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1 Introduction

Multiloop algebras are multivariable generalizations of the loop algebras
appearing in affine Kac-Moody theory. The study of these algebras and
their extensions includes a substantial literature on (twisted and untwisted)
multiloop, toroidal, and extended affine Lie algebras. This paper describes
the finite-dimensional simple modules of multiloop algebras and classifies
them up to isomorphism.

Let g be a finite-dimensional simple Lie algebra over an algebraically
closed field F of characteristic zero. Suppose that σ1, . . . , σN : g → g are
commuting automorphisms of finite orders m1, . . . ,mN , respectively. For
each i, fix a primitive mith root of unity ξi ∈ F . Then g decomposes into
common eigenspaces relative to these automorphisms:

g =
⊕
k∈G

gk,
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where gk = {x ∈ g | σix = ξkii x} and k is the image of each k ∈ ZN under
the canonical map ZN → G = Z/m1Z×· · ·×Z/mNZ. The multiloop algebra
of g, relative to these automorphisms, is the Lie algebra

L = L(g;σ1, . . . , σN ) =
⊕
k∈ZN

gk ⊗ Ft
k,

where Ftk is the span of tk = tk11 · · · t
kN
N , and multiplication is defined point-

wise. If the automorphisms σ1, . . . , σN are all trivial, L is called an untwisted
multiloop algebra. Otherwise, it is a twisted multiloop algebra.

In the one variable case (untwisted and twisted loop algebras), the finite-
dimensional simple modules can be deduced from ideas in the work of
V. Chari and A. Pressley [8, 10, 12]. A complete list of the finite-dimensional
simple modules also appears explicitly in [18]. These modules are classified
up to isomorphism in [11], and a very recent paper [9] gives a detailed dis-
cussion of this problem in the twisted loop case.

A description of the finite-dimensional simple modules of the untwisted
multiloop Lie algebras was first given by S.E. Rao [19]. Subsequent work
by P. Batra [4] provided a complete (but redundant) list of the finite-
dimensional simple modules when σ1 is a diagram automorphism and the
other automorphisms σ2, . . . , σN are all trivial.

In the one variable case, every twisted loop algebra L(g; τ ◦ γ) defined
by an inner automorphism τ and a diagram automorphism γ is isomorphic
to L(g; γ) [15, Prop 8.5]. It was thus sufficient to consider only twists by
diagram automorphisms in this setting. Unfortunately, this is far from true
when the number of variables is larger than one. (See [13, Rem 5.9], for
instance.) It has recently been shown that the centreless core of almost
every extended affine Lie algebra is a multiloop algebra [2] (using [1] and
[16]). Even for these multiloop algebras, any number of the automorphisms
σi can be nontrivial, and any number of them can fail to be diagram auto-
morphisms.

In this paper, we consider an arbitrary (twisted or untwisted) multiloop
algebra L. From any ideal I of L, we construct a G-graded ideal I = I(I)
of the ring of Laurent polynomials R = F [t±1

1 , . . . , t±1
N ]. If I is the kernel

of a finite-dimensional irreducible representation, the 0-component I0 of the
ideal I turns out to be a radical ideal of the 0-component of the ring R.
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The resulting decomposition of I0 into an intersection of a finite number of
maximal ideals produces an isomorphism

ψa : L/I → g⊕ · · · ⊕ g (r copies)

whose composition with the quotient map π : L → L/I is evaluation at an
r-tuple a = (a1, . . . , ar) of points ai ∈ (F×)N :

ψa ◦ π : x⊗ f(t) 7→
(
f(a1)x, . . . , f(ar)x

)
,

for any x ⊗ f(t) ∈ L. Since the finite-dimensional simple modules of the
semisimple Lie algebra g⊕· · ·⊕g are the tensor products of finite-dimensional
simple modules for g, we obtain a complete (but redundant) list of the finite-
dimensional irreducible representations of L (Corollary 4.11). Namely, any
finite-dimensional simple module for L is of the form

V (λ, a) = Vλ1(a1)⊗ · · · ⊗ Vλr(ar),

where Vλi is the g-module of dominant integral highest weight λi, and
Vλi(ai) is the L-module obtained by evaluating elements of L at the point
ai, and then letting the resulting element of g act on Vλi . The r-tuples
a = (a1, . . . , ar) that occur in this process must satisfy the condition that the
points m(ai) are all distinct, where m(ai) = (am1

i1 , . . . , a
mN
iN ) is determined

by the orders m1, . . . ,mN of the automorphisms σ1, . . . , σN . Conversely,
the L-module V (λ, a) is finite-dimensional and simple if the ai satisfy this
condition (Theorem 4.12).

In the second half of the paper, we establish necessary and sufficient
conditions for L-modules V (λ, a) and V (µ, b) to be isomorphic. Namely, we
“pull back” a triangular decomposition N−⊕H ⊕N+ of g⊕ · · · ⊕ g to a tri-
angular decomposition ψ−1

a (N−)⊕ψ−1
a (H)⊕ψ−1

a (N+) of L/I. The modules
V (λ, a) and V (µ, b) are highest weight with respect to this decomposition
of L/I, and they are isomorphic if and only if they have the same highest
weights. The paper concludes with three equivalent criteria for isomorphism
in terms of an explicit formula (Theorem 5.7), orbits under a group action
(Corollary 5.15), and equivariant maps (Corollary 5.20). These are the first
such isomorphism results for modules in any multiloop setting.

