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ABSTRACT 
 
A queueing model is presented to describe the treatment 
of Attention-Deficit / Hyperactivity Disorder (ADHD) by 
the stimulant Ritalin. The queueing model has two types 
of customers and uses a controller to affect traffic flow. 
When the controller works too slowly or the traffic is too 
heavy, there is an overflow. In human terms, if there are 
excessive distractions and/or a low ability to inhibit, then 
it is difficult for an ADHD individual to sustain 
concentration, to inhibit impulsivity, and to inhibit 
motoric restlessness. 
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1. INTRODUCTION 
 
Queueing models in medical, mental health, and clinical 
situations (other than patient flow in a hospital) are rare. 
Dansereau ([5]) looked at human attentional processes as 
a queueing network, but did not consider Attention-
Deficit / Hyperactivity Disorder. A queueing model for 
drug dosages in a general setting (not specifically 
ADHD) was considered by Brill and Moon ([2]). 
 
Attention-Deficit / Hyperactivity Disorder (ADHD) is 
defined according to the American Psychiatric 
Association Diagnostic Statistical Manual of Mental 
Disorders IV (DSM IV, 1994), ([1]) . According to this 
definition, individuals are diagnosed as having Attention-
Deficit / Hyperactivity Disorder only if they have high 
levels of at least six of nine specified  
 

 
 
inattention symptoms, and/or at least six of nine specified 
hyperactivity/impulsivity symptoms. In addition to 
satisfying the symptoms already mentioned, the age of 
onset should be before seven years, the chronicity should 
be at least six months, and the symptoms must be present 
in more than one setting. Evidence of other disorders are 
to be ruled out for an ADHD diagnosis. According to the 
American Psychiatric Association web site 
www.psych.org, DSM V is not expected until 2010.   
 
Attention Deficit / Hyperactivity Disorder is a common 
disorder among individuals in today's society. According 
to the DSM-IV ([1]), between three and five percent of 
school age children have the disorder. Phelan ([7]) claims 
that twenty million American children and adults, have 
the disorder.  
 
Treatments may involve behavior modification and/or 
medication. One of the more popular treatment methods 
for ADHD, involves the use of the medication 
methylphenidate (better known by the brand name 
Ritalin). It is the medication of choice to which a 
majority of ADHD individuals will respond. Ritalin is a 
stimulant. It is curious that individuals who have 
hyperactive and impulsive symptoms would take a 
stimulant to slow them down. (The fact that a stimulant 
can result in certain characteristics of a system becoming 
slower is incorporated into the mathematical model to be 
presented in Section 2.)   
 
Children and adolescents who exhibit ADHD are likely to 
have features of impulsivity, short attention span, and 
hyperactivity. Those individuals who have mostly 
features of attentional difficulties are said to have ADHD, 
Predominantly Inattentive Type, and may respond best to 
lower dosages of Ritalin. Those individuals who have 
mostly features of hyperactivity/impulsivity are said to be 
ADHD, Predominantly Hyperactive-Impulsive Type. If 
both features of inattention and hyperactivity-impulsivity  
 



are noted, then the individual is said to have ADHD, 
Combined Type.  
 
Individuals who take ADHD medication likely will have 
tried dosages of Ritalin ranging from 5 mg to 60 mg 
daily. Ritalin is usually the first choice of medication for 
ADHD if the individual is at least six years of age. The 
stimulant Ritalin acts to increase the level of the 
neurotransmitter dopamine in the synapse between the 
brain cells of the frontal lobe. It does this by increasing 
the release of dopamine from the neurons (p.578, [4]). 
The neurotransmitter is released from the presynaptic 
axon side, diffuses across the synapse, and produces 
excitation in the postsynaptic dendrite side. Thus the 
individual is able to inhibit distracting noises, impulsivity 
and overactivity. One way of describing the reaction to 
Ritalin is through the use of a queueing model. Queueing 
theory is the study of waiting lines. It is used extensively 
in studies of traffic flow, in communications (especially 
telephone connections), and in studies of information 
flow in computer systems.  
 
