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Abstract

We present a simple derivation of the matrix geometric solution for— that s found in
certain vector state Markov processes that have a repetitive structure. Twis sc.ition form
was pioneered by Marcel Neuts and has a wide application in computer perjormezace model-
ing. Qur approach is based on first principles and makes use of an analogy 10 ccmesponding
solutions found in scalar state processes. The paper is sell contained az2 ar :xample is

included that iliustrates how one can apply these resul!s in performance —odeis



1 Introduction

The essential problem in determining the stationary state probabilities of a Markov process is
solving a set of linear, flow balance, equations. In this set, there is an equation associated with
each state of the system. For systems with a large, or possibly infinite number of states exact
solutions can only be obtained if one can exploit structural properties of the equations. For
example, the solution for the infinite set of equations derived from a M/M/1 queue is easily
determined because these equations have a repetitive structure. This repetition allows one to
determine a recursive solution for the stationary state probabilities since it implies that if one
knows the stationary probability for any state i then the stationary probability for state : + 1
can be determined. The stationary state probabilities for the repeating portion of this process

thus has a geometric form. This form is found in all scalar state processes that have a similar
repetitive structure.

Neuts {7] developed a body of results that allows one to exploit repetitive structure more
generally than described above. If the states of the Markov process can be grouped into vectors
which possess a certain repetitive structure then a recursive procedure can be used to determine
the stationary state probabilities of the 1 + 1’st vector in terms of the probabilities for the #’th
vector. As in the scalar case, the form of the solution for the stationary state probabilities is a
generalization of that obtained in the scalar case, leading to Neuts’ matriz gesmetric form.

There is a wide range of applications of matrix geometric results in computer performance
modeling. Many computer models have a regular organization which leads to Markov models
with a repetitive structure that fits within the matrix geometric framework. To describe one
version of the matrix geometric form consider a Markov process with states (m,n) where m > 0,
and n is a vector. Assume that the number of possible values for m (resp. n) is unbounded
(resp. bounded), and that transitions can cause m 1o increase (resp. decrease) by at most 1
(resp. k) unit(s). If there exists a value m* > k so that for m’, m*—k < m’ < m*+1, transition
rates between states (m*,n) and (', n’) ate identical to transition rates between (m* + 7, n)
and {m’+7,n') for all j > 0, then the process is matrix geometric. A natural family of processes
that satis{ly these conditions are certain open queueing systems consisting of one queue with an
infinite capacity. Many models can made to be approximately matrix geometric by truncating
certain portions of the state space and assuming that subsequent state transitions repeat so as
to satisfy the {form. Additionally classical queueing systems can be solved using this method
when service and arrival processes are given by phase distributions.

Considering the range of applications and the fact that the theoretical results for matrix
geometric solutions are well established, it is surprising that these results are not more widely
utilized by practicing petformance modelers. We believe the reason for this might lie in the fact
that initially the mathematics behind the method seems formidable and our goal in this tutorial
is to make Neuts’ results more accessible. We do this by presenting a simplified derivation of



the matrix geometric solution that draws on the parallels between the scalar and vector cases as
outlined above. This derivation is based on the fact that the linear equations that determine the
stationary state probabilities have a unique solution and thus guessed values can be checked by
establishing that they satisfy the equations. In Section 2 of the paper we establish preliminary
properties of Markov processes and set up the correspondence between scalar and vector state
processes. The matrix geometric form is derived in this section as well as some of its properties,
A more detailed and formal exposition of these results is found in [7]. Section 3 presents

an example of a performance model that uses these results and in Section 4 we present our
conclusions.

2 Markov Processes

We begin by stating some preliminary results on Markov process in Section 2.1. We then
consider a simple example in Section 2.2 of a scalar Markov process that has a geometric
solution. This will be used as an analogy to derive a more general formulation in Section 2.3
for vector state processes which leads to a matrix geometric form. We then generalize the

vector process to a more complete formulation in Section 2.4 and establish properties of matrix
geometric solutions in Section 2.5.