One of the most interesting features is that the triangular decomposition
N−⊕H⊕N+ is replaced with a new triangular decomposition ψbψ−1

a (N−)⊕
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ψbψ
−1
a (H)⊕ ψbψ−1

a (N+) of g⊕r in the computation of the highest weight of
V (µ, b). Unlike diagram automorphisms, arbitrary finite order automor-
phisms σi often fail to stabilize any triangular decomposition of a finite-
dimensional semisimple Lie algebra. This fact is reflected in the change of
triangular decomposition on g⊕r, and it is one of the reasons that past work
considered only twists by diagram automorphisms.

Another novelty in this classification is the passage from twists by a
single nontrivial automorphism σ1 to a family of nontrivial automorphisms
σ1, . . . , σN . Here the major obstacle to past approaches was reliance on
the representation theory of the fixed point subalgebra g0 under the action
of the automorphisms. While this was a great success when working with
twists by a single automorphism, it cannot be used when considering twists
by more than one automorphism, since the algebra g0 is then often 0. We
avoid this pitfall by using a new approach that does not rely on the usual
Dynkin diagram ”folding arguments”.

Finally, we expect the methods of this paper to be applicable in many
related settings. For example, the arguments given here classify the finite-
dimensional simple modules of the Lie algebra Map(X, g) of g-valued regular
functions on any complex variety X. When X is affine, they are tensor prod-
ucts of evaluation modules at distinct points of X. One might also consider
modules of invariants under a finite group action G y Map(X, g). Unfor-
tunately, such a classification requires Lemma 2.9, which fails if not every
graded component of the coordinate ring contains a unit. Incorporating
twists by arbitrary actions of the group G greatly complicates matters, and
we restrict our attention to the multiloop case in this paper. Another inter-
esting direction is the classification of ZN -graded modules of L(g;σ1, . . . , σN )
with finite-dimensional graded components. (See [17, 19] for partial results.)
We expect that the ideas introduced in this paper are sufficient to resolve
this question, though an explicit description will likely also require the clas-
sification of thin coverings [5] or an equivalent concept.

Acknowledgements: The author thanks V. Chari, E. Neher, and P. Senesi
for their careful reading and comments on an earlier draft.

Note: Throughout this paper, F will be an algebraically closed field of
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characteristic zero. All Lie algebras, linear spans, and tensor products will
be taken over F unless otherwise explicitly indicated. We will denote the
integers by Z, the nonnegative integers by Z+, and the nonzero elements of
F by F×.

2 Multiloop algebras and their ideals

The following proposition is an immediate consequence of general facts about
reductive Lie algebras [7, §6, no. 4].

Proposition 2.1 Let L be a perfect Lie algebra over F , and let φ : L →
EndV be a finite-dimensional irreducible representation. Then L/ kerφ is a
semisimple Lie algebra.

Proof The representation φ descends to a faithful representation of L/ kerφ.
By [7, Prop 6.4.5], any Lie algebra with a faithful finite-dimensional ir-
reducible representation is reductive. Moreover, L is perfect. Therefore,
L/ kerφ is perfect and reductive, and hence semisimple. 2

We now focus our attention on multiloop algebras. Let g be a finite-
dimensional simple Lie algebra over F , and let R = F [t±1

1 , . . . , t±1
N ] be the

commutative algebra of Laurent polynomials in N variables. The untwisted
multiloop algebra is the Lie algebra g⊗R with (bilinear) pointwise multipli-
cation given by

[x⊗ f, y ⊗ g] = [x, y]⊗ fg

for all x, y ∈ g and f, g ∈ R. Suppose that g is equipped with N commuting
automorphisms

σ1, . . . , σN : g→ g

of finite orders m1, . . . ,mN , respectively. For each i, fix ξi ∈ F to be a
primitive mith root of 1. Then g has a common eigenspace decomposition
g =

⊕
k∈G gk where k is the image of k = (k1, . . . , kN ) ∈ ZN under the

canonical map
ZN → G = Z/m1Z× · · · × Z/mNZ
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and
gk = {x ∈ g | σix = ξkii x for i = 1, . . . , N}.

The (twisted) multiloop algebra L = L(g;σ1, . . . , σN ) is the Lie subalge-
bra

L =
⊕
k∈ZN

gk ⊗ Ft
k ⊆ g⊗R, (2.2)

where tk = tk11 · · · t
kN
N is multi-index notation.

Note that R has a G-grading,

R =
⊕
k∈G

Rk, (2.3)

where R0 = F [t±m1
1 , . . . , t±mNN ] and Rk = tkR0 for every k ∈ ZN . In this

notation,
L =

⊕
k∈G

(
gk ⊗Rk

)
. (2.4)

Fix an F -basis
{xkj | j = 1, . . . ,dim gk} (2.5)

of gk for all k ∈ G. Then

L =
⊕
k∈G

dim gk⊕
j=1

(
Fxkj ⊗Rk

)
. (2.6)

Since g is simple (hence perfect) and graded, each xkj can be expressed as
a sum of brackets of homogeneous elements y, z ∈ g, with deg y+ deg z = k.
For each such k ∈ ZN and pair y, z, there exist a, b ∈ ZN with deg y = a,
deg z = b, and a + b = k. Then the sum of the brackets [y ⊗ ta, z ⊗ tb] will
be xkj ⊗ t

k. Since these elements span L, it is clear that L is perfect.
Let πkj be the projection πkj : L → Fxkj ⊗ Rk, relative to the de-

composition (2.6). We will view πkj as a projection L → Rk by identifying
xkj ⊗ f with f for all f ∈ Rk. Let I be an ideal of the Lie algebra L, and
let I = I(I) be the ideal of R generated by

⋃
k∈G

dim gk⋃
j=1

πkj(I). (2.7)

6



Note that the definition of I is independent of the choice of homoge-
neous basis {xkj} of g, and the ideal I is G-graded since its generators are
homogeneous with respect to the G-grading of R. That is,

I =
⊕
k∈G

Ik where Ik = I ∩Rk.

