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Abstract

This paper gives a procedure to determine the Laplace transform of the probability

density function of the time that it takes for an insurance reserve to be depleted. This

would happen when the total of claims received in a time period are greater than the

reserve. This paper uses the probabilistic interpretation of a Laplace Transform to

aid in the solution. A numerical inverse Laplace transform procedure is able to obtain

the pdf.
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CHAPTER 1

Introduction and Literature Search

We are interested in finding the probability density function (pdf) of the time

to ruin for a risk model. This is a topic of considerable interest. In Stanford et al.

(2005; [18]), the authors use “Erlangization” to find finite time ruin probabilities with

phase-type claim amounts. ”The method is based on finding the probability of ruin

prior to a phase-type random horizon, independent of the risk process. When the

horizon follows an Erlang-l distribution, the method provides a sequence of approxi-

mations that converges to the true finite-time ruin probability as l increases.”

In Gerber and Shiu (1998; [6]), the authors study ”the joint distribution of the

time of ruin, the surplus immediately before ruin, and the deficit at ruin. The time of

ruin is analyzed in terms of its Laplace transforms, which can naturally be interpreted

as discounting. Hence the classical risk theory model is generalized by discounting

with respect to the time of ruin.”

In Tsai and Parker (2004; [19]), the authors ”study ruin probabilities based on the

classical discrete time surplus process, in which the premium received in each period

is assumed to be a constant. [They] apply Buhlmann credibility theory to calculate

the so-called Buhlmann credibility premium as the renewal pure premium received

in each period. With the dynamic premium scheme, [they] calculate the ruin prob-

abilities, by Monte-Carlo simulation. Then, [they] compare each of these quantities

with corresponding one calculated based on constant premium scheme, interpret the

1



1. INTRODUCTION AND LITERATURE SEARCH 2

difference, and investigate some problems like, can the dynamic credibility premium

scheme significantly affect the probability of ruin?”

In Frostig (2005; [5]), the author studies ”two risk models with constant dividend

barriers. In the two models claims arrive according to a Poisson process. In the first

model the claim size has a phase type distribution. In the second model the claim

size is exponentially distributed, but the arrival rate, the mean claim size, and the

premium rate are governed by a random environment. The expected time to ruin and

the amount of dividends paid until ruin occurs are obtained for both models.”

In Lefevre and Loisel (2008; [12]), the authors are ”concerned with the problem

of ruin in the classical compound binomial and compound Poisson risk models. The

primary purpose is to extend to those models an exact formula derived in [13] for the

probability of (non-)ruin within finite time.”

In Dickson and Waters (2002; [3]), the authors ”study the distribution of time

to ruin in the classical risk model. [They] consider some methods of calculating the

distribution, in particular by using algorithms to calculate finite time ruin probabili-

ties.”

In Dickson (2008; [2]), the author uses ”probabilistic arguments obtain an integral

expression for the joint density of the time of ruin and the deficit at ruin. For the

classical risk model, he obtains the bivariate Laplace transform of this joint density

and inverts it in the cases of individual claims distributed as Erlang(2) and as a mix-

ture of two exponential distributions. As a consequence, he obtains explicit solutions

for the density of the time of ruin.”
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In Frangos et al. (2005; [4]), the authors ”study the ruin probability at a given

time for liabilities of diffusion type, driven by fractional Brownian motion with Hurst

exponent in the range (0.5, 1). Using fractional Ito calculus they derive a partial

differential equation, the solution of which provides the ruin probability. An analytical

solution is found for this equation and the results obtained by this approach are

compared with the results obtained by Monte-Carlo simulation.”

There are numerous works that use the probabilistic interpretation of Laplace

transforms.

Dantzig (1949; [1]) introduced the concept of a catastrophe for probability models.

Runnenburg (1965 [17], 1975 [16]) revived interest in the method and gave numerous

applications. Rade (1972; [14]) gave several applications of the method in queueing

models. Kleinrock (1975; [11]) discusses the work of Runnenburg and the probabilistic

interpretation of Laplace transforms in a section of his classic queueing book. Roy

(1997; [15]) used the probabilistic interpretation of Laplace transforms to study busy

periods of an M/G/1 queue. Horn (1999; [9]) used this interpretation to study order

statistics of Erlang random variables. His results were extended in Hlynka et al

(2010; [7]). Jahan (2008; [10]) used the interpretation to study a queueing control

model.