2.1 Preliminary Definitions

We let S be a set of states and let X(t),~co < t < 00, be a time homogeneous, irreducible and
stationary Markov process defined on § [10]. We will sometimes suppress the time dependency
in our notation of X(t). Without loss of generality we assume that § = {0,1,...} and initially
assume that time is continuous. We later show how the results here apply to discrete time
processes. The state trensttion rate from state 1 to state 7, 1,5 € S, is defined as

. PiX(t+r\=3]X(f)=|l ; :
(o o P, 1 o
] 1= ]:
and we define the total transition rate from state i as
r(i) = ) (i, 7). (2)
1€58

The generator matrix of the process, denoted by @, is the matrix formed from the transition
rates, @ = {q(1,7)} that satisfies

=) ) T#E
q(t,J)—{ i, d=g (3)



The stationary distribution of X is denoted by =,1 > 0, and is equal to the fraction of
time that the process spends in state i. We let * = (mp, 7y,...) be the vector of stationary
probabilities. The stationary distribution is the unique set of m; > 0,1 > 0, that solves

Q = 0, (4)
e = 1, (5)

where e throughout the paper derotes an appropriately dimensioned column vector of 1’s.
Observe that the 7’th equation of (4) is given by

i mig(i,7} =0, j >0, (6)
=0

and corresponds to a global balanceequation that must hold for state j (i.e. the total probability
flux into and out of state 7 must be equal). It is important to note that there are many solutions
to (4) and it alone can only be used to determine the relative values of 7., > 0. Provided that
the Markov process is ergodic, the normalization equations (5) are used to determine the unigque
stationary probabilities. Because the solution is unique, if one can guess a possible solution for
the values of 7;,1 > 0, then these values can can be shown to be correct by demonstrating that
they satisfy (4) and (5).

There is a well known equivalence between the stationary probabilities of a continuous time
process and the stationary probabilities for a corresponding discrete time version of the process
that we will use. To establish this equivalence, we select a transition step size A as

A =sup (i), ' (7)
20

and then consider the following transition probability matrix P = {p(1,j)} given by

o ={ (G 127 ®

Observe that the rows P sum to 1 and also, written in matrix form, we have that P = Q/A + 1
where I is the identity matrix. The value p(1,7) is the probability of a state transition from
state i to state ; at embedded transition epochs. Direct substitution into (4) and (5) shows

that the the stationary probabilities of this discrete version are the same as for the continuous
process and solve

T = 7P (9)
e = 1. (10)



There is thus a direct mapping between continuous and discrete time versions of a Markov
process. For certain results, derivations are simplified in the discrete time process because one
is relieved of the need to account for the time the process stays in a given state {an example of
this is the derivation of the meaning of the R matrix in Section 2.5.2 ).

2.2 Scalar State Process

Consider the Markov process with state transition diagram shown in figure 1 which corresponds
to a modification of a M/M/1 queue. Customer arrivals to the system when the system is in
state 1,1 > 1, are assumed to have exponentially distributed interarrival times at a rate of A
and customer service times are exponential with rate . Interarrival times to an empty system

are exponential with rate A'. The system is ergodic if A < u. The generator matrix, @, of the
process is given by

- Pl 0 0 0
PO S Wy A 0 O e

Q=] 0 " —(A+u) A o |, (11)
0 A

0 7 =(A+p)

Selution techniques for the stationary probabilities for such simple problems are well known but
1L is instructive to derive a solution frem first principles. The techniques we use here require
guessing the form of the solution and the derivation here will be used to guide the derivation
of the solution for a veclor stale process.

The repetitive structure of matrix @ car be see in terms of its columns. Number columns
starting from zero and observe that, the j’th column for j > 2 is the same as the second column
except that it is shifted down by 7 — 2 steps. We call the linear equations that arise from
these columns of the matrix, the repeating portion of the process since they have a repeiitive
structure. The remaining equations, i.e. those that result from columns 0 and 1, are called the
boundary portion. We use the terms repeating and boundary to equivalently discuss states of
the Markov process, i.e. states j,j > 2, are the repeating states and states 0 and 1 are the

boundary states. We use the repeating structure of this matrix below in determining a solution
for the stationary probabilities.

We first write down the the balance equation for the repeating portion of the process,
WJ—IA_WJ(A+#)+WJ+1#| ]2 21 (]2)

and make an important observation about states in this portion of the process. Since arrivals

only cause transitions to reighboring states, it is reasonable to believe that, given the value of



Ti-1,7 > 2, the value of 7; is a function of only the transition rates between state ;7 — 1 and
state j. For the process we are considering, these transition rates do not depend upon the value
of 7, and consequently this suggests that there is some unknown constant p such that

Ty = PpUj-1, J 2 2. (13)
This implies that the values of ;,7 2> 2, satisfy the following geometric form,
m=p"m, §>2 (14)

To determine a value for p and to check that this is indeed the solution form, we substitute this
guess into (12). This shows that

M e mpP T A b )+ mpp =0, 522, (15)
which, after simplification, shows that
A—p(A+u)+ =0 (16)