Moreover,
t`−kIk ⊆ I ∩R` = I` = t`−k

(
tk−`I`

)
⊆ t`−kIk,

so
I` = t`−kIk, (2.8)

for all k, ` ∈ ZN . We will use the following technical lemma to show that
I = L ∩ (g⊗ I).

Lemma 2.9 Let Y =
∑
r∈G

dim gr∑
n=1

xrn ⊗ πrn(Y ) ∈ I. Then

xki ⊗ t
k−`π`j(Y ) ∈ I

for all k, ` ∈ ZN , 1 ≤ i ≤ dim gk, and 1 ≤ j ≤ dim g`.

Proof The finite-dimensional simple Lie algebra g is a finite-dimensional
simple g-module (and hence a finite-dimensional simple U(g)-module) un-
der the adjoint action of g. Fix k, ` ∈ ZN , i ∈ {1, . . . ,dim gk}, and j ∈
{1, . . . ,dim g`}. By the Jacobson Density Theorem, there exists u ∈ U(g)
such that

u.xrn =

{
xki if r = ` and n = j

0 otherwise,

for all r ∈ G and n ∈ {1, . . . , gr}. By the Poincaré-Birkhoff-Witt Theorem,
write u =

∑a
s=1 ps, where a ≥ 1 and each ps is a monomial in the variables

in {xrn | r ∈ G, n = 1, . . . ,dim gr}. Considering the induced G-grading of
U(g), we can assume that each ps is homogeneous of degree k − `. Write

ps = cs
∏
r∈G

dim gr∏
n=1

(xrn)b
(s)
rn

where cs ∈ F and b
(s)
rn ∈ Z+.
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Since ps is homogeneous of degree k − ` in the G-grading of U(g), we
can choose α(s, r, n, 1), α(s, r, n, 2), . . . , α(s, r, n, b(s)rn ) ∈ ZN for each s ∈
{1, . . . , a}, r ∈ G, and n ∈ {1, . . . ,dim gr}, such that

(i) r = α(s, r, n, 1) = · · · = α(s, r, n, b(s)rn ),

(ii)
∑
r∈G

dim gr∑
n=1

b
(s)
rn∑
b=1

α(s, r, n, b) = k − `.

Then

p̃s = cs
∏
r∈G

dim gr∏
n=1

b
(s)
rn∏
b=1

(
xrn ⊗ tα(s,r,n,b)

)
is in the universal enveloping algebra U(L) of L, which acts on I via the
adjoint action of L on I, and

a∑
s=1

p̃s.Y = xki ⊗ t
k−`π`j(Y ).

Thus xki ⊗ t
k−`π`j(Y ) ∈ I. 2

Proposition 2.10 In the notation introduced above,

I = L ∩ (g⊗ I) (2.11)

=
⊕
k∈G

gk ⊗ Ik. (2.12)

Proof The second equality (2.12) and the inclusion I ⊆ L∩ (g⊗ I) are
clear, so it remains only to verify the reverse inclusion

L ∩ (g⊗ I) ⊆ I.

In light of (2.12), it suffices to show that xki ⊗ f ∈ I for all k ∈ G, i ∈
{1, . . . ,dim gk}, and f ∈ Ik.

By the definition of I, there exist Y`j ∈ I and f`j ∈ Rk−` such that

f =
∑

`∈G
∑dim g`

j=1 f`jπ`j

(
Y`j

)
. By Lemma 2.9,

xki ⊗ t
rπ`j

(
Y`j

)
∈ I
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for all r, ` ∈ ZN satisfying r = k − `. Since each f`j ∈ Rk−` is an F -linear
combination of {tr | r = k − `}, we see that

xki ⊗ f`jπ`j
(
Y`j

)
∈ I

for all ` ∈ G and j = 1, . . . ,dim g`. Thus xki ⊗ f ∈ I. 2

We close this section by considering the structure of I0 ⊆ R0 in the case
where I is the kernel of an irreducible finite-dimensional representation of
L. Clearly I0 is an ideal of R0. Moreover, it is a radical ideal:

Proposition 2.13 Let φ : L → EndV be a finite-dimensional irreducible
representation of the multiloop algebra L, and let I = kerφ. Define I =
I(I) ⊆ R as above. Then the graded component I0 is a radical ideal of R0.

Proof Suppose p is an element of
√
I0, the radical of the ideal I0 = I ∩R0

of R0. Choose k ∈ ZN so that gk 6= 0, and let x ∈ gk be a nonzero element.
For y ⊗ f ∈ L, let 〈y ⊗ f〉 ⊆ L be the ideal (of L) generated by y ⊗ f .

Let J = 〈x⊗ tkp〉, and note that the nth term J (n) in the derived series of
J satisfies

J (n) ⊆ L ∩ (g⊗ 〈pn〉)

where 〈pn〉 is the principal ideal of R generated by pn. Since I` = t`I0 for
all ` ∈ ZN by (2.8), and since pn ∈ I0 for n sufficiently large, we see that

J (n) ⊆ L ∩ (g⊗ I)

for n� 0. Then by Proposition 2.10, J (n) ⊆ I, so

J + I
I
⊆ Rad (L/I) .

Since Rad (L/I) = 0 by Proposition 2.1, we see that x⊗ tkp ∈ I. That
is, p = t−k(tkp) ∈ t−kIk = I0, and thus

√
I0 = I0. 2
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3 Some commutative algebra

In this short section, we recall some basic commutative algebra that will be
useful in the context of classifying modules for multiloop algebras. Recall
that F is an algebraically closed field of characteristic zero, F× = F \
0 is its group of units, and R = F [t±1

1 , . . . , t±1
N ]. For any ideal I ⊆ R,

let V(I) =
{
x ∈ (F×)N | f(x) = 0 for all f ∈ I

}
be the (quasiaffine) variety

corresponding to I, and let Poly(S) = {g ∈ R | g(s) = 0 for all s ∈ S} be
the ideal associated with any subset S ⊆ (F×)N .