CHAPTER 2

Laplace Transform and its Probabilistic Interpretation

The first part of this chapter is taken almost verbatim from Roy (1997; [15]).

Definition 2.1. The Laplace transform of a function f(x) is denoted by f ∗(s)

and is given by

f ∗(s) =

∫ ∞
0

e−sxf(x)dx.

where s > 0.

Definition 2.2. The Laplace-Stieltjes transform of a function f(x) is denoted by

f ∗LS(s) and is given by

f ∗LS(s) =

∫ ∞
0

e−sxdF (x).

Property 2.3. If mi denotes the i
th moment of X where the p.d.f. of X is f(x),

then

mi = (−1)i
di

dsi
f ∗(s)|s=0.

Proof.

(−1)i
di

dsi
f ∗(s)|s=0 = (−1)i

di

dsi

∫ ∞
0

e−sxf(x)dx|s=0

= (−1)i
∫ ∞
0

(
di

dsi
|s=0)f(x)dx

= (−1)i
∫ ∞
0

((−x)ie−sx|s=0)f(x)dx

4



2. LAPLACE TRANSFORM AND ITS PROBABILISTIC INTERPRETATION 5

=

∫ ∞
0

xif(x)dx

= mi.

�

In our interpretation, we will be interested in the probability that one random

variable, say Y , exceeds another random variable, X, which we denote P (Y > X).

For continuous variables, this probability is defined by Hogg et al. ( [8]) to be

P (Y > X) =

∫ ∞
0

∫ ∞
x

f(x, y)dydx

where f(x, y) is the joint p.d.f. of X and Y . Note that we restrict our random vari-

ables to those which are independent with non-negative supports.

P (Y > X) =
∫∞
0
P (Y > x)f(x)dx (independence)

where f(x) is the p.d.f. of X. We read this expression as the probability that Y

exceeds a specific value of x taken as a weighted average with respect to f(x) over all

possible values for X.

Property 2.4. The exponential distribution is ”memoryless” - that is, if Y is an

exponential random variable, then P (Y > t+ s|Y > s) = P (Y > t).
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Proof.

P (Y > t+ s|Y > s) =
P (Y > t+ s)

P (Y > s)

=
e−λ(s+t)

e−λs

= e−λt

= P (Y > t).

�

Property 2.5. If X ∼ exp(λ1) and Y ∼ exp(λ2) where X and Y are indepen-

dent, then min(X, Y ) ∼ exp(λ1 + λ2).

Proof. X ∼ exp(λ1) and Y ∼ exp(λ2) and Z = min(X, Y ). The cumulative

distribution function of Z is

Fz(z) = P (Z ≤ z)

= P (min(X, Y ) ≤ z)

= 1− P (min(X, Y ) > z)

= 1− P (X > z, Y > z)

= 1− P (X > z)P (Y > z)(by.independence)

= 1− e−λ1ze−λ2z

= 1− e−(λ1+λ2)z



2. LAPLACE TRANSFORM AND ITS PROBABILISTIC INTERPRETATION 7

which we recognize as the cumulative distribution function of an exponential random

variable with rate λ1 + λ2. �

Property 2.6. If X ∼ exp(λ1) and Y ∼ exp(λ2) where X and Y are indepen-

dent, then P (Y > X) =
λ1

λ1 + λ2
.

Proof.

P (Y > X) =

∫ ∞
0

∫ ∞
x

λ1e
−λ1xλ2e

−λ2ydydx

=

∫ ∞
0

λ1e
(λ1+λ2)xdx

=
λ1

λ1 + λ2
.

�

Theorem 2.7. Let X and Y be independent random variables. Further, suppose

that Y ∼ exp(s) and the p.d.f. of X is f(x). Then

f ∗(s) = P (Y > X).

Proof.

P (Y > X) =

∫ ∞
0

∫ ∞
x

f(x)se−sydydx

=

∫ ∞
0

f(x)(−1)e−sy|y=∞y=x dx

=

∫ ∞
0

f(x)e−sx



2. LAPLACE TRANSFORM AND ITS PROBABILISTIC INTERPRETATION 8

= f ∗(s).

�

This gives a probabilistic interpretation for the Laplace transform. The Laplace

transform of the pdf f(x) of a random variable X, with positive support, is the prob-

ability that X preceeds a “catastrophe” random variable Y which is exponentially

distributed with rate s.

