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ABSTRACT. We create an example of a FCFS queueing model
with a particular service distribution for which the expected
waiting time of an arriving customer is, surprisingly, NOT mono-
tone increasing as a function of the customers already waiting
in line.

1 Introduction

Hlynka, Stanford, Poon, and Wang (2] showed the difficulties of deciding
which queue to join when selecting from two parallel queues. In Whitt [4],
an example of a system with two parallel servers, each with identical service
distributions, was presented to show that join-the-shortest-queue strategies
were not always optimal.

In our present article, we consider a single server queueing model. We
assume exponentially distributed interarrival times. We will construct a
Coxian (Cox [1]) service distribution for which the expected time to com-
pletion of an arriving customer is not monotonically increasing in the num-
ber of customers present in the line when a customer arrives. This is an
unexpected characteristic, since a shorter line generally means a shorter
expected waiting time.

In our (counter)example, as in Whitt’s, the service times are not expo-
nentially distributed. Whitt mentioned the difficulty of constructing coun-
terexamples for his system. Fortunately, our service time distribution can
be considered to be the service time within a network with several expo-
nential subservers. This allows us to use a conventional continuous time
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Markov chain analysis. The nature of Whitt’s example required a different
analysis.

A relationship exists between our example of a non monotone expected
waiting time and the choice of which queue to join in a two identical server
parallel queueing system. Certainly if a longer queue leads to shorter wait-
ing times, then a customer would want to join a longer queue. However, in
the parallel queue model, one must consider the queue joining strategy of
ALL the customers. The state space in that case thus becomes more cum-
bersome. The one server model that we present allows an simpler analysis
and gives an novel resuit. )

Assume that interarrival times are exponentially distributed at rate A.
We have the following

- = = = — ~ —[Server] — — — — — ——

The single server and its service time distribution, can be replaced by
the following network of servers.

= =)= = [pa]— = [pa]— =

Assuming that the network is empty, an arriving customer enters and is
served by the first exponential server at rate y;. With probability p, the
customer exits the system completely. With probability 1 —p, the server is
served by a second exponential server at rate uz, then by a third exponential
server at rate u3. One could think of a customs station with secondary and
tertiary inspections by the same inspector. - -

If there is already at least one customer in the system, an arriving cus-
tomer must wait in front of server 1. Service on a new customer does not
begin until the customer in the network has exited.

An arriving customer does not actually see the structure of the network.
The arriving customer merely sees a single server, (at most) one customer
being served and (perhaps) other customers waiting for service. The un-
observed network is a special case of a Coxian distribution. There are n
customers in the single server queue iff there are n customers in the network.

2 Analysis

For the network, define the states to be of the form (i, j, k), where the first
component of the ordered triple represents the number of customers waiting
or being served by the first server. The second and third components
represent the customers receiving service from the second and third servers,
respectively. We impose the restriction that j +k < 1. We write the states
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in the following order: (0,0,0), (1,0,0), (0,1,0), (0,0,1), (2,0,0), (1,1,0),
(1,0,1), (3,0,0), ... .
Then the rate matrix can be written in the form

(Ao Aoz 0 0 O .
Aw A B 0 0 .
0 C A B o0 .
A=l0 o ¢ A B ..|,
0 0 0 C A .

where

Avo =[N, Aor=]00],

[pm] [-(,\ +p1) (1-phm 0 ]
Ay = 0 , A= 0 —'(A + ,‘2) #2 )

b3 0 0 —(A+ pa)
A 0O pur 0 O
B=(0 x 0|, c=|0 o0 of,
0 0 A pus 0 0O
Thus the first few rows of A are look like
(0,0,0) [ -x A 0 0 0 00
A___(LO;O) Py '"(A+/“l) (1*p)l‘1 0 A 00
T(,1,0)] 0 0 —(A+ p2) I 0 X0
(G:Qsl) B3 0 0 “(A+P3) 0 0 A

A limiting probability vector with all non zero limiting probabilities will
exist iff A < min{y;, 3&3;,—1%_15}, 0 <A pr,p2,p3<00,0<p<l.

Let v = (v000, 100, %010, Y001, ¥200, ¥110, %101, - . . ) be the limiting proba-
bility vector. To find the components of v, we need to solve the equation
vA = 0. We obtain the following equations.

~Avgoo + P1v100 + pavoor = 0 (1)
Avgoo — (A + 41)v100 + Phe1va00 + pavie; = 0 2
(1 = p)pu1vioo — (A + p2)voro = 0 (3)
B2vo10 — (A + p3)voo; = 0 4)
Forn > 1,
AUnoo = (A + 41 )Un+1,0,0 + Pl1Vn42,0,0 + H3¥Unt10,1 =0 (5)
An-1,00+ (1 = P)p1Un+1,00 — (A + tg)vn1o = 0 (6)
AVn-1,00 + 42Un10 — (A + U3)vno; = 0 (7)

85



Property 2.1: If p=1, A <y, andn 2 1, thenvgoo::l—f;, Vnoo =

(1= 2) ()" vn-110 =0, and vn-101=0.

Proof: For p = 1, we have an M/M/1 queueing system and the result
follows.

Property 2.2: Let a = A+ p2 and 8 = A+ ps. For p < 1, the following
hold.