Proposition 3.1 Let I be an ideal of R = F [t±1
1 , . . . , t±1

N ]. Then

Poly(V(I)) =
√
I.

Proof It is straightforward to verify that the usual proofs of the Hilbert
Nullstellensatz (cf. [3, p. 85 ], for instance) also hold for this Laurent poly-
nomial analogue. 2

The following crucial lemma is an easy consequence of the Nullstellensatz
(Proposition 3.1):

Lemma 3.2 Let J be a radical ideal of R, for which the quotient R/J is
a finite-dimensional vector space over F . Then there exist distinct points
a1, . . . , ar ∈ (F×)N so that

J = ma1 ∩ · · · ∩mar ,

where mai = 〈t1 − ai1, . . . , tN − aiN 〉 is the maximal ideal corresponding to
ai = (ai1, . . . , aiN ) for i = 1, . . . , r. Moreover, {a1, . . . , ar} is unique (up to
permutation).

Proof Clearly, a ∈ V(J) implies that J ⊆ ma, so J ⊆
⋂
a∈V(J) ma.

Conversely, if f ∈
⋂
a∈V(J) ma and x ∈ V(J), then f(x) = 0 and f ∈

Poly(V(J)) =
√
J = J . Hence J =

⋂
a∈V(J) ma.

Since J ⊆ ma1 ∩ · · · ∩ mar for all subsets {a1, . . . , ar} ⊆ V(J), we see
that the (F -vector space) dimension of R/(ma1 ∩ · · · ∩ mar) is bounded by
dimF (R/J). Take a finite collection {a1, . . . , ar} of points in V(J) for which
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this dimension is maximal. Then ma1 ∩ · · · ∩mar ∩mar+1 = ma1 ∩ · · · ∩mar

for all points ar+1 ∈ V(J), so

J =
⋂

b∈V(J)

mb

= ma1 ∩ · · · ∩mar ∩

 ⋂
b∈V(J)

mb


= ma1 ∩ · · · ∩mar .

To see that {a1, . . . , ar} ⊆ (F×)N is uniquely determined, suppose that
J = ma1 ∩· · ·∩mar = mb1 ∩· · ·∩mbs for some a1, . . . , ar, b1, . . . , bs ∈ (F×)N .
Then

{a1, . . . , ar} = V(ma1 ∩ · · · ∩mar)

= V(J)

= V(mb1 ∩ · · · ∩mbs)

= {b1, . . . , bs}.

2

Note that the ideal I0 ⊆ R0 of Proposition 2.13 is radical and cofinite.
Viewing R0 = F [t±m1

1 , . . . , t±mNN ] as the ring of Laurent polynomials in the
variables tm1

1 , . . . , tmNN , we see that

I0 = Ma1 ∩ · · · ∩Mar , (3.3)

where {a1, . . . , ar} = V(I0) is a set of distinct points in (F×)N , and Mai =
〈tm1

1 − ai1, . . . , tmNN − aiN 〉R0
is the maximal ideal of R0 corresponding to

the point ai = (ai1, . . . , aiN ). Then by the Chinese Remainder Theorem, we
have the following corollary:

Corollary 3.4 Let I0 and R0 be as in Proposition 2.13. Then there exist
unique (up to reordering) points a1, . . . , ar ∈ (F×)N so that the canonical
map

R0/I0 → R0/Ma1 × · · · ×R0/Mar (3.5)

f + I0 7→ (f +Ma1 , . . . , f +Mar) (3.6)

is a well-defined F -algebra isomorphism.
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2

4 Classification of simple modules

We now return to classifying the finite-dimensional simple modules of mul-
tiloop algebras. As in §2, let g be a finite-dimensional simple Lie algebra,
and let φ : L → EndV be a finite-dimensional irreducible representation of
a multiloop algebra L = L(g;σ1, . . . , σN ) defined by commuting automor-
phisms σ1, . . . , σN : g→ g of order m1, . . . ,mN , respectively.

Letting I = kerφ, I = I(I), G = Z/m1Z × · · · × Z/mNZ, and R =
F [t±1

1 , . . . , t±1
N ] be defined as in §2, we see that

L =
⊕
k∈G

gk ⊗Rk and I =
⊕
k∈G

gk ⊗ Ik,

by Proposition 2.10. Since I is a G-graded ideal of L, we have

L/I =
⊕
k∈G

((
gk ⊗Rk

)
/
(
gk ⊗ Ik

))
(4.1)

=
⊕
k∈G

gk ⊗
(
Rk/Ik

)
. (4.2)

Each graded component Rk/Ik of R/I is an R0-module, and it is easy
to check that the map

µk : R0/I0 → Rk/Ik (4.3)

f + I0 7→ tkf + Ik (4.4)

is a well-defined R0-module homomorphism for each k ∈ ZN and f ∈ R0. By
(2.3) and (2.8), Rk = tkR0 and t−kIk = I0, so the map µk is both surjective
and injective. Hence the following lemma holds:

Lemma 4.5 Let k ∈ ZN . Then the map µk : R0/I0 → Rk/Ik is a well-
defined isomorphism of R0-modules. In particular, each graded component
Rk/Ik has the same dimension (as a vector space):

dim (R0/I0) = dim
(
Rk/Ik

)
.
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2

Let a1, . . . , ar ∈ (F×)N be the (unique) points defined by Corollary 3.4,
and let bi = (bi1, . . . , biN ) be a point in (F×)N such that bmjij = aij for all
1 ≤ i ≤ r and 1 ≤ j ≤ N . Recall that Ik = tkI0 for all k ∈ ZN , and I0 is
contained in the ideal Mai of R0 for i = 1, . . . , r. Therefore, the map

ψ = ψb : L → g⊕ · · · ⊕ g (r copies) (4.6)

x⊗ f 7→
(
f(b1)x, . . . , f(br)x

)
(4.7)

descends to a well-defined Lie algebra homomorphism

ψ : L/ kerφ→ g⊕ · · · ⊕ g. (4.8)

Theorem 4.9 The map ψ : L/ kerφ→ g⊕· · ·⊕ g in (4.8) is a Lie algebra
isomorphism.

