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Denjoy vs Kurzweil-Henstock Integration in Rm

Throughout, K will be a fixed non-degenerate compact interval of Rm and
I its family of non-degenerate closed sub-intervals; λ will denote Lebesgue
measure. A tagged interval is a pair (x, J) with x ∈ J ∈ I; a finite set π
of non-overlapping tagged intervals is a partition; it is a partition of I, if the
union of its intervals is I. For a bounded subset A of Rm, the regularity of
A is the ratio of its Lebesgue measure to that of the smallest cube containing
it. For (non-degenerate) intervals, which is what we will mainly consider here,
one can as well use the ratio of the length of the smallest side to that of the
largest.

For a family H of tagged interval and a subset A of K, H[A] is the set of
those (x, J) in H with the tag x ∈ A, H(A) those with J ⊂ A. A gauge on E
is a positive real function δ on E.

For a function ϕ of tagged intervals and a tagged partition π, ϕ(π) de-
notes

∑
(x,J)∈π ϕ(J). An interval function F yields a tagged interval function,

by simply dropping the tags. Thus, F (π) will mean
∑

(x,J)∈π F (J). For a
point function f , (fλ)(x, J) = f(x)λ(J) defines a tagged interval function
and (fλ)(π) becomes the Riemann sum

∑
(x,J)∈π f(x)λ(J).

By a basis (used for both differentiation and integration) we will mean a
filterbase B in the space of tagged intervals such that for each β ∈ B and x ∈ K,
there is a J with (x, J) ∈ β. For purposes of the talk, rather than postulate
abstractly the conditions we will need, we concentrate on the following cases.

1. The full basis , consisting of the families

βδ = {(x, J) : x ∈ J ∈ I, J ⊂ B(x, δ(x))},

δ a gauge on K.
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2. The r-regular basis (for a fixed r ∈ (0, 1]), consisting of the families

βr
δ = {(x, J) : x ∈ J ∈ I, J ⊂ B(x, δ(x)), reg(J) ≥ r},

δ a gauge on K.

3. The regular basis , consisting of the families

βρ
δ = {(x, J) : x ∈ J ∈ I, J ⊂ B(x, δ(x)), reg(J) ≥ ρ(x)},

δ a gauge on K, ρ a function on K to (0, 1).

In each of these cases (provided r < 1 in case 2), each β contains a partition
of K; and any partition contained in β of an element I ∈ I can be extended
to a partition of K, still in β. These are versions of Cousin’s lemma. See
[Pfe86] for case 3. Unless otherwise stated, we exclude from the discussion the
1-regular (that is, cubic) base.

For a fixed basis B, an interval function F , and an x ∈ K, we define the
derivative (when it exists) by DF (x) = B-DF (x) = limJ→x

F (J)
λ(J) , in the sense

that for all ε > 0, there exists β ∈ B with
∣∣∣∣
F (J)
λ(J)

− DF (x)
∣∣∣∣ < ε, whenever (x, J) ∈ β.

(Thus, DF (x) is the limit of the quotient F (J)
λ(J) as J follows the filterbase

Bx consisting of families {J : (x, J) ∈ β}, β ∈ B.)
For a function f : K → R, the Kurzweil-Henstock integral of f over I ∈ I

(with respect to the basis B) is given by
∫

I
f = B-

∫
I
f = limπ(fλ)(π) as π

runs over the tagged partitions of I following B: for every ε > 0, there exists
β ∈ B with ∣∣∣∣∣∣

∑

(x,J)∈π

f(x)λ(J) −
∫

I

f

∣∣∣∣∣∣
< ε,

whenever π is a partition of I contained in β.
For the bases we’ve mentioned, if a function f is KH integrable on K,

then it is also KH integrable on each sub-interval, and thus determines an
additive function F on I, called the indefinite integral of f . We would like
conditions under which an additive function F is the indefinite integral of a
K-H integrable function f if and only if F is differentiable with derivative f
(almost everywhere).

For a tagged-interval function ϕ, and a fixed basis, define the B-variational
measure on the subsets X of K by

V ϕ(X) = B-V ϕ(X) = inf
β

sup
π⊂β

|ϕ|(π),
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where π runs over partitions tagged in X.

