OPTIMAL CONTROL RELATING TO THE EXCESS
OF ONE POISSON PROCESS OVER ANOTHER

M. HLYNKA AND J.N. SHEAHAN!?

ABSTRACT. This paper deals with optimal control in a double-ended quene
that arises as the difference of two independent Poisson processes over a finite
time period. The implementation of the control has the effect of changing the
arrival rates of one or both processes, and represents a strategy on the part of
an observer whose object is to maximize a specified objective function at the
end of the time period. For each strategy within a specified set of strategies,
we study the transient behaviour of the resulting nonhomogeneous state-
dependent double-ended queue and determine the optimal time to implement
the control.

_ 1. Introduction.

A great deal of attention in the stochastic processes literature has
centered on the development of optimal control policies for the arrival
and service patterns of queues (e.g. Crabill et al. [1], Jo and Shaler [5],
Miller [7], Scott and Hsia [9].) Concerning double-ended queues, work
has been done by Dobbie [2], Kendall [6], Srivastava and Kashyap [10],
for example.

Our aim in this paper is the derivation of an optimal control policy for
the arrival mechanism in double-ended queues with a view to maximizing
a specified objective function.

One application of this work is to two-person games. We shall present
the theory in the context of an ice hockey game. For other possible
applications, see Section 5.

In hockey games, it is very common for a team which is losing near
~ the end of the game, to “pull” its goalie. That is, the team which is
losing replaces its goalkeeper by an extra offensive player. The effect of
this action is to change the rates of scoring of one or both teams. In
fact, the rates of both teams usually increase, with the greater increase
going to the team which is leading.
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Implementation of this potentially dangerous strategy implies desper-
ation on the part of the team which implements it. It is of interest,
therefore, to determine the optimal times at which a team should have
its goalkeeper off the ice. The optimal strategy for a team can be defined
as that which maximizes the probability that the game ends in a win or
a tie for that team.

The salient features involved in this paper are:

(i) a double-ended queue arises as the difference of the scores of the
teams over time;
(ii) the time period is finite;
(i) the distribution of the final score in the game depends on the chosen
strategy;
(iv) each strategy considered depends on the score of the game at each
time point.

Section 2 analyses the score in the game, for each strategy, as a nonho-
mogeneous state-dependent Markov process. This results in an infinite
system of differential-difference equations. Section 3, in effect, solves
these equations for the score in the game at each time point. In Sec-
tion 4, we express the optimal strategy as a maximum value of a certain
integral expression. In addition, a limited simulation is performed. Sec-
tion 5 suggests generalizations, extensions, variations, and applications.

2. Differential-difference equations for the game.

Suppose that the hockey game between teams White and Black will be
played over the finite time interval [0,¢o]. Let X(t) and Y (t) denote the
number of goals scored up to time ¢ by White and Black, respectively,
and let K(t) = X(t) - Y (t). The process {K(t)} has index set [0,t0] and
state space the set of integers Z. For each ¢, the following assumptions
hold throughout the paper:

(A1) exactly one of two mutually exclusive situations holds at ¢, namely,
Situation 1: neither team has its goalkeeper off the ice,
Situation 2: team Black has its goalkeeper off the ice;
(A2) team Black will consider removing its goalkeeper from the ice (that
is, passage from situation 1 to situation 2) if and only if K(t) = 1;

(A3) if situation 2 holds at ¢, then for any s satisfying £ < 8 < fo,
situation 2 holds also at s if and only if K(s) = 1;

(A4) X(t) and Y (t) are independent Poisson random variables with rates
w; and by, respectively, if situation 1 holds, and rates wz and b2,
respectively, if situation 2 holds.

218



Before proceeding, we comment briefly on each of the above assump-
tions (see also Section 5). (Al) implies that team White is never al-
lowed to pull its goalkeeper. While there do exist teams that will under
no circumstances pull their goalkeepers, a more general theory could
be presented by allowing team White the option to pull also. In prac-
tise, we have never known of a hockey game in which both teams pulled
their goalkeepers. In addition, in many other applications it is either
iinpossible or infeasible to implement a control on each of the two com-
peting queues—for example, one may attempt to increase the arrival rate
of taxis, but not of passengers, to a particular location. (A2) stipulates
that Black will consider pulling its goalkeeper at time ¢ if and only if it
1s exactly one goal down at time ¢. This assumption is quite reasonable,
since no team will pull its goalkeeper if it is winning or even, and rarely
does a team have its goalkeeper out of the game if it is losing by two
or more goals, perhaps because of a “lost cause” attitude. (A3) implies
that if Black’s goalkeeper is off the ice at time ¢, he should also be off
the ice at any later time point ¢ for which K(s) = 1; but, in accord
with (A2), if Black is anything other than one goal down at time 3, its
goalkeeper should be back on the ice at that time.