Proof Let k ∈ ZN , and let

ψk : gk ⊗
(
Rk/Ik

)
→ gk ⊕ · · · ⊕ gk

be the restriction of ψ to the graded component gk ⊗
(
Rk/Ik

)
of L/ kerφ.

Note that the map ψ is injective if each ψk is injective. In the notation
of (2.5), if

u =
dim gk∑
j=1

xkj ⊗
(
tkfj(t) + Ik

)
is in the kernel of ψk for some collection of fj ∈ R0, then bki fj(bi) = 0
for all i and j. Then for all i and j, we have fj(bi) = 0 and fj ∈ Mai ,
where Mai is the ideal of R0 generated by {tm`` − ai` | ` = 1, . . . , N}. Hence
fj ∈

⋂r
i=1Mai = I0, so tkfj(t) ∈ tkI0 = Ik, and

dim gk∑
j=1

xkj ⊗ t
kfj(t) ∈ gk ⊗ Ik

⊆ kerφ.

Hence u = 0 in L/ kerφ, so ψk (and thus ψ) is injective.
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By Lemma 4.5, dim
(
R`/I`

)
= dim (R0/I0) for all ` ∈ ZN . Therefore,

dim (L/ kerφ) =
∑
`∈G

(
dim g`

) (
dim

(
R`/I`

))
= dim (R0/I0) dim g.

Since F is algebraically closed, R0/Mai
∼= F for every i, so the (F -vector

space) dimensions satisfy

dim (R0/I0) = dim (R0/Ma1 × · · · ×R0/Mar)

= r,

by Corollary 3.4. Therefore, ψ is an injective homomorphism between two
Lie algebras of equal dimension, so ψ is an isomorphism. 2

The finite-dimensional simple modules over direct sums of copies of the
Lie algebra g are tensor products of finite-dimensional simple modules over
g. (See [6, §7, no. 7], for instance.) We can thus conclude that the finite-
dimensional simple modules for multiloop algebras are pullbacks (under ψ)
of tensor products of finite-dimensional simple modules over g.

Fix a Cartan subalgebra h ⊂ g, a base ∆ of simple roots, and weights
λi ∈ h∗ for i = 1, . . . , r. Then we will write Vλi(bi) for the simple g-module
Vλi of highest weight λi, equipped with the L-action given by(

x⊗ f(t)
)
.v = f(bi)xv,

for all x ⊗ f ∈ L and v ∈ Vλi . The tensor product of such a family of
evaluation modules will be denoted

V (λ, b) = Vλ1(b1)⊗ · · · ⊗ Vλr(br), (4.10)

and we will write m(bi) for the point (bm1
i1 , . . . , b

mN
iN ) ∈ (F×)N for i =

1, · · · , r. We have now proved one of our main results:

Corollary 4.11 Let V be a finite-dimensional simple module for the multi-
loop algebra L. Then there exist b1, . . . , br ∈ (F×)N and λ1, . . . , λr dominant
integral weights for g such that V ∼= V (λ, b), where m(bi) 6= m(bj) whenever
i 6= j.

14



2

Conversely, if the points m(bi) ∈ (F×)N are pairwise distinct, then such
a tensor product of evaluation modules is simple:

Theorem 4.12 Let λ1, . . . , λr be dominant integral weights for g, and let
b1, . . . , br ∈ (F×)N satisfy the property that m(bi) 6= m(bj) whenever i 6= j.
Then V (λ, b) is a finite-dimensional simple L-module.

Proof Let I0 be the intersection
r⋂
i=1

Mai of the maximal ideals Mai of R0

corresponding to the points ai = m(bi). For any k, ` ∈ ZN , we see that
tk−`I0 = I0 if k = ` as elements of G = Z/m1Z × · · · × Z/mNZ. Thus
tkI0 = t`I0 if k = `, so we can unambiguously define Ik = tkI0 for any
k ∈ ZN .

Since a1, . . . , ar are pairwise distinct points in (F×)N , the proof of The-
orem 4.9 (in particular, the appeal to Corollary 3.4) shows that the map

ψ : L → g⊕ · · · ⊕ g (r copies)

x⊗ f(t) 7→
(
f(b1)x, . . . , f(br)x

)
is surjective. Then since each Vλi is a simple g-module, the tensor product
Vλ1 ⊗ · · · ⊗ Vλr is a simple module over g⊕ · · · ⊕ g, and the pullback V (λ, b)
is a simple L-module. 2

Remark 4.13 It is not difficult to verify that if m(bi) = m(bj) for some
i 6= j for which λi and λj are both nonzero, then V (λ, b) is not simple.
However, as we do not need this fact for the classification of simple modules,
we will omit its proof.