We model Attention-Deficit / Hyperactivity Disorder by 
creating a hypothetical controller for a queueing system. 
Taylor ([8], p.25) makes the statement ``The hyperactive 
child has a faulty gatekeeper." In this analogy, the 
gatekeeper can block undesirable individuals from 
entering. However when the gatekeeper is busy, any 
individual, desirable or not, can enter unchallenged. If we 
think of undesirable individuals as corresponding to 
unfocused thoughts, and desirable individuals as properly 
focused thoughts, then we can see the relationship  
between our queueing model and our ADHD model. 
Although this is a simplification of an extremely complex 
human condition, Koziol and Stout ([6], p.48) “provide 
evidence that ADHD is an executive function disorder, 
operationally measured using frontal lobe evaluation.” 
The frontal lobe plays the role of the controller in our 
model.  
 
Comings ([4], p.395) states that “children with ADHD 
appear to have a deficiency of prefrontal lobe dopamine. 
As a result the subcortical structures such as the striatum 
and limbic system are disinhibited and these children 
present with hyperactivity and irritable behaviour.”  
 
This paper has several goals. The primary goal is to show 
how ADHD and Ritalin medication can be explained as a 
queueing system. This may help to explain ADHD more 
clearly to individuals who have an analytic background 
but who have little understanding of the treatment of 
clinical disorders.  
 
A second goal is to suggest models that may be useful, if 
studied in more detail, for determining modifications of 
dosage levels. Too high a dosage of Ritalin may result in 
lethargy, while too low a dosage may result in no 
improvement. The shape of the response function derived 

can tell us much about the expected effects of medication. 
Several different dosages are often needed to find the 
correct dosage level for an individual. Of course, every 
individual has his or her own set of parameter values. 
Knowledge of the shape of the response function may 
help to find the correct dosage level faster than would be 
possible without such knowledge.  
 
A final goal is allow the mathematical formulation to 
help focus attention on the factors that control an 
individual's behavior. Thus a number of possible 
solutions to the disorder can be suggested.  
 
Section 2 of this paper is presented from the viewpoint of 
a probabilist rather than a psychologist. The primary task 
is the construction of a queueing model for ADHD and 
the determination of its properties.  
 
 
 

2. THE QUEUEING MODEL 
 
2.1: Model Assumptions and Derivation of the 
Response Function  
 
Assume that we have a queueing network with flow 
→[controller]→[completion area] . 
 
Assume there are two types of customer arriving to the 
system. Call these Type 1 and Type 2. Type 1 customers 
correspond to properly focused thoughts for an ADHD 
individual. Type 2 customers correspond to unfocused or 
improperly focused thoughts.  Assume that the arrival 
rate of  Type 1 customers is 81 and the arrival rate of 
Type 2 customers is 82. Assume exponential interarrival 
times. Assume that there is a controller with room for 
exactly one customer. If a customer arrives while the 
controller is busy, the arriving customer bypasses the 
controller and immediately enters the “completion” area 
behind the controller. If the controller is not busy, then an 
arriving customer must be serviced by the controller 
before proceeding to the completion area.  Assume the 
controller has exponential service times with rate :. After 
a Type 2 customer is processed by the controller, it is 
discarded from the system. After a Type 1 customer is 
processed by the controller, it moves to the completion 
area.   
 
We would like to know the proportion of Type 1 and 
Type 2 customers in the completion area under various 
values of 81, 82 ,  and  :. Since Type 1 customers are 
properly focused thoughts, we would like to have a large 
proportion of Type 1 customers. The value of : 
corresponds to the level of neurotransmitters in the 
frontal lobe. 
 
Our state space consists of the type of customer being 
served by the controller. Define the states 0,1,2 as: 



0 means there is no customer being server by the 
controller.  

Let P(T1|0) =  P0(T1) = probability of event T1 given that 
the system is currently in state 0 

1 means that there is a Type 1 customer being served by 
the controller. 

Let P(T1|1) =  P1(T1) = probability of event T1 given that 
the system is currently in state 1. 
Let P(T1|2) =  P2(T1) = probability of event T1 given that 
the system is currently in state 2. 

2 means that there is a Type 2 customer being served by 
the controller.  

  
Theorem 1: Let the limiting probabilities of states 0,1,2 
be q0, q1, and q2. The limiting probabilities are:  

Then  
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Proof : The balance equations are: 
 
 

  
Solving the three equations in (5) gives  
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 Thus,  
Using (1), and (6), we obtain (4).   