Support for both the distributional and independence assumptions in
(A4) is given by the statistical analysis of National Hockey League data
in Mullet [8]. The statistical problem of estimating the parameters w;,
b1, wa, be will not be dealt with in this paper.

We define an optimal strategy for Black as one that maximizes the
probability that the game ends in a tie or a win for Black. Specifically,
if

Fi(t) = P(K(t) = k), 0Lt<ty, ke 2Z, (2.1)
we wish to find a strategy (within the class of all strategies for Black
that are permitted by (A2) and (A3)) that maximizes

0
P(game ends in a tie or win for Black) = Z Fr(to). (2.2)

k=—co

Any given strategy for Black can be expressed in terms of an indicator
function B : Z x [0,t9] — {0, 1}, with the following interpretation:
if B(k,t) = 1, then Black has his goalkeeper off the ice at time ¢ provided

if B(k,t) = 0, then Black has his goalkeeper on the ice at time ¢ provided
K(t) = k.
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Thus any given B(:, ) is a rule that, conditional on the score in the game
at time ¢, tells Black if situation 1 or situation 2 should be in effect. Our
aim is to choose the optimal B(:,-) in the sense of maximizing (2.2).
Now, by (A2), for each t, B(k,t) = 0 if k # 1 so our problem is reduced
to finding the optimal value (0 or 1) of B(1,t), for each t. We will write
B(t) = B(1,t) for brevity. By (A3), B(t) = 1 = B(s) = 1 for all s,
t < 8 < tg. Thus, if we define

8 = {inf{t :B(t) =1}  if {t: B(t) = 1} is non-empty, (2.3)

to otherwise,
we have 0 ‘<t
— 1,
By ={; S (24

Any given strategy is therefore specified by 1, and our objective is to
choose the optimal ¢;.

For any given stategy B(t), 0 < t < tg, it is easy to see from (A4)
that on taking the difference-quotient (Fi(t+ At) — Fi(t))/ At and then
the limit as At — 0, we have

é{: Fi(t) = ar(t) Fe(t) + Pr—1(t) Fr-1(t) + T+1(t) Fe1(2) (2.5)
with Fo(0) =1, Fp(0)=0 for k #0,
where
- {(-wz——bz)B(tH(-—wl-b1)(1—B(t)) k=1,
¢ —w; — by if k#1,
{ wo B(t) + wi(1 — B(t)) if k=1,
Br(t)= e (2.6)
' wy if k#1,
{ b2B(t) + bs(1 — B(t)) if k=1,
Tk(t)= )
bl if k 7!: 1, )
and we have
—-ak(t) = ﬂk(t) + ')'k(t). (2.7)
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(2.5) is valid provided ¢ # t;, where t; is given by (2.3). When t = t,,
the right-hand and left-hand derivatives do not coincide unless w; = w4
and b; = b3. This does not affect the analysis, however. We shall simply
interpret (2.5) as the left-hand derivative when ¢t = ¢;.

In the following section, we examine the behaviour of Fi(t). Note that
the rates in (2.6) are both time- and state-dependent. However, (2.5) is
analytically tractable, as we now demonstrate.

3. Solution of the system (2.5).

Define the generating functions:

Gi(z,t) = ) Fi(t)z* and (3.1)
k=-—oco

Ga(z,t) = i Fy.(t)2*. (3.2)
k=1

From (2.5) and (2.6), we get

3‘% Gi(z,t) = i” -gt— Fi(t)z*
- ;‘; [k (VPR (8) + Bom1 Fics (8) + o (8) P (8)] 2
= kﬁ; ar(t)Fr(t)z* + z _i Br(t) Fi(t)2*
+z7? lj: 1 () Fe (8)2*
= (@0 + Bo + 1027Y) _20: Fi(t)z* — zBoFo(t) + 71(t) Fi(2),
that is
5

— Gl(z,t) = [-—-w1 - by +wiz+ 512'_1} G1(z,t) - zw;Fa(t)

5t (3.3)
+ [(bz - bl)B(t) + 61] F1(t).
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Similarly we find that

;t Gg(z t) = [-—w1 — b1 +wiz+ b12” ] Gz(z,t)

+ [(—-wz — by +w; + bl)zB(t) -+ (‘w2 - wl)z2B(t) —_— 51] (3'4)
X Fl(t) -+ ‘wleg(t).