This quadratic has two possible solutions p = 1 o1 p = A/u. Although p = 1 is a solution to
(4) it cannot also satisfy (5) since this requires that p < 1 for convergence. Thus we have that
p=Ap

We can write equations for the initial portion of the matrix as

—mA +mp = 0 (17
TN = m(A+p)+mp = 0, (18)
or in matrix form as
=2 N
T, T ' =0, 19
(7o 1)[ i —u] (1)

where we have used the fact that vy = pmy in equation (18). It is clear that (19) does not have
a unique solution since since the rank of the matrix is one less than the number of unknowns.
To determine the unique solution for these quantities we use the normalization condition (5)
which shows that

l=m+m Yy p =1 +m(l-p)~t. (20)
1=1

This in combination with (19) yields a unique solution given by

1
S o )
L= ”' (22)

1+ 7/(1-7)



with g’ = A'/u . Equations (21), (22) and (14) thus constitute a complete solution which can
be checked by demonstrating that it solves (4) and (5).

We used the following three steps to derive the solution for this simple process which will form
the basis for subsequent derivations.

1. Based on the repetitive structure of the process, we guessed a geometric solution form for
the repeating portion of the Markov process. This form required us to calculate the value
of an unknown constant.

2. To calculate the value of the constant, we substituted the geometric form for one of the
balance equations in the repeating portion of the process and solved for the root of that
equation.

3. The boundary portion of the process was then solved using the results for the repeating
portion of the process and the normalization condition.

Most performance measures can be obtained as a linear combination of some state depen-
dent function using the stationary distribution. Suppose, for example, that we wish to calculate
the expected number of customers waiting in the queue for this model, denoted by Tq We can
do this by assigning a value of j ~ 1 to state 7 and calculating

Ny = Y.G-Dm=my (G- (23)
1=1 =1
Y S e’
B R T (s Ty k24)

Note that if o' = p then N, = p?/(1 - p) which is the expected number of customers queued in
a2 M/M/1 queueing system. More complex performance measures can be similarly calculated

as a weighted sum of the stationary probabilities. We now duplicate these steps for a vector
state queueing system.

2.3 Vector State Process

Suppose now we assume that the service requirements of jobs arriving to the system is the
sum of two exponential stages with rate yy and p;, respectively. To analyze this system, we
augment the state descriptor and let the state be given by (i,5),1 > 0,5 = 0,1,2, whete 1 is
the number of customers in the queue (not including any receiving service) and s is the current
stage of service of the customer in service. By definition we set 5 to be equal to 0 if there are no
customers in the system. The state transition diagram for this system is shown in figure 2 where



we have grouped states according to the total number of customers in the queue. We order
states lexigraphically, i.e. (0,0),(0,1),(0,2),(1,1),(1,2),..., and let =, ) be the stationary
probability of state (i,s). We shall say that states at level i are those states defined by (+,0)

and (1,1). The generator matrix is given by

=X XM 0 0 0 0 0 0 0 1
0 -a1 ©m A 0 0 0o 0 ...
g2 0 -2z 0O XA 0 0 0 O
0 0 0 =—-a m A 0 0 0O
Q=] 0 4 0 0 -e 0 X 0 0
0 0 0 0 0 -a g A O
0 0 0 [ 1%) 0 0 —az 0 A

where we have defined a; = A+ p;,1=1,2.

(25)

The structure of this generator matrix is a generalization of that found in the previous
exarmple (11). This is most easily seen by grouping the entries of (25) according to the number

of customers in the system. Let m, = (7 1), M(i2)) for & 2 1, 15 = (m(0,0), T(0,1), T(0,2)) and

x = (g, 1y, T3, ..). Define the following matrices

1A 0 ey _|1 0 0
,40:[0 A], Al_[ ° _] A2=[M 0].

Also define
0 0 =N 0
Bl.g = l (0) 32 g ] N BO,I = A0 4 Bg.o = 0 —a 1
0 A 42 0 —a3

With these definitions we can group the generator matrix into blocks as follows

2,00 (o) (o) (i, 0 (W) (r0) (L)
(o,o)- =x A o 0 0 0 |0 Of...]
(a,f) 0 -a1 @ A0 0 0 j0 0
@] _# 0 ~as 0 A 0 0 00
0 0 0 || —a1 m A 0 O 0
Q = 0 o O 0 =-a2f| 0 X jO O
0 0 0 [0 0 l-a1 ml[r 0
0 0 0 |p O 0 —a)l0 A

(26}

(27)

(28)



Bog Bop 0 0 O

Big A1 A 0 0 5 0
0 Ay A; A 0 ... (29)
0 0 Az A Ag

where a 0 entry in (29) (and also in other matrices in this paper) is a matrix of all zeros of the
appropriate dimension.