).2|()1|()0|( 21101 TPqTPqTPqp ++=
The three equations in (2), together with the constraint 

, are solved to get (1).  1210 =++ qqq  
  
 Note: For our analysis, we have assumed that 

the interarrivals and service times are both exponentially 
distributed. In fact, our final result (Theorem 2) is true for 
general service time distributions with mean service time 
1/:. This follows because all of the type 1 customers 
eventually enter the system, either immediately upon 
arriving or after a service period. Further, the only type 2 
customers who enter the system are those who encounter 
a busy period. Thus our desired proportions depend only 
on the proportions of type 1 and 2 customers in the 
arrival stream and on the probability that the server is 
busy.  

We are really interested in the proportions of the two 
types of customers in the completion area.  
 
Theorem 2: The limiting proportion p1 of Type 1 
customers in the completion area is given by  
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The proportion p2 of Type 2 customers exiting the system 
is given by  p2=1-p1 .  
Proof:  Let Ti  be the event that the next addition to the 
completion area of the queueing system is a Type i 
customer, i=1,2.  

 
The assumption of exponential interarrival times is 
equivalent to assuming that the arrivals come from a 
Poisson process. This would true if the customers are  



arriving randomly and independent of each other. In 
terms of ADHD, if the interruptions are from random 
sources, then the assumptions are reasonable. If not, there 
is sufficient robustness in the model to give results that 
are good approximations to reality.  

 ^2), (1+2*x)*x/(x+(2*x)^2),(1+3*x)*x/(x+(3*x)^2)], 
 x=0..4,p1=0..1); 
 
In Diagram 1, x,y both lie between 1 and 10. The 
contours correspond to values of p1=.2, .3, .4, .5, .6, .7, .8, 
.9, where p=.9 is the lowest curve. The contours look 
very close to straight lines. The section of the region 
{(x,y):1<x< 10, 1 < y < 10} with values of p1 greater than 
or equal to .9 consists of the lower right hand corner. The 
range of values implies that the controller is often busy 
and that most arrivals proceed directly to the completion 
area, bypassing  the controller. Thus the proportion of 
Type I customers in the completion area is not very 
different from the proportion in the input.  

 
 
 
2.2: Graphical study of the model and ADHD 
interpretations  
 
Recall that Type 1 customers correspond to properly 
focused thoughts of an ADHD individual. Type 2 
customers correspond to unfocused or improperly 
focused thoughts of the individual. We have three 
independent variables of interest, namely 81, 82, and :, 
together with one dependent variable p1. In order to 
reduce the number of variables that we have to consider, 
we let x=81/: and y=82 /:.   
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Thus we have reduced our expression for p1 from an 
expression in three variables (81, 82, :) to an expression 
in two variables (x, y). This will be useful for simplifying 
our graphical analysis.  
The variables x and y give the relative proportion of 
arriving focused and unfocused thoughts relative to the 
service rate of the controller.  
 
Our goal is to have a high value of p1, indicating a high 
proportion of properly focused thoughts (or desirable 
customers) in the completion area stream. This 
corresponds to a high level of concentration ability.  As 
we increase the service rate : of the controller, perhaps 
by using drugs such as Ritalin, the values of x=81/: and 
y=82 /: decrease.  

 
 Diagram 1: y vs x (1<x<10, 1<y<10) 
 
 
We wish to have high values of p1. The lower right hand 
corner corresponds to high values of x and low values of 
y. These occur when 81 is large and 82 is small. Thus we 
wish to increase the properly focused signals and 
decrease the distractions. For a classroom setting, we 
could increase the value of 81 by having more teacher 
student interaction, by having more interesting 
multimedia presentations, by having lower student-
teacher ratios, or by having more "hands-on" activities. 
We could decrease the value of  82 by having windowless 
classrooms, stricter enforcement of "no talking rules" or 
by shutting classroom doors to  external noise.  

 
We now consider contour plots of the function p1 in terms 
of x and y. We look at three plots - one for values of the 
independent variables x and y between 1 and 10, the 
second for values of the independent variables between .1 
and 1, and the third for values of the independent 
variables between .01 and .1.  
 