If we write L[g(t)] = [~ e~*tg(t) dt for the Laplace transform (LT)
of a function g(t) we see from (3.3) and (3.4), along with G(2,0) = 1,
GQ(Z,O) = 0, that
3L[G1(2,t)] = 1= [—wy — by + w1z + b127 1 L[C(2,1)]

- zwlﬁ[Fo(t)] + (bg - b1)£[B(t)F1(t)] (3.5)
+ by L[Fy (2)]

and

sﬂ{Gz(Z,t)] = [—-w1 — by +wyz + blz_l]E[Gg(z,t)]
+ (w2 = b2 + wy + b1)z + (w2 — w1)2?) (3.6)
x L[B(t)F1(t)] + w1z L[Fo(t)] — b1 L[F1(2)].

We rewrite (3.5) and (3.6) as

L[Gi(z,t)] =
2 {1 = 2wy L[Fa(t)] + (b2 — b LIBOF ()] + i LR (9] (37)
z{s+wy+by —wyz—b271}
and

L[G2(z,t)]= [z {zw1 L[Fo(t)]+[(—w2 —bo2+ w1 +b1) 2+ (ws —w; ) 2?]
x LIB(t)F1(t)] — b1 L[F1(¢)]}]
+[z{s+wi+b—wiz— blz“l}].
(3.8)
The right-hand sides of (3.7) and (3.8) involve the unknown functions
L[Fo(t)], L[B(t)Fi(t)] and L[Fi(t)] of 3. In order to solve for these
functions, we employ the following consideration, which is a standard
analytical argument in stochastic processes (see, e.g. Gross and Harris
[4, page 77]). The numerators of the right-hand members of (3.7) and
(3.8) must vanish at any zero of the denominator which lies within the
region of convergance of L[G1(z,t)] and L]|G2(z,t)], respectively.
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The denominator of the right-hand members of (3.7) and (3.8) has
two roots which are, as functions of 3,

w1+b1+s—\/(w1+bl+s)2—4w1b1

21 = 211)1 (39)
and
. __w1+b1+s+\/(w1+bl+s)2—-—4w1b1 (310)
2= 2‘!!)1 . .
Note that ;
2129 = 20-11- (3.11)

Use of Rouche’s Theorem (see Gross and Harris [4, page 78]) shows
that z; lies within the unit circle and 25 lies outside the unit circle. Now
L[G1(z,t)] converges outside the unit circle and L[G2(z,t)] converges
- within the unit circle. We can therefore equate the numerators of the
right-hand members of (3.7) and (3.8) to zero for z = 23 and z = 2z,
respectively. We then obtain

1- ‘w122£[F0(t)] + (bg - bl)ﬂ[B(t)Fl(t)] -+ b1ﬁ[F1 (t)] =0,
wlzlﬁ[Fg(t)] -+ [(—‘WQ —bo+ wy + bl)zl + (W2 - wl)zf] (3.12)
x L[B(t)F1(¢t)] — L[F1(t)] =

Define .
ful)= [ R de (3.13)
0
where ; is given by (2.3). Then we see from (2.4) and (3.13) that
L[Fi(t)] = L[B(t)F1(t)] + fe, (8). (3.14)

Using (3.14), we can rewrite the equations (3.12) as
1- wlzgﬁ[Fu(t)] + sz[B(t)Fl (t)] + b]_ftl (8) =0,
w121 L[Fo(t)] + [(—w2 — b2 + w1 + b1)zy + (w2 — w1)2? — by]  (3.15)
x L[B(t)Fy (t)] - b1 fes (3) = 0
LEMMA 3.1. Ift < ty, then Fi(t) = e~ (w148 (w, [b,)%/2 L, (2/w1b; t)
2)%itk .
for all k € Z, where It(u) = E;":O %)—'-, k > —1, is the modified
Bessel function of the first kind of order k.
PROOF: The proof is elementary since, for any t < ty, K(t) is the
difference of two independent Poisson variables with rates w; and b;. o
The result of this lemma is a special case of the work of Dobbie [2]. Note,
however, that Dobbie’s results, which are for time dependent double-
ended queues cannot be used in this paper to evaluate Fi(t) when £ > ¢;,
because our problem is, in addition, state-dependent.
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COROLLARY 3.1.

L7 fe (o)) = { e"""“’"‘\/%_,‘—h (2vwibit) it <t
0

if t > ty.