Comparing (11) and (29) shows that they have a similar structure with the exception that
scalar entries in (11) have been replaced with matrix entries in (29). We again call the repeating
portion of the process to be the set of linear equations starting at the second blocked column
and the boundary portion to be the equations associated with the 0’th and 1’st blocked column
(we similarly will call the associated states, the repeating and boundary states). We solve for

the stationary probabilities in exactly the same manner as in the scalar example except that
here we deal with vectors instead of scalars. First we write down the equation for the repeating
portion of the process which given in block matrix form is

Ij1Ao+ T;A + 1,42 =0, j2>2. (30)

Similarly to the scalar case, since state transitions are between nearest blocks, if we are given

the valueof ,_;,7 > 2, then it would not be surprising to find that the value of 7, is a function

only of the transition rates between states with j—1 queued customers and states with j queued
customers. Since these transition rates do not depend upon the value of j, this suggests that
there is some constant matriz & such that

Ej =Ir_J—1R: .7 2 2! (31)

and that the values of x,,7 > 2, have a mairiz geometric form, i.e.

T,=n R j > (32)
Substituting this guessinto (30) shows that

TR A + R A + 1 R A2 =0, > 2, (33)
which on simplifying yields
Ao+ BRA; + R2A2 = 0. ) (34)

This is a quadratic in the matrix £ which is typically solved numerically (we discuss computa-
tional aspects of the matrix geometric method in Section 2.5.3). Recall that in the quadratic

equation. for the scalar case there were two possible solutions only one of which could satisly the



normalization condition. Similar to the scalar case, we pick the minimal matrix R that satisfies
(34). If the normalization constant is satisfied for the vector state process, it must be the case

that m; 372, R?"!¢ < oo. Here the analogous criteria to p < 1 in the scalar case, is that the

spectral radius of £ must be less than 1. This follows from the fact that all eigenvalues of R‘

must be less than 1 for the sum to converge [3].
e s ot
Assume that we have such a solution to (34). To determine the stationary probabilities we

continue as in scalar state case. The equations for the initial portion of the matrix are given by

ToBoo+mBio 0 (35)

IoBoy+ 1AL+ 7142 = 0 (36)

which can be written in matrix form as

Byg By, ] =0 (37)

(10)11) BI.O A] +RA2

where we have used the fact that m; = Rx, in (36). As in the scalar case, equations (37) are
not sufficient to determine the values of 7, and 7, and we must use the normalization condition
(5) to determine these values. This yields

l=me+r > Rle=me+m,(I-R)e (38)
)=l

which together with (37) yields a urique solution.

Suppose, as in the scalar case, that we wish to calculate the expected the number of queued
customers, denoted by N;. We do this by assigning the value of j — 1 to states (j,1) and (7,2)
and then calculate an expectation of this value using the stationary distribution. This yields

N, = i(i -Dre=m, i(j —1)R¥ e (39)
=1 =1
= =, R(I-R)% (40)

Table 1 summarizes the analogous derivations for the scalar and vector state processes.
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Table 1. Analogous Derivations

Step Scalar process Vector Process
J'th
Balance 1A = Ty(A+ p) + Tjp =0 T 1Ao+ A1+ 14142 =0
Equation
Guessed
Geometric T, = P imy _ ;= RI-lx,
Solution
Solution
Repeating A—p(A+p)+p2u=0 Ao+ RA1+ R?A2 =0
Portion
Solution
! i
Initial (70, m1) [ : _A“ =0, (zg,m) [ jg(::g AliO}lIAg ] =0
Portion
Normalization
Condition 1 =my+m(1-p)7? 1=mpe+1,(I - R)Y e
Performance
Measure Ng=mp(1 - p)~? Ne=mR(I-R) e

2.4 Matrix Geometric Solutions

In this section we present the matrix geometric solution technique in a more general context

than that previously considered. Since scalars are special cases of vectors, our results here

also hold for more general scalar state processes. The solution techniques employed here are

identical to those used in the simple cases considered in Section 2. Consider a Markov process
that has a block generator matrix given by

m-m m LU |

My-m ¢ éoo Boy 0 O

B;m| By Bia Ag O

M| Byo Ban A1 Ag

@=1| By Bsx A2 A

0

0

g ...