5 Isomorphism classes of simple modules

By Corollary 4.11 and Theorem 4.12, the finite-dimensional simple modules
of the multiloop algebra L(g;σ1, . . . , σN ) are precisely the tensor products

V (λ, a) = Vλ1(a1)⊗ · · · ⊗ Vλr(ar) (5.1)

15



for which all the λi ∈ h∗ are dominant integral, and m(ai) 6= m(aj) whenever
i 6= j. If λi = 0 for some i, then Vλi(ai) is the trivial module, and (up to iso-
morphism) this term can be omitted from the tensor product (5.1). With the
convention that empty tensor products of L-modules are the 1-dimensional
trivial module, we may assume that every λi is a nonzero dominant integral
weight in (5.1).

To proceed further, we will need a lemma about how highest weights
depend on triangular decompositions.

Let L be a finite-dimensional semisimple Lie algebra with Cartan subal-
gebra H and base of simple roots ∆ ⊂ H∗. Recall that the group AutL of
automorphisms of L is (canonically) a semidirect product of the group IntL
of inner automorphisms and the group OutL of diagram automorphisms
with respect to (H,∆):

AutL = IntLo OutL. (5.2)

See [14, IX.4], for instance. Every automorphism θ can thus be decomposed
as θ = τ ◦ γ with an inner part τ ∈ IntL and outer part γ ∈ OutL.

Lemma 5.3 Let H be a Cartan subalgebra of a finite-dimensional semisim-
ple Lie algebra L, and let ∆ ⊂ H∗ be a base of simple roots. Suppose that V
is a finite-dimensional simple L-module of highest weight λ with respect to
(H,∆), and θ ∈ AutL. Write θ = τ ◦ γ for some τ ∈ IntL and γ ∈ OutL.

Then ∆◦θ−1 = {α◦θ−1 | α ∈ ∆} is a base of simple roots for L, relative
to the Cartan subalgebra θ(H) ⊂ L, and V has highest weight λ ◦ τ−1 with
respect to

(
θ(H),∆ ◦ θ−1

)
.

Proof Any diagram automorphism with respect to (H,∆) will preserve
H and ∆, so V has highest weight λ with respect to

(
γ(H),∆ ◦ γ−1

)
=

(H,∆). Therefore, it is enough to prove the lemma for the case where
θ = τ is an inner automorphism. Since inner automorphisms are products
of automorphisms of the form exp(adx) for ad-nilpotent elements x ∈ L,
we may also assume, without loss of generality, that τ = exp(adu) for some
ad-nilpotent element u.
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Let ρ : L→ EndV be the homomorphism describing the action of L on
V . Then for any v ∈ V ,

τ(h).v =
(

exp(adu)(h)
)
.v (5.4)

= eρ(u)ρ(h)e−ρ(u)v, (5.5)

where eρ(u) denotes the matrix exponential of the endomorphism ρ(u).
The map eρ(u) is invertible, so for any nonzero element

w ∈ V H
α := {v ∈ V | h.v = α(h)v for all h ∈ H},

we see that eρ(u)w 6= 0, and using (5.4)–(5.5),

τ(h).eρ(u)w = eρ(u)ρ(h)e−ρ(u)eρ(u)w

= α(h)eρ(u)w.

That is,

eρ(u)V H
α ⊆ V

τ(H)
α◦τ−1 := {v ∈ V | h.v = α ◦ τ−1(h).v for all h ∈ τ(H)}.

The reverse inclusion follows similarly by considering τ−1 = exp(−adu), so

eρ(u)V H
α = V

τ(H)
α◦τ−1 (5.6)

for all α ∈ H∗. In the case where V is the adjoint module L, we now see
that α is a root relative to H if and only if α◦τ−1 is a root relative to τ(H).
It follows easily that ∆ ◦ τ−1 is a base of simple roots for L, with respect to
the Cartan subalgebra τ(H).

The second part of the lemma also follows easily, since V τ(H)
λ◦τ−1 = eρ(u)V H

λ

is nonzero, but
V
τ(H)
λ◦τ−1+α◦τ−1 = eρ(u)V H

λ+α = 0

for all α ∈ ∆. That is, the highest weight of V is λ ◦ τ−1, relative to
(τ(H),∆ ◦ τ−1) = (θ(H),∆ ◦ θ−1). 2

Fix a base ∆ of simple roots with respect to a Cartan subalgebra h ⊆ g.
The following theorem gives necessary and sufficient conditions for modules
of the form V (λ, a) to be isomorphic.
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Theorem 5.7 Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) be sequences of
nonzero dominant integral weights with respect to ∆. Suppose a = (a1, . . . , ar)
and b = (b1, . . . , bs) are sequences of points in (F×)N with m(ai) 6= m(aj)
and m(bi) 6= m(bj) whenever i 6= j.

Then the finite-dimensional simple L-modules V (λ, a) and V (µ, b) are
isomorphic if and only if r = s and there is a permutation π ∈ Sr satisfying
the following two conditions for i = 1, . . . , r:

m(ai) = m(bπ(i)) and λi = µπ(i) ◦ γi,

where γi is the outer part of the automorphism ωi : g → g defined by
ωi(x) = (bkπ(i)/a

k
i )x for all k ∈ ZN and x ∈ gk.

Proof Let φλ,a : L → EndV (λ, a) and φµ,b : L → EndV (µ, b) be the Lie
algebra homomorphisms defining the representations V (λ, a) and V (µ, b).
By Theorem 4.9, the kernel of φλ,a is equal to the kernel of the evaluation
map ψa, defined by

ψa : L −→ g⊕ · · · ⊕ g

x⊗ f 7→
(
f(a1)x, . . . , f(ar)x

)
for all x⊗ f ∈ L. Similarly, kerφµ,b = kerψb.