PROOF: By (3.13) and Lemma 3.1, we have

1/2 r¢,
w - -—{wig
fe, = (-5-1}-) v/0 et~ (witbi)t (2 wiby t) dt
1/2 o0
- (3’.’.1.) / e™**(1 = B(t))e~ ("4 (20/w1br &) dt, by (2.4)
by 0

- (%’11) : (1= BE)e 04 r (2v/wiby 1))

and the corollary follows upon inversion. o

For brevity in the remainder of the paper, we define constants

1
€1 = [wl-—w2+b1 — bg+\/(w2—-w1 + by — b2)2+4‘HI2bz]
(3.16)

2w1
1
g = ——-——-—[wl—-wg +by — ba— /(w2 — w1 +by — b2)2+4w2b2].
2w1

THEOREM 3.1. For all t, we have

F1(t) = e“(""*'b‘)'\ / 1:—1[1 [2 wiby t] - 8‘(w‘+b‘)t(cl - 02)—'1
1

bl k k k wy §+1
x — (e — — k2 +2] k+1 (...__)
’?:0: [w1 (e —¢3) 1 2 ( ) by

x /0 tB(g)(i:— £)-n [2\/1011;1 5] et [z wibs (t — g)] dé.

PROOF: If we multiply the first equation of (3.15) by z;, multiply the
second equation of (3.15) by 23, add the resulting equations, and then
solve for L[B(t)F;(t)] using (3.11), we get

eBOROI= (~3+ %) )+ =

by b by b2 b -
x{z§+zz(-u—)-2—+—3—-—l-ﬂ)+(—1—--—g-— 1112]2)} .
w, wp wpr w wy wip Wy

224



The denominator on the right-hand side of (3.17) is a quadratic in 25
with roots given by (3.16). Noting that

1 1 { 11 ]
[(z2 —c1)(22 —c2)] e1—c2lza—c1 2z2—c2]’

we can rewrite (3.17) as

L[B(t)F1(t)] = K zzl‘*‘ L) f*ll(g) * —L} (e2 — o)™ (3.18)
d |

22 —C1 22 —C2
- For g sufficiently large, we can write

1 1 (1 \* 1
== -1 d
o2 (2) w

2 22 —C2

k=0 \?2

]
NS
uM8

Hence (3.18) can be written as

oo

L[B(t)F1(t)] = (e1 — c2)™! E — c%)
k=1
1 1

X wy 2Kt + w0, k+1 fei(8) - A1 <=1 ft. ()

= 1
=(c1—e2)7t ) _(cf —cf)—57

2

+(e1 =)™t [%(c'{ — ck) — (k2 - c’5+2)]

k=0

X prrfu(8) = fur (o).
? (3.19)
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Using (3.14), standard results on Bessel functions, and Corollary (3.1),
we get from (3.19) and a little manipulation,

1 oo k+1
Fi(t) = (c1 — ca) 71— (mtbu)e Z(c’f —c§) (%) Vwiby

bt k=1
X (Ik [2 wiby t} — Ixq2 [2 wiby t]) + (e1 — 62)—le~(w1+b1)¢ .
= bl k k k+2 k+2 wi 1§+1
X Z {“"(01 — c8) — (efT? — 57T )] (‘Z)‘l‘)

w
k=0 1

X Ixy2 [2 wyby t] - (61 - cz)"lg“(“’l“f-bz)f

o~ [ b1 k k+2 w1 e
<3 [Lieh - o) - (e - o) ()

k=0

< [ (- O BOL [2v/mnbs €] L v/ (- )] de,

and it is easy to see that this is identical to the expression for Fy(t)
given in the statement of the theorem. o

THEOREM 3.2. For all t, we have

1 be

Folt) = e~(witbt g [2 w161t] _emlwmtb)t(o, ) -
1

o [ b1 k k k+2 k+2 d ks
x Z ',;U“l‘(% —cz) = (77" —ex )| (B +2) b
k=0

« | B(E)(E - )71 [2v/nby €] T [yl (¢ - )] de

+ e~ (wi+b1)t (M)
by

X ]0‘ B(&)(t- 6L [2\/'1:’5;5] I [2 wyby (t — f)] d§.

PROOF: The proof is omitted since it is similar to that shown for The-
orem 3.1. o

By Theorems 3.1 and 3.2, we now have explicit expressions for Fy(t)
and Fo(t). The evaluation of Fi(t), for all k, is now straightforward. For
example, when k£ < 0, Fi(t) is just the inverse Laplace transform of the
coefficient of z* in (3.7). We shall not, however, carry out the routine,
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but extremely tedious, calculations involved. Indeed we shall see in the
following section that knowledge of only F(t) and Fy(t) suffices to tackle
the optimization problem in which we are interested.