The following MAPLE program will generate 4 plots 
which we denote Diagram 1, Diagram 2, Diagram 3, 
Diagram 4. 
 

 with(plots); 
In Diagram 2, x,y both lie between .1 and 1.0. The 
portion of the region {(x,y): 0.1< x < 1, 0.1 < y < 1} for 
which p1 is greater than or equal to 0.9 again consists of 
the lower right hand corner. The contours correspond to 
values of p1=.2,.3,.4,.5,.6,.7,.8,.9. The proportion is now 
slightly larger than in Diagram 1. In fact, near x=0.1, 
y=0.1, the value of p1 is clearly higher than 0.5, which 
would be the result if there were no controller. The 

contourplot((1+x+y)*x/(x+(x+y)^2),x=1..10,y=1..10, 
 contours=[.9,.8,.7,.6,.5,.4,.3,.2]); 
contourplot((1+x+y)*x/(x+(x+y)^2),x=.1..1,y=.1..1, 
 contours=[.9,.8,.7,.6,.5,.4,.3,.2]); 
contourplot((1+x+y)*x/(x+(x+y)^2),x=.01..0.1, 
 y=.01..0.1,grid=[50,50], 
 contours=[.9,.8,.7,.6,.5,.4,.3,.2]); 
plot([(1+1.1*x)*x/(x+(1.1*x)^2),(1+1.5*x)*x/(x+(1.5*x) 



Finally, in Diagram 4, we look at plots of p1 versus 
x=81/:  for 4 different levels of 81/82, namely.1, .5, 1, 2. 
We choose 0 < x < 4. The upper curve corresponds to 
82/81 =.1 and the lower curve to 82/81 =2. We would like 
to see high values of p1, which correspond to a high 
percentage of ``correctly focused'' thoughts (or high work 
efficiency). We see from the plot that we obtain high 
values of p1 when 82/81 is small (for example, when 82/81 
=.1), or when x=81/: is small (for fixed 82/81).  

regions that appear in Diagram 2 would be more likely to 
appear than those of Diagram 1 if we increase the value 
of  :, perhaps by giving a small dosage of Ritalin.  
 

 

 
 
 

 

 
            Diagram 2: y vs x (.1<x<1.0, .1<y<1.0) 
 
 
Next we consider Diagram 3. In Diagram 3, x,y both lie 
between .01 and .1, The contours correspond to values of 
p1=.6,.7,.8,.9, with p1=.9 being the lowest curve. Here the 
effect of the controller is very evident and the vast 
majority of the region  {(x,y): .01< x < 0.1, .01 < y < .1 } 
has  p1  greater than or equal to 0.8. Diagram 3 is the 
diagram that would be expected of an ADHD individual 
who is taking a larger dosage of Ritalin.   

 
Diagram 4: p1 vs x 

  
 
We can make 82/81 small by lowering 82 (i.e. by 
eliminating distractions). We can also make 82/81  small 
by increasing 81. Multimedia presentations, or ``hands-
on'' activities which hold one's attention, would be 
examples of increased 81. However, we have already 
mentioned the desirability of large 81 and small 82 in 
connection with Diagrams 1, 2 and 3.  We can make 
x=81/:  small by increasing : through the use of 
medication like Ritalin. It is possible that :   can be 
affected by exercise, particular foods, or sufficient sleep. 
We can also make x=81/: small by lowering 81, while 
keeping 82/81  fixed. This means the arrival rate of 
correct focused information and the arrival rate of all 
information are BOTH kept low. In practice, this would 
translate into giving only a few tasks to an ADHD 
individual at a time rather than all together.   

 
 

 

 
 
 

3. CONCLUSIONS 
  
 In this paper, we have attempted to apply queueing theory 

to Attention Deficit / Hyperactivity Disorder to help 
explain the effects of a stimulant such as Ritalin. An 
understanding of the mathematical effects could 

          Diagram 3: y vs x (.01<x<0.1, .01<y<0.1) 
 
 



potentially help to predict effects and to set dosage levels. 
If there existed a test which could measure the attention 
level relative to some expected optimal level (depending 
on the individual), for each dosage level of Ritalin, then 
knowing the convexity or concavity of the response curve 
could help to find an improved dosage level. It should be 
emphasized that individuals are different and have their 
own parameter values in the model presented. In practice, 
individuals receive several exploratory medication 
dosages in an attempt to find the smallest dosage which is 
effective.   
 
There are medications used in the treatment of ADHD 
other than the stimulant Ritalin. Other stimulants are 
Dexedrine and Cylert. Anti-depressants are also used. 
However, this paper is restricted to a queueing model for 
stimulant medications for ADHD. Our graphical analysis 
has helped to focus on the various factors that affect 
ADHD behaviour. This focus helps to suggest what kind 
of solutions might be effective in reducing existing 
problems.  
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