If the L-modules V (λ, a) and V (µ, b) are isomorphic, then kerφλ,a =
kerφµ,b, so kerψa = kerψb. But kerψa =

⊕
k∈G gk ⊗ Ik, where Ik = tkI0 for

all k ∈ ZN , and
I0 = Mm(a1) ∩ · · · ∩Mm(ar),

where Mm(ai) = 〈tm1
1 − a

m1
i1 , . . . , t

mN
N − amNiN 〉R0

is the maximal ideal of R0 =
F [t±m1

1 , . . . , t±mNN ] corresponding to the pointm(ai) = (am1
i1 , . . . , a

mN
iN ). Since

kerψa = kerψb, we see that (in the notation of §3):

{m(a1), . . . ,m(ar)} = V(Mm(a1) ∩ · · · ∩Mm(ar))

= V(I0)

= V(Mm(b1) ∩ · · · ∩Mm(bs))

= {m(b1), . . . ,m(bs)}.

Hence r = s, and there is a permutation π ∈ Sr such that m(ai) = m(bπ(i))
for i = 1, . . . , r. We will write π(b) = (bπ(1), . . . , bπ(r)).
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Let g = n− ⊕ h⊕ n+ be the triangular decomposition of g relative to ∆.
Assuming that r = s and m(ai) = m(bπ(i)) for all i, view Vλ = Vλ1⊗· · ·⊗Vλr
and Vπ(µ) = Vµπ(1)

⊗· · ·⊗Vµπ(r)
as highest weight modules of the semisimple

Lie algebra g⊕r, relative to the triangular decomposition

g⊕r =
(
n⊕r−
)
⊕
(
h⊕r
)
⊕
(
n⊕r+

)
. (5.8)

The highest weights of Vλ and Vπ(µ) are λ and π(µ) = (µπ(1), . . . , µπ(r)),
respectively, where λ(h1, . . . , hr) =

∑
i λi(hi) for all (h1, . . . , hr) ∈ h⊕r, and

π(µ) ∈
(
h⊕r
)∗ is defined analogously.

We can pull back the triangular decomposition (5.8) via the isomor-
phism ψa : L/ kerψa → g⊕r defined in (4.8). Then V (λ, a) and V (µ, b) are
irreducible highest weight modules of the semisimple Lie algebra L/ kerψa,
relative to the triangular decomposition

L/ kerψa = ψ
−1
a

(
n⊕r−
)
⊕ ψ−1

a

(
h⊕r
)
⊕ ψ−1

a

(
n⊕r+

)
. (5.9)

The L-modules V (λ, a) and V (µ, b) are isomorphic if and only if they have
the same highest weights relative to the decomposition (5.9). Since ψa maps
the decomposition (5.9) to the decomposition (5.8), the highest weight of
V (λ, a) is clearly λ ◦ ψa : ψ

−1
a

(
h⊕r
)
→ F .

The highest weight of V (µ, b) is ν ◦ψπ(b), where ν ∈
(
ψπ(b)ψ

−1
a (h⊕r)

)∗ is
the highest weight of Vπ(µ) relative to the new triangular decomposition

g⊕r = ψπ(b)ψ
−1
a

(
n⊕r−
)
⊕ ψπ(b)ψ

−1
a

(
h⊕r
)
⊕ ψπ(b)ψ

−1
a

(
n⊕r+

)
. (5.10)

Let ψπ(b)ψ
−1
a = τ ◦ γ be a decomposition into an inner automorphism τ

and a diagram automorphism γ with respect to
(
h⊕r,∆

)
. By Lemma 5.3,

ν = π(µ)◦τ−1, so the two modules V (λ, a) and V (µ, b) are isomorphic if and
only if λ ◦ ψa = π(µ) ◦ τ−1 ◦ ψπ(b) on ψ

−1
a (h⊕r). That is, V (λ, a) ∼= V (µ, b)

if and only if
λ = π(µ) ◦ γ (5.11)

on h⊕r. To finish the proof, it is enough to write down an explicit formula
for the automorphism ψπ(b)ψ

−1
a = τ ◦ γ of g⊕r.

For each x ∈ g, let xi = (0, . . . , x, . . . , 0) ∈ g⊕r (x in the ith position).
If k ∈ ZN and x ∈ gk, then we see that

ψ
−1
a (xi) = a−ki x⊗ tkfi(t) + kerψa
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in L/ kerψa, for any fi(t) ∈ R0 with fi(aj) = δij for all j = 1, . . . , r. Since
fi ∈ R0 = F [t±m1

1 , . . . , t±mNN ] and m(aj) = m(bπ(j)) for all j, we see that
fi(bπ(j)) = δij , and

ψπ(b)ψ
−1
a (xi) =

(
bkπ(i)

aki

)
xi.

2

Theorem 5.7 may also be interpreted in terms of a group action on the
space of parameters (λ, a) defining the finite-dimensional simple modules of
L. Let Gr = G × · · · × G (r factors), where G is the finite abelian group
G = 〈σ1〉 × · · · × 〈σN 〉, as before. Note that G acts on

(
F×
)N via the

primitive mith roots of unity ξi used in the definition of L:

(σc11 , . . . , σ
cN
N ).(d1, . . . , dN ) = (ξc11 d1, . . . , ξ

cN
N dN ),

for any (c1, . . . , cN ) ∈ ZN and (d1, . . . , dN ) ∈
(
F×
)N . Form the semidirect

product Gr o Sr by letting the symmetric group Sr act on Gr (on the left)
by permuting the factors of Gr:

π(ρ1, . . . , ρr) = (ρπ(1), . . . , ρπ(r)),

for all π ∈ Sr and ρi ∈ G. This semidirect product acts on the space of
ordered r-tuples of points in the torus

(
F×
)N by letting Gr act diagonally

and letting Sr permute the points:

ρπa = (ρ1.aπ(1), . . . ρr.aπ(r)), (5.12)

for all ρ = (ρ1, . . . , ρr) ∈ Gr, π ∈ Sr, and r-tuples a = (a1, . . . , ar) of points
ai ∈

(
F×
)N .