Ao ... (41)
Bio By Ay A A

where Bog is a square matrix of dimension (m; — m), By, is of dimension (m; — m) x m,
matrices By g, k > 1, are of size rn x (m; — m), and all other matrices are square of dimension

m, where m; > m. The B matrices here correspond transitions from boundary states.
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When referring to the states of the process it is convenient, as in the previous sections, to
define levels of states. The 0’th level of the process associated with Q of equation (41} are the
m; — m boundary states. The first level are the next m states, and generally the ¢’th level for
i > 1, are those states indexed by my —m+(i—1ym+1{, {=0,1,...,m — 1. We will index the
repeating portion of the process by a tuple (,7), i > 1,0 < 7 < m — 1, where 1 is the level of
the state and j is called an interlevel state. The state of the original process indexed by (1, 7)
ismy~m+(i—1)m+7j.

To write a general solution for the generator in (41) we proceed similarly to Sections 2.2
and 2.3. We first write a balance equation for the repeating portion of the process

Y om A =0, j 22 (42)
k=0

We then guess a geometric solution
i} = -‘.‘LJ'—IR1 J 2 2) (43)

or that
o =a, /0 i (44)

Substituting this guess into (42} and simplifying shows that R solves

Y RFAk=0. (45)
k=0

To determine a solution for the boundary states we must solve the {ollowing linear equations

By, Bo _
(20, 2,) Ty RF1Beo T3, RF18By, =0 (16)

These equations, however, are not of full rank and we must use the normalizatiorn condition
to determine the solution. This is given by equation (38) which, together with (46), provides
a unique solution. A way to compute this unique solution using a linear equation solver,
is to replace one of the columns in the matrix in (46) with the column that represents the
normalization condition and to appropriately change the right hand side of (46). Suppose, for
example, we replace the first column of the matrix with the normalization condition. This
yields

e Bgo Bo,
(T—rﬂ’ll) .

(I-R)"le [Zi';l Rk—]Bk’O]* s pe-ig | T (1,0] (47)
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L
where B}, and [Z;";l R*"1Bio| result from the removal of the first column from the matrix

in (46) and [1,0) is a row vector of consisting of a 1 followed by m; — 1 zeros. Equation (47) is
in the form suitable for most linear equation solvers and uniquely determines 74 and T,.

We end this section with some observations about how this general matrix form relates to
preblems often encountered in performance models. We first observe again that performance
measures can then be calculated from the stationary probabilities. In practice one typically
finds that matrices By and By, are zero for values ¥ > K + 1, K > 1. Similarly one often
finds that that Ay are zero starting at £ > K + 1. The value of K is the maximum number
of levels that the process can jump down in the repeating portion of the process and for many
performance models this value is small. For example the Markov process considered in Section
2.3 with generator matrix given in (29} has my =5 and m = 2, By; = A;, By = A; and and
K = 1. Henceforth in the paper we will assume that K is finite.

A special case of matrix @ above that {requently occurs in practice is that where m; = m
which leads to a generator of the form

"By Ao 0 0 O ]
B, A Ao 0 0
By As A Ay O ...
Q=18 A; A, A Ag ... (48)
By Ay Ay Ay Ay

where all matrices are square of dimension m.

2.5 Properties of Matrix Geometric Solutions

In this section we establish a condition for the stability of the process in terms of its block
matrices, provide an interpretation for the R matrix, called the rate matriz, and discuss com-
putational procedures associated with the method. We first start with an equation for the
stability of the process.

2.5.1 Stability

We will interchangeably use the words ergodicity and stability. Loosely speaking, the ergodicity
of a process depends upon the expected total drift of the process for states in the repeating
portion of the process. For example, in the M/M/1 queueing model of figure 1, if we select a
given state in the repeating portion then its expected drift towards higher states is given by
A {a rate of A times a distance of plus 1 unit) and its expected drift towards lower states by
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—u (a rate of x times a distance of minus 1 unit). The total drift of the process is given by
A — u and the process is stable if this total drift is negative leading to the well known stability
condition of A < u. Intuitively this means that the expected direction of the process is towards
lower valued states. If the total drift is positive, then the process tends to move towards higher
valued states and is unstable.

In the calculation of the total drift of a process we include a notion of distance. For example,
suppose in the scalar process transitions can go up by 1 step and down by at most X steps.
Also suppose that the transition rate for ! steps is given by r({),! = ~K,-K - 1,...,-1,1.

Then the drift upwards is given by r(1), the drift downwards is given by — 5%, ir(~1) and the
total drift by the sum of these two components. Stability of the process implies that

K
(1) < Y ir(=0). (49)
i=1

We now investigate how we apply these concepts to processes with a matrix geometric structure.