We next present a result using the probabilistic interpretation of the Laplace

transform, and which uses the recursive type argument that will appear later in our

ruin model analysis.

Property 2.8. Let A, B and C be three states where transitions from state A to B

happens at exponential rate µB, A to C happen at exponential rate µC, B to A happens

at exponential rate λA and B to C happens at exponential rate λC then the Laplace

transform of the probability density function of the time to move to state C if the

system starts in state A can be expressed as f ∗A(s) =
µC

µC + µB + s
+

µB
µC + µB + s

f ∗B(s)

where f ∗B(s) =
λC

λC + λA + s
+

λA
λC + λA + s

f ∗A(s).

The solution for f ∗A(s) is

f ∗A(s) =
µB λC + λA µC + λC µC + sµC

λC µC + µB λC + λC s+ λA µC + λA s+ sµC + sµB + s2
.

Proof. Let TA be the time to enter state C from A. Let TB be thetime to enter

C from B. Let f ∗A(s) be the Laplace transform of the pdf of the time to enter C from

B. Let TB be the time to enter C from B. Let f ∗B(s) be the Laplace transform of the
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pdf of the time to enter C from B. Then the Laplace transform of the pdf of TA is the

probability that TA < Y where Y is an exponential catastrophe random variable at

rate s. When in state A one of two things can happen, either we can go straight to

state C with probability
µC

µC + µB + s
or go to state B with probability

µB
µC + µB + s

.

However in the latter case, we must multiply by the probability that TB < Y , namely

by f ∗B(s) . If in state B we can go straight to C with probability
λC

λC + λA + s
or go

to state A with probability
λA

λC + λA + s
. In the latter case, we must multiply by the

probability of going from A to C, namely by f ∗A(s). Hence we get the two equations

above. These equations are easy to solve to get an expression for f ∗A(s). �

The previous property derives a special case of the phase type distribution.



CHAPTER 3

Loss Models and Laplace Transforms

In this chapter, we set up a Laplace transform model to describe the probability

density function of the time to ruin measured from an initial reserve at level k. The

goal here is primarily to create a methodology which can be used, if the parameters

of the model are known.

Let T be the time to ruin, measured from the current time, which is taken as 0. We

find the Laplace Transform of the pdf of T by using the probabilistic method of the

previous chapter. Let Y be exponentially distributed with rate s. i.e. f(y) = se−sy for

s ≥ 0. We call Y the catastrophe random variable. We assume that the time until the

next claim is exponentially distributed with rate λ. We assume that the claim size is

a discrete random variable W with probability mass function g(w), w = 1, 2, . . . . We

assume that W,Y,X are all independent. Define a time unit as the time to increase

the reserve by 1 monetary unit, if there are no claims. For example, a monetary unit

could be one billion dollars and a time unit could be 100 years.

Theorem 3.1. Let f(t, k) be the pdf of the time to ruin from an initial reserve of

level k. Let the Laplace transform of the time to ruin (from level k) be f ∗(s, k). Let

m be the level at which any additional revenues are not placed in the reserves. Then

f ∗(s, k) = e−(λ+s)1f ∗(s, 1+k)+(1−e−(λ+s)) λ

λ+ s
(
k∑
j=1

g(j)f ∗(s, k−j)+
∞∑

j=k+1

g(j)) (1)

10
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for k = 1, . . . ,m− 1.

f ∗(s,m) = e−(λ+s)1f ∗(s,m)+(1−e−(λ+s)) λ

λ+ s
(
m∑
j=1

g(j)f ∗(s,m−j)+
∞∑

j=m+1

g(j)). (2)

f ∗(s, 0) = e−(λ+s)1f ∗(s, 1) + (1− e−(λ+s)) λ

λ+ s
. (3)

Proof. We consider the case k = 1, . . . ,m− 1 first. Assume the reserve level is

k at the start of a time period. By the results of chapter 4, the Laplace transform

of the time to ruin is given by P (T < Y ) (i.e. the probability that the ruin occurs

before catastrophe). In the first time unit, there are three possibilities -

(a) nothing happens and the reserves increase by one)

(b) a claim arrives (before a catastrophe)

(c) the catastrophe occurs (before a claim).

If (c) happens then Y > T , so we need not be concerned about that case.