The group Gr o Sr also acts on the space of r-tuples λ of nonzero
dominant integral weights. For each ρ = (ρ1, . . . , ρr) ∈ Gr write ρi =
(σρi11 , . . . , σρiNN ) for some nonnegative integers ρij . Let the ρi act on g by

ρi(x) = σρi11 · · ·σ
ρiN
N x,

for all x ∈ g, and on the weights λi by

ρi(λi) = λi ◦ γ(ρ−1
i ),
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where γ(ρ−1
i ) is the outer part of the automorphism ρ−1

i : g → g. Then
Gr o Sr acts on each λ = (λ1, . . . , λr) by

ρπλ = (λπ(1) ◦ γ(ρ−1
1 ), . . . , λπ(r) ◦ γ(ρ−1

r )). (5.13)

Combining (5.12) and (5.13) gives an action of GroSr on the set of pairs
(λ, a), where λ is an r-tuple of nonzero dominant integral weights λi and
a is an r-tuple of points ai ∈

(
F×
)N with m(ai) 6= m(aj) whenever i 6= j.

Namely, let
ρπ(λ, a) = (ρπλ,ρπ a) . (5.14)

In terms of this action, the isomorphism classes of the finite-dimensional
simple L-modules are labelled by the orbits of the groups Gr o Sr.

Corollary 5.15 Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) be sequences of
nonzero dominant integral weights with respect to ∆. Suppose a = (a1, . . . , ar)
and b = (b1, . . . , bs) are sequences of points in (F×)N with m(ai) 6= m(aj)
and m(bi) 6= m(bj) whenever i 6= j.

Then V (λ, a) and V (µ, b) are isomorphic if and only if r = s and
(λ, a) =ρπ (µ, b) for some (ρ, π) ∈ Gr o Sr.

Proof Note that m(ai) = m(bπ(i)) if and only if the coordinates aij of
ai = (ai1, . . . , aiN ) differ from the coordinates bπ(i)j of bπ(i) by an mjth root
of unity. Since ξj is a primitive mjth root of unity, this happens if and only
if there are integers ρij so that aij = ξ

ρij
j bπ(i)j . In terms of group actions,

this is precisely the existence of ρi = (σρi11 , . . . , σρiNN ) ∈ G with ai = ρi.bπ(i).
In other words, m(ai) = m(bπ(i)) for all i if and only if a =ρπ b for some
ρ ∈ Gr and π ∈ Sr.

Since ξρijj = aij
bπ(i)j

, we see that

ρ−1
i (x) = σ−ρi11 · · ·σ−ρiNN x

= ξ−ρi1k11 · · · ξ−ρiNkNN x

=
bkπ(i)

aki
x,

for all k ∈ ZN and x ∈ gk. Therefore, the automorphism ωi of Theorem 5.7
is equal to ρ−1

i , and λ =ρπ µ is equivalent to the condition that λi = µπ(i)◦γi
for every i. 2
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For any diagram automorphism σ1, the finite-dimensional simple mod-
ules for the twisted (single) loop algebra L(g;σ1) were classified in [9]. Re-
cently, P. Senesi [20] has reinterpreted this work in terms of finitely sup-
ported σ1-equivariant maps F× → P+, where P+ is the set of nonzero dom-
inant integral weights of g with respect to a fixed Cartan subalgebra and
base of simple roots. Theorem 5.7 and Corollary 5.15 can be used to extend
this perspective to the multiloop setting.

Let λ = (λ1, . . . , λr) and a = (a1, . . . , ar) be as in Theorem 5.7. Each
evaluation module Vλi(ai) corresponds to a map

χλi,ai : (F×)N → P+ (5.16)

x 7→ δx,aiλi. (5.17)

The isomorphism class [λ, a] of the tensor product V (λ, a) can then be iden-
tified with the sum of all the characters χη0,c0 for which the pair (η0, c0) =
(µ1, b1) for some µ = (µ1, . . . , µr) and b = (b1, . . . , br) with (µ, b) in the
Gr o Sr-orbit of (λ, a). That is, we let

χ[λ,a] =
∑
g∈G

r∑
i=1

χλi◦γ(g−1),g.ai . (5.18)

This process associates a finitely supported G-equivariant map

χ[λ,a] : (F×)N → P+ (5.19)

with each isomorphism class of finite-dimensional simple L(g;σ1, . . . , σN )-
modules. From Corollary 5.15 and the construction of χ[λ,a], it is easy to
see that distinct isomorphism classes get sent to distinct functions.

Conversely, any finitely supported G-equivariant map f : (F×)N → P+

corresponds to an isomorphism class [λ, a] of finite-dimensional simple L-
modules as follows. By G-equivariance, the support supp f of f decomposes
into a disjoint union of G-orbits. Choose representatives a1, . . . , ar ∈ (F×)N

to label each G-orbit in supp f . Since the G-orbits are disjoint, m(ai) 6=
m(aj) whenever i 6= j, and by definition of f , λ := (f(a1), . . . , f(ar)) is
an r-tuple of nonzero dominant integral weights. Then by Theorem 4.12,
V (λ, a) is a finite-dimensional simple L-module, and by Corollary 5.15, the
isomorphism class [f ] := [λ, a] of this module is independent of the choice
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of orbit representatives a1, . . . , ar. It is now straightforward to verify that
χ[f ] = f for all finitely supported G-equivariant maps f : (F×)N → P+.

Corollary 5.20 The isomorphism classes of the finite-dimensional simple
L-modules are in bijection with the finitely supported G-equivariant maps
(F×)N → P+.

2
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