Analogous to the scalar case, we will think of the drift of the process in terms of levels.
Assume, as above, that transitions can go up one level or down by at most X levels. We wish
to calculate the total drift from a level in the repeating portion of the process analogous to
(49). To do this we consider the process for levels that are far from the boundary, i.e. level i
such that 1 >> 0. [t is clear that the stability of the system only depends upon the expected
dnft {rom these levels. Now there is one complication that arises when the process is of matrix
geometric form. To see this consider a transition from level 1,3 >> 0, tolevel 1 — k,1 < k < K,
ie. a distance of k£ downward. To calculate the drift for such a transition we must know which
rate from level 1 to apply. If for example we knew that the transition was from interlevel state
7, 0 €3 <m -1, then the component of the drift for this transition is given by

m~—1
~E Y Avna(0) (50)
=0

where Ax41(7,1) 1s the entry in position (j,1) of matrix Ax4; and is the transition rate from
state 7 in level 1 to state [ in level i ~ k. To define the average drift let f,, 0 < 7 < m —1, be
the probability that the process is in interlevel state ; of the repeating portion of the process
for level very far from the boundary, i.e. for i >> 0 (intuitively speaking since these levels are
far from the boundary, the values of f,, 0 € j < m — 1, are independent of the level {). The
average drift from level i to level t — k then is given by

m=—=1 m=-1
—k 35 D An(iD) (31)
=0

1=0
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and to obtain the total rate we sum (51) over all k,0 < k < K + 1.

The difficulty now in performing this calculation is in determining the values of f;y the
probabilities that when the process is in interlevel state j. To determine these values we can
consider a derived Markov process on state space 0,1,...,m — 1, which identifies transitions
only in terms of their interlevel states. Specifically, if the original process has a transition from
state (4,7) to state (i — k,I), then in the derived process wé consider that a transition occurs
from interlevel state j to interlevel state [. It can be easily seen that the generator for this
derived process is given by the matrix A where

K+1

A= 4, (52)
{=0

and that the probabilities f; are given by its stationary measure, i.e. they solve

fa = 0 (53)
8 1, (54)

o
Il

where f = (fo, f1,..., fm-1). Using this in the above drift analysis and simplifying yields a
stability condition given by
K41

fAce < ) (k~1)fAge. (55)

k=2

2.5.2 Interpretation of the Rate Matrix

We now discuss an interpretation of the rate matrix. Our discussion for this is simplified if
we first consider the discrete time case. We thus form the matrix P by using the construction
P =Q/A+ I fiom Section 2.1. The matrices for the repeating portion of the discrete process,
denoted by A} are then given by

FEY MO+ k=1 (56

,_{ Av/b,  E#1,
In a manner similar to that which lead to equations (45) we can show that the R matrix for
the discrete version of the process, Ry, satisfies

K+1

Ro= 3" RbA;. (57)

=0
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We now show how one can interpret the entries in Rg (see [6] for the first derivation of these
results). To do this we construct a transient Markov process. Consider the repeating portion
of the process beginring with some given level and reindex levels from this point starting with
the index Q. To start the process we select a starting interlevel state, say j, 0< j < m—1,in
level 0 and let the process run according to state transitions given by 4,,0 < k < K + 1. We
stop the process (i.e. it absords) the first time it makes a tramsition to a state below level 1.
Thus if the first transition of the process is not to level 1 (i.e. the first transition is not equal to
one of the transitions Ag(j,7') where 0 < j* < m — 1) then the process absorbs at the first step.
Clearly the induced transient process depends upon the starting interlevel state j and we will
denote the transient process that starts from level 0 in interlevel state by T,, 0< j < m~1.

Define
PP = (P30, 621, 24, 05, <m—1) (58)
to be a square matrix of dimension m where the value in position (j,;') is the probability

that after n steps process T, is in interlevel state ;' of level 1. We let Pé“) = I, (I is the

identity matrix) for all 7 and note that since the process can go up by at most one level at each

transition, it is clear that P‘(") = 0 for ¢ > n. We also define

No={N(GD 121,0<7,5'<m~1} (59)
to be a square matrix of dimension m where the value in position (7, ') is the expected number
of visits made in T, to interlevel state ;' of level { before absorption. We set ¥ = Ny. It is
clear that