Case (a) happens if there are no events (claims or catastrophes) in one time unit.

Since both claims and catastrophes are exponential, and since the minimum of two

independent exponentials is exponential with the sum of the rates, the probability

of this case occurring is the right hand tail of an exponential distribution, namely

e−(λ+s)1. If this case happens, then the reserves increase by one so the probability of

ruin from the new level k + 1 is f ∗(s, k + 1).
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Case (b) happens if a claim or a catastrophe occurs in one time unit and the claim

occurs before the catastrophe. The probability of a claim or catastrophe occurring in

one time unit is 1 minus the probability of neither a claim nor a catastrophe, namely

1 − e−(λ+s)1. Given that an event (claim or catastrophe) occurred, the probability

that the claim occurs before the catastrophe is
λ

λ+ s
. If case (b) occurs, then the

reserves drop by the amount of the claim(s) so the new level is k − j. We must sum

over all j to cover all possibilities. For j = 1 to k, we reach the new level k − j ≥ 0.

For j = k + 1 to ∞, the new level is negative so ruin has already occurred.

If a claim occurs without ruin occurring, then we are assuming that the system

resets itself to the new level at the point in time with the claim occurred.

The arguments for the two boundary cases k = 0 and k = m are similar. �

From this theorem, we get the following corollary.

Corollary 3.2. From the expressions given in Theorem 3.1, there is a linear

system of equations in m+ 1 unknowns {f ∗(s, j)} which can be solved.

Proof. The equations in Theorem 3.1 are linear in {f ∗(s, j)} and the coefficients

involve λ and s. There are m + 1 independent linear equations in m + 1 unknowns.

The solutions for f ∗(s, j), j = 0, 1, . . . ,m, will also involve λ and s. �
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SPECIAL CASE 1: g(1) = 1; g(j) = 0 for j 6= 1, m = 3.

In this case, we consider three monetary levels 0, 1, 2, 3. Level 0 means that the

reserves are empty and if a claim is made during the time period, then ruin will

occur. This is the most dangerous level. By contrast, level 3 is the least dangerous

level and since the major claim amount is 1, it would take 4 major claims in the first

time period to cause ruin. Level 3 is much safer than level. 1. This special case has

features similar to the classic “gambler’s ruin” problem. We apply Theorem 3.1 to

get a linear system of equations for f ∗(s, 0), f ∗(s, 1), f ∗(s, 2), f ∗(s, 3) and solve these

using MAPLE.

f ∗(s, 0) = e−(λ+s)f ∗(s, 1) + (1− e−(λ+s)) λ

λ+ s
(4)

f ∗(s, 1) = e−(λ+s)f ∗(s, 2) + (1− e−(λ+s)) λ

λ+ s
f ∗(s, 0) (5)

f ∗(s, 2) = e−(λ+s)f ∗(s, 3) + (1− e−(λ+s)) λ

λ+ s
f ∗(s, 1) (6)

f ∗(s, 3) = e−(λ+s)f ∗(s, 3) + (1− e−(λ+s)) λ

λ+ s
f ∗(s, 2) (7)

Using MAPLE, the solution to (4), (5), (6), (7), is

f ∗(s, 0) =

(
−1 + e−λ−s

)
λ
(
s+

(
e−λ−s

)2
λ− 2 e−λ−sλ+ λ

)
denom0

(8)
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where

denom0 = −s2 − 2
(
e−λ−s

)2
λ s+ 3 e−λ−ssλ− 2λ s− 3

(
e−λ−s

)2
λ2 − λ2

+ 3 e−λ−sλ2 +
(
e−λ−s

)3
λ2,

f ∗(s, 1) =
λ2
(
−1 + e−λ−s

) (
−2 e−λ−sλ+

(
e−λ−s

)2
λ+ s+ λ− e−λ−ss

)
denom1

(9)

where denom1 = (λ+ s)A1 and

A1 = −s2 − 2
(
e−λ−s

)2
λ s+ 3 e−λ−ssλ− 2λ s

− 3
(
e−λ−s

)2
λ2 − λ2 + 3 e−λ−sλ2 +

(
e−λ−s

)3
λ2,

f ∗(s, 2) =
λ3
(
−1 + e−λ−s

) (
1− 2 e−λ−s +

(
e−λ−s

)2)
denom2

(10)

where denom2 = (λ+ s)A2 and

A2 = −s2 − 2
(
e−λ−s

)2
λ s+ 3 e−λ−ssλ− 2λ s

− 3
(
e−λ−s

)2
λ2 − λ2 + 3 e−λ−sλ2 +

(
e−λ−s

)3
λ2,
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f ∗(s, 3) =
λ4
(
−1 + e−λ−s