Key Lemma. For an additive function F on I and a function f on K,

1. If DF = f outside N where V F (N) = V (fλ)(N) = 0, then F (I) =
∫

I
f ,

for all I ∈ I.

2. If F (I) =
∫

I
f , for I ∈ I, then

| |F |(π) − |fλ|(π) | ≤ |F − fλ|(π) → 0,

so that V F = V (λf).

In the language of [LV00],[Bar01], V F (N) = 0 becomes F is of negligible
variation on N .

Proof. (1) Suppose DF = f on N c and V F (N) = V (fλ)(N) = 0. Then for
each ε > 0, and each x ∈ N c, there exists β ∈ B with

|F (J) − f(x)λ(J)| ≤ ελ(J),

for (x, J) ∈ β. For each partition π ⊂ β of I, F (I) = F (π) and

|F (I) − (fλ)(π)| ≤ |F − fλ|(π[N c]) + |F |(π[N ]) + |fλ|(π[N ])
≤ ελ(I) + |F |(π[N ]) + |fλ|(π[N ])

Since the variations V F (N) and V (fλ)(N) are both 0, the latter terms can
be made arbitrarily small, so that F (I) =

∫
I
f .

(2) That |F − fλ|(π) → 0, when F (I) =
∫

I
f is Henstock’s Lemma. This

is merely being combined with the triangle inequality ||F (J)| − |fλ|(J)| ≤
|F (J) − (fλ)(J)|.

For a tagged interval function ϕ to R and X ⊂ Rm, we say ϕ is AC∗ on
X if for every ε > 0, there exists η > 0 such that |ϕ|(π) < ε, whenever π is a
partition with tags in X with λ(π) < η; ϕ is ACG∗ on X if X can be written
as the union of countably many sets on which ϕ is AC∗.

Lemma 1. The tagged interval function fλ is ACG∗ on K.

Proof. Indeed, for π tagged in (|f | ≤ n), λ(π) < ε/n implies |fλ|(π) < ε.

It may not follow that the indefinite B-KH integral is ACG∗. It seems
we need to strengthen the hypothesis of ACG∗ to get the desired descriptive
characterization of KH integrals by derivatives. Say that ϕ is B-AC on X, if
for every ε > 0, there exists η > 0 and a β ∈ B, such that |ϕ|(π) < ε, whenever
π is a partition with tags in X, with λ(π) < η and with π ⊂ β; ϕ is B-ACG∗
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on X, if X can be written as the union of countably many sets on which ϕ is
B-ACG∗.

The bases B of our 3 cases are compatible with the topology, or “fine”, in
the sense that if G is open, there exists a β ∈ B such that for each x ∈ G, if
(x, J) ∈ β, then J ⊂ G. They also are σ-decomposable [Tho02] (or of σ-local
character [Ost86]), in the sense that if (βn) is a sequence of members of B
and (Xn) is a disjoint sequence of subsets of K, then there is a β ∈ B with
β[Xn] ⊂ βn[Xn], for all n ∈ N.

Lemma 2. If a tagged interval function ϕ is B-ACG∗ on K, then B-V ϕ(N) =
0, for each Lebesgue nullset N .

That is, V ϕ is absolutely continuous with respect to Lebesgue measure.

Proof. One really only needs B-ACG∗ on the nullset N . Write N as a disjoint
union

⋃
n Nn, where ϕ is B-AC∗ on Nn. For a given ε > 0, choose ηn > 0 and

βn ∈ B such that for each partition tagged in Nn of total measure λ(π) < ηn,
with π ⊂ βn, |ϕ|(π) < ε/2n. Cover each Nn with an open Gn set of measure
less that ηn, then choose a β′

n ⊂ βn such that x ∈ Gn and (x, J) ∈ β′
n implies

J ⊂ Gn. Now find a new β′ such that β[Xn] ⊂ βn[Xn], for all n ∈ N, so that
x ∈ Gn and (x, J) ∈ β′ implies J ⊂ Gn. Now any partition π ⊂ β′ will have
λ(π[Nn]) < ηn, so |ϕ|(π[Nn]) < ε/2n, and hence |ϕ|(π[N ] < ε. This shows
V ϕ(N) = 0, as required

As a consequence, the Key Lemma yields an Rm version of Bartle’s Theo-
rem [LV00], 3.9.1. [Bar01], 5.12

Theorem 3. An additive function F is the indefinite integral of a B-KH
integrable f if DF = f except on a nullset N with V F (N) = 0. In that case,
V F vanishes on every nullset; that is, is absolutely continuous with respect
to λ.