No=3PM, iz (60)

n=i

We now make the observation that if process T,, 0 < j < m — 1, is in any interlevel state
of level 4, 1+ > 1 at step n,n > i, it must have passed through level i — 1. Suppose that at step
I, <n, T, was in interlevel state 7,0 < 3’ < m — 1, and that this was its last visit to level
t — 1 prior to step n. Then if we reindex levels so that level 1 — 1 becomes level 0 it is clear that
the future evolution of the process is statistically identical to T;:. This follows from the fact
that step  is assumed to be the last visit to level 1 — 1 and thus the process can be thought of
stopping for any transition into levels less than i. These arguments permit us to write

n—1

M= 3 PO PR, s, (61)
l=1—-1

where P, in (61) is the probability that T, visits level i — 1 in { steps and the factor P{"™"
accounts for the fact that this is the last visit to level i ~ 1 since it is the probability that T,
starting from level 1 — 1 visits level i in n — { steps without ever going below level 1.
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Summing this over all value n and using (60) yields

o0

b= 33 R

n=1 [m=y—]

o0

- S 5 A

I=1=1 n=i+1
= N._1 N, 1> 2.

which implies that
Ni=N'i>2 (62)

Assume now that we observe process T,, 0 < 7 €< m — 1, at step n — 1 and 1t makes a

transition into level 1. Conditioning or all possible such transitions yieids

K+1
P§n) — Z Pj("—”AQ. (63)

i=0
Summing this over n and using (62) yields

K+1 oo

No= Y Y A4 (64)

=0 n=1
K+1

S ONA (65)
=0

Il

where we select the minimal solution. Comparing (65) with (57) demonstrates that Ry = N.
Thus an interpretation for Ry is that the entry in the (7, ;') position is the expected number
of visits to interlevel state j' of level 1 before absorption given that the process is started with
an interlevel index of 7 of level 0.. In the case of continuous time processes, the interpretation
of the R matrix is complicated by the fact that we must include the time the process spends
in each state in the calculation. We let the sojourn time in interlevel state j be the value
—~1/A1(7,7). For the continuous case the (4,7') entry of R is the expected time (measured in
interlevel state j's sojourn time) spent in interlevel state j of level 1 before absorption when
started with an interlevel index of j'.

For some performance models the interpretation of the rate matrix can be used to determine
explicit solutions for some of its elements. For example, if there is no path from interlevel state
7 at level i to interlevel state ;' at level 1 4 1 then R(7,j') = 0. We can also derive explicit
expressions if interlevel 7 is isolated from other interlevels. To show this consider a simple case
where K = 1 and there are transitions between interlevel states j, l.e. that Ae(s,7) # 0 and
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Az(j,7) # 0. Interlevel j is isolated if there are no transitions from it into other interlevels |
i.e. if A(j,7') =0 1or j # ;' where A is given by (52). Here the entry in R(j, ) is what would
be obtained from a scalar state birth death process, i.e. R(j,7) = Ao(f,7)/A2(7,7). Other
generalizations of isolation that lead to explicit entries in the rate matrix are cleazly possible.

2.5.3 Computational Properties

One iterative procedure which is often used to solve for matrix R is given by
R(0) = 0, (66)

Rn+1) = - 3 R(n)A4T', n20, (67)
1=0, i1

where the iteration halts when entries in R(n + 1) and R(n) differ in absolute value by less
than a given small constant. The equation in (67) is obtained by multiplying equation (45)

from the right by A7'. It can be shown that the entries in the sequence {R(n}} are entry-wise
nondecreasing and and converge monotonically to a non-negative matrix R which satisfies (45).
Experimental results on other computational procedures for calculating the rate matrix can be
found in {2, 7, 9]. See also [8} for a class of models where there is an explicit solution for the
rate matrix and [11) for a comparison of matrix geometric methods with other methods that
take advantage of structural features of the global balance equations.

We note that the number of iterations needed for convergence increases as the spectral
radius of R increases. Similar to the scalar case where p played the part of R, the spectral
radius of R in many performance models can be thought of as a measure of the utilization
of the system. This implies that for these cases as the utilization of the system increases it
becomes computationally more difficult to compute the entries in E. Most of the computational
effort associated with the matrix geometric method is, in fact, expended in computing R. In
our experience most problems were sufficiently small (typically K € 5 and m < 50) so that
performance measures could be graphed interactively. The largest problem solved arose in a
performance model of a parallel processing system where the state space grew exponentially
stnce it consisted of a partition of the integers [5]. Here K = 1 and m = 285 and the solution was
seriously compute and memory intensive. Performance measures were calculated in overnight
executions with much less computational effort than would be 1equired for simulations which
has the disadvantage of only producing approximate results.

