov, On variational measures related to some bases, J. Math. Anal. Appl. 250 (2000), no. 2, 533–547. MR 2001i:26007
- [BPT96] B. Bongiorno, W. F. Pfeffer, and B. S. Thomson, A full descriptive definition of the gage integral, Canad. Math. Bull. 39 (1996), no. 4, 390–401. MR 97j:26008
- [Che90] Tuan Seng Chew, On the equivalence of Henstock-Kurzweil and restricted Denjoy integrals in Rⁿ, Real Anal. Exchange 15 (1989/90), no. 1, 259–268. MR 91d:26012
- [DP01] Luisa Di Piazza, Variational measures in the theory of the integration in ℝ^m, Czechoslovak Math. J. 51(126) (2001), no. 1, 95–110. MR 2001m:28003
- [Gor94] Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, vol. 4, American Mathematical Society, Providence, RI, 1994. MR 95m:26010
- [KJ92] Jaroslav Kurzweil and JiříJarník, Differentiability and integrability in n dimensions with respect to α-regular intervals, Results Math. 21 (1992), no. 1-2, 138–151. MR 93e:26007
- [LV00] Peng Yee Lee and Rudolf Výborný, Integral: an easy approach after Kurzweil and Henstock, Australian Mathematical Society Lecture Series, vol. 14, Cambridge University Press, Cambridge, 2000. MR 2001h:26011

6

- [Maw81] Jean Mawhin, Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, Czechoslovak Math.
 J. 31(106) (1981), no. 4, 614–632. MR 82m:26010
- [Ost86] Krzysztof M. Ostaszewski, Henstock integration in the plane, Mem. Amer. Math. Soc. 63 (1986), no. 353, viii+106. MR 87j:26016
- [Pfe86] W. F. Pfeffer, *The divergence theorem*, Trans. Amer. Math. Soc. 295 (1986), no. 2, 665–685. MR 87f:26015
- [Sak64] Stanisław Saks, Theory of the integral, Second revised edition. English translation by L. C. Young. With two additional notes by Stefan Banach, Dover Publications Inc., New York, 1964. MR 29 #4850
- [Tho02] Brian S. Thomson, *Differentiation*, Handbook of measure theory, Vol. I, II, North-Holland, Amsterdam, 2002, pp. 179–247. MR 1 954 615