) (
1− 2 e−λ−s +

(
e−λ−s

)2)
denom3

(11)

where denom3 = (λ+ s)2A3 and

A3 = −s2 − 2
(
e−λ−s

)2
λ s+ 3 e−λ−ssλ− 2λ s

− 3
(
e−λ−s

)2
λ2 − λ2 + 3 e−λ−sλ2 +

(
e−λ−s

)3
λ2.

Let us focus on f ∗(s, 0) as representative of what happens to f ∗(s, 0), f ∗(s, 1),

f ∗(s, 2), f ∗(s, 3). This Laplace transform of f ∗(s, 0) is a function of λ and s. It

represents the probability that the time to ruin is less than the time of a catastrophe,

if the reserves are at level 0. As the catastrophe rate s increases, the probability

decreases so for fixed λ, f ∗(s, 0) should decrease. As the claim rate λ increases, then

the probability of ruin before the catastrophe increases so for fixed s, f ∗(s, 0) should

be increasing in λ. We see this in the three dimensional graph of f ∗(s, 0) vs λ and s,

as seen in Figure 3.1.
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Figure 3.1. Laplace transform f ∗(s, 0) vs λ and s
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We further consider f ∗(s, 0) for a typical value of λ, namely λ = 3. As mentioned,

f ∗(s, 0) is the probability that ruin occurs before the catastrophe and must be a

decreasing function of s. Since f ∗(s, 0) is a probability, its values must be between 0

and 1. As the catastrophe rate s increases, the probability that ruin occurs before the

catastrophe goes to zero and as the catastrophe rate s goes to zero, the probability

that ruin occurs before the catastrophe goes to one. This can be seen in Figure 3.2.
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Figure 3.2. Laplace transform f ∗(s, 0) for λ = 3
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Finally in Figure 3.3, we compare f ∗(s, 0), f ∗(s, 1), f ∗(s, 2), f ∗(s, 3), which give

the Laplace transforms of the times to ruin for different starting monetary levels of

reserves. We would expect that the larger the reserves, the lower the probability of

ruin occurring before a catastrophe. So we expect that

f ∗(s, 3) > f ∗(s, 2) > f ∗(s, 1) > f ∗(s, 0)

Figure 3.3 shows these features.
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Figure 3.3. Laplace transforms f ∗(s, 0), f ∗(s, 1), f ∗(s, 2), f ∗(s, 3) for
λ = 3
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One useful feature of the Laplace transform is that we can easily obtain the

moments of the random variables of interest. Let T0 be the time until ruin when

the system begins in state 0. Then E(T0) = −f
∗(s, 0)

dt
|t=0. So our next task is to

compute
f ∗(s, 0)

dt
.

We compute
d

ds
f ∗(s, 0) =

−3
e−3−s

(
s+ 3 (e−3−s)

2 − 6 e−3−s + 3
)

−s2 − 6 (e−3−s)2 s+ 9 e−3−ss− 6 s− 27 (e−3−s)2 − 9 + 27 e−3−s + 9 (e−3−s)3
+

(−3 + 3 e−3−s)
(

1− 6 (e−3−s)
2

+ 6 e−3−s
)

−s2 − 6 (e−3−s)2 s+ 9 e−3−ss− 6 s− 27 (e−3−s)2 − 9 + 27 e−3−s + 9 (e−3−s)3
−

K
(
−2 s+ 12 (e−3−s)

2
s+ 48 (e−3−s)

2 − 9 e−3−ss− 18 e−3−s − 6− 27 (e−3−s)
3
)

(
−s2 − 6 (e−3−s)2 s+ 9 e−3−ss− 6 s− 27 (e−3−s)2 − 9 + 27 e−3−s + 9 (e−3−s)3

)2
(12)

where K = (−3 + 3 e−3−s)
(
s+ 3 (e−3−s)

2 − 6 e−3−s + 3
)