4. Optimal control and simulation.

We recall from Section 2 that we wish to choose a strategy for Black
that maximizes

0
P(game ends in a tie or win for Black) = Z Fi(to)

k=—o0

= Gl(z’tﬂ)izzl

(4.1)

" and we saw that this is equivalent to the optimal choice of t;, where #;
is given by (2.3).
By (3.7) and (3.14),

LIG1(1,t0)] = a7 {1 —wy L[Fo(t)] + b2 L[F1(t)] — (b2 — b1) fi, (8)}. (4.2)
If we invert (4.2) with the aid of Corollary (3.1), we thus get

P(game ends in a tie or a win for Black) =

to ts
1- w1/ Fo t)dt“f‘bg/ Fl(t)

62 - bl ” wl / -(w1+b1)t11[2 1b1t]d

where Fy(t) and Fy(t) are functions of ¢; and are given by Theorems 3.2
and 3.1 respectively.

Now (4.3) is clearly a continuous function of ¢; over the compact set
[0, 0] and this function thus takes on a maximum at some point t]. In
view of the fact that the first and second derivatives of (4.3) with respect
to t1 over the interval (0,¢p) are rather messy expressions, we shall not
here discuss constructive (iterative) procedures for obtaining ¢;. The
practical interpretation of the number ¢} is as follows (see also (2.3)):
if Black is losing by one goal at any fixed time point £, then Black’s
goalkeeper should be off the ice (i.e. situation 2 should hold) at time ¢
if and only if ¢ > t}. Of course, in accordance with (A2), situation 1
should hold at time ¢ 1f Black is not losing by exactly one goal at that
time.

(4.3)
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Clearly from (4.3), t} depends on the rates wy, by, wo and bz, and on
the duration to of the game. In order to assess how ¢} varies with these
rates, a limited simulation by computer was performed. Corresponding
to various rates (expressed as expected number of goals per minute),
pseudo exponential random values were generated and these were used to
simulate a large number of games played in accordance with assumptions
(A1) through (A4). The duration of the game was to = 60 minutes in.
all simulations.

The results are presented in Table I below. The values of to — t} are
measured to within 1/4 minute accuracy and hence are somewhat crude.
Nevertheless the results do form patterns that conform to our intuition.

TABLE 1
wy + by b1/(?D1 +bl) wa + by 62/(102—}-52) to — t]

166 4 1 ’ 1 .5

166 4 1 .2 1.75
.166 4 1 3 2.75
.166 4 1 4 >4
.166 .5 1 1 .25
.166 .0 1 2 1.25
.166 .5 1 3 2.00
.166 .5 1 4 >4
.166 .6 1 1 0

.166 .6 1 2 1.25
.166 .6 1 3 2.00
.166 6 1 4 2.75
.166 4 8 1 5

.166 4 .8 2 1.5
.166 4 8 3 2.75
.166 4 8 4 >4
.166 5 8 1 0

.166 .5 8 2 1.25
.166 .5 8 3 2.00
.166 .5 .8 4 3.25
.166 6 8 1 0

.166 6 .8 .2 1.0
.166 .6 8 3 1.75
.166 .6 .8 4 2.50
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5. Concluding remarks.

The theory developed in this paper has several variations, extensions
and generalizations, some' of which will be dealt with in later work. At
the cost of additional complications in the analysis, one could, for ex-
ample, develop a theory that would allow a control to be applied to both
queues. In other practical situations, it 18 desirable to maximize some
objective function other than the function maximized in this paper. For
example, if our two competing queues were traffic arrivals from right an-
gle directions at a traffic light, we may wish to maximize the probability
that both queues have the same size at a certain time of the day. On the
other hand, the administration in a blood bank may wish to maximize
the probability that there will be at least as many units of blood do-
. nated as are required. Here a control on the rate of blood donation may
correspond to a publicity campaign, and the objective function should
_ incorporate a cost factor. We note finally that assumption (A2) in this
paper, while suitable for hockey games, is highly restrictive in many ap-
plications of interest, for example in production control. Indeed in many
practical situations, it is desirable to ensure that with high probability
one queue does not get too large relative to the other. In these situa-
tions, an operator will consider implementing the control if and only if
K(t) > k, for some preassigned nonnegative integer k.
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