- Aaf
100 = B ¥ O+ )]
vor0 = o= P
B + p2(Ap + p3)
A1 -plua
0 B (P ) ©

Letting A = A(u1 + p2 + pa), B = A*(1 — p), we also have

_ XaBlA+ A0 = pm) + (1= P + ) + pais] - Busnpiasa(oc B) voe
#3pB + ua(dp + ps))?
BB[N? + A + pa(ps + pa)] +X°(1 = p) sz vooo
piAPB + pa(dp + pa))?
Bua[Z? + A+ p1(Ap+ pa + ps) + papa)
w1 ApB + pa(Ap + pa))?

vaoo

V110 =

©

vi01 =

Proof: From (3) and (4), we obtain vye0 = ﬁ-_;%;; and vgo = %0010. By
substituting these expressions into (1), we obtain our expressions for vy,
vo10, voo1. From (7) and (8), with n = 1, we can eliminate vj10. Using that
expression together with (2), we obtain an expression for vo. Using (6)
and (7) again, we obtain our expressions for vy10 and voio. n}

Our limiting probabilities already found all involve wppo which is un-
known. However, it turns out that we can get useful information without
knowing this value.

Property 2.3: Let E(T|n) be the expected time for a randomly arriving
customer to enter service given that there are already n customers in the
system. Let :

A1 = v100 + vo10 + vo01, Az = v200 + V110 + V101, (10)

and y= = + ;L. Then
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E(T“) == —Al—;{vmo{pl'; + 7(1 - p)] + vvo10 +lvom (.‘-‘1;)]

E(T2) = ;};tvm% +29(1 - p)] + vuo[;}; +29(2 - p)]

1 1
+vi0[— + — +71 -]l
H1 13

Proof: Let ETij, denote the expected waiting time for an arriving cus-
tomer to enter service (first server), given that the arriving customer en-
counters the state (i, ], k) on arrival. By the memoryless property for the
exponential distribution, the expected time will not depend on the time
since the last movement, but merely on the configuration (i, 7, k). We find

1
E(TN) = X;[vmoETloo + v910 ETo10 + vo01 ETo01)
1
E(T|2) = “A;[”moETzoo +v110ET110 + v101 ETh01] 11

The result follows. o

Intuitively, one would think that under all circumstances, the expected
waiting time for an arriving customer to enter service would be longer if
there were more customers ahead of it upon arrival. After all, the total
waiting time would be the sum of the service times of the other waiting
customers plus a residual service time of the customer currently in service.
The expected sum of the service times of the waiting customers is clearly
larger if the line is longer, since the service times are identically distributed.

We will show that our intuition is faulty, due to the residual service time
of the customer in service. Our goal is to show that the function E(T'|n) is
not always monotone increasing in n for all parameters u1, p2, 43, p.

Theorem 2.4. There exist values of values of A, p1, p2, ps, p, for which
E(T'|n) is not an increasing function of n.

Proof: For the model already presented, choose A = 1, yz = ug and let
4y — oo, We thus have only two variables to work with and we rename
them by letting p2 = p3 = z and p = y. With this notation, our equations
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(8)-(10) become

vi00 =0

oot = z(1 —y)
y(1+z)+z(z+vy)

V200 =0

z(1+2z+y)(1-y)

(1+z)(1-y)
Wlta) +az+y)
(1+2z)(1-y)

Wi +a) +z(z+y)
[(A+2)+z(1 -y -y)
(1 + )+ z(z +y)?

(1+4z +32%)(1~y)

vo10 =

A =

viip =

vior =

Wl +z)+zz+y)*

T WA+ +z(z+ )P

Since oo # 0, we obtain from (11)

y(1+2z)+z(z+y) [
(1+22)(1-y)
z(1-y)

hMl+z)+z(z+y)
y(1+z)+z(z+y)
243z

()]
- i3

1+2)+z@z+y)P[[1+2)+z(1-y))(1-y) (1(2-y
mr = R (st (552
+ z(1+2z+y)(1~-y) (3“2;1)]
i+z)+z(z+y)P \ =
2(1+f¢)2(2 y)+2:{1~y)(2—-y)+x(1+2::+y))(3 2y)
::(I+4z+3z’)

)

-+

Let F(z;y) E(T)2) — E(T|1). If we fix z = .7, for example, and
plotted F(.7,y) versus y(0 < y < 1), then we would ob&m that F(.7,y)
takes on negative values for y near 1. This show that E(T'|2) < E(T|1) and :
completes the proof.

Comment The actual service distribution c.d.f. given in the previous
property is

0 fort <0
Fy= {p + f‘; mwge““‘“’dw fort > 0.

3 Conclusions

We have constructed a service distribution such that an arriving customer
would not always prefer to encounter a short line (one customer) as com-
pared to a longer line (two customers). We have used standard Markov
process methods on a particular Coxian service distribution.
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Our service distribution was equivalent to one with three exponential
subservers, the first of which had infinite service rate. Could we have used
only two servers, assuming that the first server had infinite service rate?
The answer is no. If we had only two servers, and we observed n > 0
customers in the system, then we would know that one customer is being
served by the second server. Since the second server has exponentially
distributed (memoryless) service times, there is no advantage (and in fact
there is a disadvantage) to seeing more customers upon arrival.

Our service distribution is in fact not uncommon. At a customs booth,
for example, most customers (travellers} pass through with a very short
service time. Somtimes, however, a customer is given a much longer detailed
inspection, and even more rarely, is thorough searched.

What we have shown is that we are not always happy to encounter a
queue with a small number of customers waiting. Some papers (e.g. Kulka-
rni and Sethi [3]) deal with situations where an arriving customer can return
to a queueing system later if the number of customers already waiting is a
number that the arriving customer considers undesirable. In the example
that we have presented, we have the unusual situation that an arriving cus-
tomer might encounter one customer already in the system and choose to
leave and return later with the hope of finding two customers in the system!
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