Proof. If N is null, then fλ(N) = 0, since fλ is ACG∗. So if also V F (N) = 0,
F is the indefinite integral of f , by the Key Lemma (1). But the second half
then says V F = V (fλ), which is 0 at each nullset.

Call a function f B-Denjoy integrable if it is almost everywhere equal to
the B-derivative of an additive function F which is B-ACG∗. The function F
will be called the primitive of f . Let B be the r-regular basis for 0 < r < 1, or
the regular basis, so that the Vitali Covering Theorem holds. We obtain the
descriptive characterization of the B-KH integral as a Denjoy integral.

Theorem 4. A function f on K is B-Denjoy integrable with primitive F if
and only if it is B-KH integrable, with indefinite integral F .
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Proof. If DF = f outside a nullset N and F is B-ACG∗, then V F (N) =
V (fλ)(N) = 0, so by the Key Lemma, F is a KH-primitive of f .

For the converse, if F is a KH-primitive of f and N = (DF 6= f), Hen-
stock’s Lemma and the Vitali property yield N is null as in [Ost86], page 37.
DF = f almost everywhere and the fact that |F |(π) − |λf |(π) → 0 yields F
is B-ACG∗.

If the r-regular base (call it Br) is used, we may refer to the r-derivative,
the r-Denjoy integral, and the r-KH-integral. If all the r-derivatives r-DF (x),
0 < r < 1, exist, they must be equal and their common value is the ordi-
nary derivative [Sak64]. Actually, Kurzweil and Jarńık [KJ92] have shown
that r-differentiability for some r implies ordinary differentiability, but that
r-integrability depends on the choice of r. We will call a function f ordi-
nary Denjoy integrable if it is r-Denjoy integrable for each regularity r. It
is important that this includes the condition that F is Br-ACG∗, for each r
separately. If all the r-KH-integrals of f exist, they also must have a common
value. This value is known as the M-integral [BDPS01],[DP01] after Mahwin,
who introduced it in an equivalent form [Maw81].

Corollary 5. A function f on K is M-integrable with indefinite integral F ,
if and only if it is ordinary Denjoy integrable with primitive F .

One might note that since ACG∗ implies B-ACG∗, for any choice of inter-
val basis, it follows that each ACG∗ ordinary differentiable additive F is the
indefinite M -integral of its derivative and also the KH-integral with respect
to the regular basis.
Remarks

Recall that throughout, V F referred to B-VF, the B-variational mea-
sure. Since the talk, we learned that Di Piazza [DP01] defines VMF =
supr∈(0,1) BrV F and proves that the ordinary derivative of F exist almost
everywhere and F is its indefinite M -intgegral if and only if VMF is absolutely
continuous.

In the one-dimensional case (where all 3 bases coincide), Gordon [Gor94]
refers to B-ACG∗ as ACGδ. Chew [Che90], working with the regular basis,
uses the notation ACG∗, with the asterisk raised instead of lowered. Chew,
Lemma 1, shows that for a continuous additive function of intervals these
coincide with the classical definition.

We have been unable to determine, for any of the 3 bases, whether every
additive B-ACG∗ function on I is ACG∗.

Open Problem. For what bases do the notions of ACG∗ and B-ACG∗ coin-
cide for additive interval functions? (. . . for indefinite B-KH integrals?)
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Further discussion of these matters appear on
http://timtraynor.com (http://www.uwindsor.ca/traynor).

We would like to thank Professors Di Piazza and Skvortsov for several of
the following references, which we have not had time to examine.
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