For many performance models the Ag matrix is a diagonal where Ag(j,7) = 2,0 < 7 < m—1,
and A is the arrival rate of customers to the system. This corresponds to a state independent
Poisson arrival stream of customers. Here as ) increases the spectral radius of the R matrix
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also increases and performance measures become increasingly more compute intensive because
(67) takes more iterations to converge. Typically one wishes to evaluate some performance
measure, say expected response time, for many different arrival rates 0 < A; < A3 < ... < Ap.
Using the probabilistic interpretation for the R matrix, it is easy to see that for some models
Ry € Ry, 1 €1 < L -1, where R; denotes the rate matrix corresponding to an arrival rate of
At. Computational effort can be saved in these cases if one starts the iteration for I > 1 with
the previously calculated rate matrix, i.e. using R;(0) = Rj_; rather than R;(0) = 0 in (66).

3 An Example

In this section we provide an example of a problem that is solved using matrix geometric
analysis. The model is a simplified version of a replicated data base that is analyzed in [4]. We
consider the performance of a data base system where there are two replications of the data.
Each replication is independently accessible and is modeled by a server. Requests to access the
data base are assumed to queue in a central location and correspond to read or write operations.
To preserve the integrity of both copies of the data base, we assume that write requests must
wait until both copies of the data base are available before beginning execution. Both copies are
then assumed to be updated in parallel and then released simultaneously. Read requests can
be processed by any copy of the data base. Both types of requests ate assumed to wait in the
common queue in the otder in which they arrive. We assume that requests arrive to the system
from a Poisson point source with intensity of A and that the probability a given request is a
read (resp. write) is given by r ( 1esp. 1—7). Service times for both read and write requests are
assumed to be exponential with a average value of ™!, Since we assume that writes are served

in-parallel the total service time for write requests is equal to the maximum of two exponential
random variables with parameter pu.

We let I; be the number of requests at time ¢ that are waiting in the common queue and let
Ji,0 < 2, be the number of replications that are involved in a read or write operation at time .
Our assumptions above imply that (J;, J;) is a Markov process. The state transition diagram
for the process is given in Figure 3. We explain some of the transitions from the Iepeating
portion of the process. In state (2,2) both servers are busy serving customers and the customer
at the head of the queue is equivalent to an unexamined arrival. Thus it is a read (resp. write)
request with probability r (resp. (1 — r)). Upon service completion at rate 2z, the next state

will be (1,2) with probability » and (2,1) with probability 1 — r. The rest of the transitions
can be explained similarly.
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If we order the state lexigraphically, the generator matrix of the process is given by

C-A Ar Ml-m) 0 0 0 0 6 0

g —={(A+pu) Ar M1-r1) 0 0 0 0 0

0 2 —(A+2) 0 A 0 0 00

0 0 B ~(A+p) 0 A 0 0 0

Q=1 ¢ 0 2ur  2u(1-71) —(A+2) O A 0 0
0 0 0 0 n —(A +p) 0 A0

0 0 0 0 sur  2u(l—-7) —(A+24) 0 A

(68)

This generator is of matrix geometric form. To easily see this identify the matrices of (41) as
follows

- AT A(l - T‘) 0 0
Bg,o = U -(A + ,u.) Ar ' Bn|1 = A(l — T) 0 , (69)
0 2 —(h+ 2) 0 A

, Bii=4,= [ —(A+4) y ] , (70)

B, e 0 0 u
700 0 2pr 2u(l =7y () +2u)

30], and AQI:D #

Ao A 0 2pr

(71)

The system thus has a matrix geometric form and we can use the procedure outlined in Section
2.4 to solve for its stationary distribution and performance measures.

To determine the stability of the system we first form the matrix A of equation (52} which
is given by

. —H H#
A= [ 2u(1 =) ~2p(1 =) l | W2
Solving equations (53) and (54) yields

21 —-1) 1 "
fr= 327 and f2—3_21_, (73)

which when used in (55) yields a stability condition given by

)\<3—-2r' (74)

Observe that if » = 1 then the stability is identical to that obtained in an M/M/2 queue, i.e.
A < 2u and for r = 0 it is identical to that obtained for a M/G/1 queue where the expected

service time is the maximum of 2 exponentials at rate g, i.e. A < 2u/3.
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4 Conclusions

In this tutorial we derived basic results of matrix geometric solutions. This solution method
is applicable to Markov processes that have an irfinite repetitive structure in terms of finite
vectors of states (see [1] for a matrix geometric solution form for a process that has a finite
repetitive structure). The tutorial only scratches the surface for results in this area and the
reader is referred to Neuts’ elegant book [7] for further reading. This tutorial, however, is

complete in that it presents sufficient material for a modeler to create and solve performance
models having a matrix geometric form.
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Figure 1. Simple Scalar Process
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Figure 2. Simple Vector Process
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Figure 3. Replicated Data Base Model
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