The graph appears in Figure 3.4. If we exam this figure at s = 0, then we have

−E(T0). We observe from the graph that E(T0) is approximately 0.35. To get more

accuracy, we substitute s = 0 in our expression (12) for
df ∗(s, 0)

ds
.
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Figure 3.4. Graph of the derivative of f ∗(s, 0)
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Thus
df ∗(s, 0)

ds
|s=0 =

−3
e−3
(

3 + 3 (e−3)
2 − 6 e−3

)
−9− 27 (e−3)2 + 27 e−3 + 9 (e−3)3

+
(−3 + 3 e−3)

(
1− 6 (e−3)

2
+ 6 e−3

)
−9− 27 (e−3)2 + 27 e−3 + 9 (e−3)3

−

(−3 + 3 e−3)
(

3 + 3 (e−3)
2 − 6 e−3

)(
−6 + 48 (e−3)

2 − 18 e−3 − 27 (e−3)
3
)

(
−9− 27 (e−3)2 + 27 e−3 + 9 (e−3)3

)2 (13)

and simplifying gives -0.3517616164. Thus the expected time to ruin conditional on

starting in state 0 is 0.3517616164.

Similarly we can find expected values of the time to ruin for the other starting

values. Define Ti to be the time to ruin starting in state i. Then we find

E(T0) E(T1) E(T2) E(T3)

.352 .703 1.054 1.39

We realize that the expected time to move from state 3 to state 2 should be almost

the same as the expected time to move from state 2 to state 1 which should be almost

the same as the expected time to move from state 1 to 0, which should be almost the

same as the expected time to move from state 0 to ruin. Thus it is no surprise to see

the linearity of the expected times vs starting level.

3.1. Inverting the Laplace Transform

We now have the expected time to ruin but the Laplace transform contains more

information than the expected value. If we invert the Laplace transform, then we
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would have the complete pdf of the time to ruin. Unfortunately, the complex ex-

pressions for the Laplace transforms make it impossible for MAPLE to handle this

analytically. We thus turn to numerical techniques for the inversion of Laplace trans-

forms. One technique that can be used is the Stehfest algorithm (Vogt, 2006; [20]).

We applied the MAPLE code presented by Vogt for various values of s in f ∗(s, 0) and

obtained the following values of f(t).

t | 0.1 0.2 0.3 0.5 1.0 2.0

f(t) | 2.22 1.64 1.22 0.67 0.09 0.02

This gives us a good idea of the shape of the pdf. Using the points above and a

few additional points, we plot the pdf in Figure 3.5. We notice a curious bump near

t = 1.4.
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Figure 3.5. Graph of pdf f(t, 0) from the inverse Laplace Transform
derivative of f ∗(s, 0)
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SPECIAL CASE 2:

g(j) =
1

5
; for j = 1,2,...,5 and 0 otherwise, m = 3.

We note that in Special Case 1, that all drops due to a claim have size 1, which

limits the applicability of the model. In contrast, Special Case 2 has more complexity,

and requires more care. Our equations given in Theorem 3.1 become the following:

f ∗(s, 0) = e−(λ+s)f ∗(s, 1) + (1− e−(λ+s)) λ

λ+ s
(14)

f ∗(s, 1) = e−(λ+s)f ∗(s, 2) + (1− e−(λ+s)) λ

λ+ s
(
1

5
f ∗(s, 0) +

5∑
j=2

1

5
+
∞∑
j=6

0) (15)

f ∗(s, 2) = e−(λ+s)f ∗(s, 3) + (1− e−(λ+s)) λ

λ+ s
(
1

5
f ∗(s, 1) +

1

5
f ∗(s, 0) +

5∑
j=3

1

5
+
∞∑
j=6

0)

(16)

f ∗(s, 3) = e−(λ+s)f ∗(s, 3)+(1−e−(λ+s)) λ

λ+ s
(
1

5
f ∗(s, 2)+

1

5
f ∗(s, 1)+

1

5
f ∗(s, 0)+

5∑
j=4

1

5
+
∞∑
j=6

0)

(17)

The solution, from MAPLE, is

f ∗(s, 0) = λ
num1

denom4
(18)
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where

denom4 = λ2
(
e−λ−s

)3−λ2 (e−λ−s)2+15λ2e−λ−s+15λ e−λ−ss−50λ s−25 s2−25λ2

and

num1 = 5
(
e−λ−s

)2
s

+ 5 e−λ−ss− 25 s+ 5
(
e−λ−s

)3
s+ λ

(
e−λ−s

)3 − λ (e−λ−s)2 − 25λ+ 15λ e−λ−s

f ∗(s, 1) = λ
num2

denom5
(19)

where denom5 = (λ+ s)A4,

A4 =
(
λ2
(
e−λ−s

)3 − λ2 (e−λ−s)2 + 15λ2e−λ−s + 15λ e−λ−ss− 50λ s− 25 s2 − 25λ2
)

and

num2 = λ2
(
e−λ−s

)3 − λ2 (e−λ−s)2 + 6
(
e−λ−s

)2
λ s+ 5

(
e−λ−s

)2
s2+

15λ2e−λ−s + 19λ e−λ−ss+ 5 e−λ−ss2 − 25λ2 − 45λ s− 20 s2

f ∗(s, 2) = λ
num3

denom6
(20)
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where denom6 = (λ+ s)A5

A5 =
(
λ2
(
e−λ−s

)3 − λ2 (e−λ−s)2 + 15λ2e−λ−s + 15λ e−λ−ss− 50λ s− 25 s2 − 25λ2
)

and

num3 = λ2
(
e−λ−s

)3
+ sλ

(
e−λ−s

)3 − λ2 (e−λ−s)2 + 15λ2e−λ−s+

18λ e−λ−ss+ 5 e−λ−ss2 − 25λ2 − 39λ s− 15 s2

f ∗(s, 3) = 1/5λ
num4

denom7
(21)

where denom7 = (λ+ s)2A6,

A6 = (λ+ s)2 ∗(
λ2
(
e−λ−s

)3 − λ2 (e−λ−s)2 + 15λ2e−λ−s + 15λ e−λ−ss− 50λ s− 25 s2 − 25λ2
)
,

num4 = 5λ3
(
e−λ−s

)3
+ 9λ2

(
e−λ−s

)3
s+ 5

(
e−λ−s

)3
s2λ− 5λ3

(
e−λ−s

)2
+

8λ2s
(
e−λ−s

)2
+ 10

(
e−λ−s

)2
s2λ+ 75λ3e−λ−s + 117λ2e−λ−ss+ 45λ e−λ−ss2

− 125λ3 − 284λ2s− 210λ s2 − 50 s3.
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Figure 3.6. Laplace transform f ∗(s, 0) vs λ and s

As in Special Case 1, we obtain a two dimensional graph of f ∗(s, 0) vs λ and s.

This appears in Figure 3.6.
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We next present three graphs of f ∗(s, 0), f ∗(s, 1), f ∗(s, 2), f ∗(s, 3) vs s when λ =

0.5, 3.0, 8.0. These appear in Diagram 3.7, Diagram 3.8, Diagram 3.9.
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Figure 3.7. Laplace transform f ∗(s, 0), f ∗(s, 1), f ∗(s, 2), f ∗(s, 3) for
λ = 0.5
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Figure 3.8. Laplace transform f ∗(s, 0), f ∗(s, 1), f ∗(s, 2), f ∗(s, 3) for
λ = 3



3.1. INVERTING THE LAPLACE TRANSFORM 33

Figure 3.9. Laplace transform f ∗(s, 0), f ∗(s, 1), f ∗(s, 2), f ∗(s, 3) for
λ = 8
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The above three graphs show the sensitivity of the Laplace transform to changes

in the value of λ.

3.2. Conclusions

In this paper, we have used the probabilistic interpretation of Laplace transforms

to find the Laplace transforms of the time to ruin from different initial starting reserve

states. After solving for the Laplace transforms, we solved for the expected time to

ruin in one case and indicated that the other cases can be solved in a similar manner.

We then numerically inverted the Laplace transform to obtain the pdf of the time

until ruin. To the best of our knowledge, this technique of using the probabilistic

interpretation of the Laplace transform has not been used before in the analysis of

ruin problems.

The actual cases were selected to illustrate the method, not because they neces-

sarily reflect an actual structure that has occurred. Insurance companies have many

different sizes and the types of risks hat are covered vary considerably. In order to

use the technique for a particular company, an analysis of the structure of the claim

sizes and interclaim time would be needed. alim sizes and

The important new contribution of this paper is the technique that presented, and

applied to loss reserves. Property 2.8 is new, as is Theorem 3.1.
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