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ABSTRACT

We present a class of “nice” n x n finite Markov probability transition matrices and infinitesimal
generators whose limiting (steady state) probabilities are proportional to the first n Fibonacci num-
bers. We extend this model to other sequences and discover some curious matrix and sequence
relationships.



1. INTRODUCTION

We begin with a particular example of a probability transition matrix P for a
Markov chain {X;} with finitely many states {0,1,2,3,4,5,6,7}. (See Kao [1] for nota-
tion.) Let

r2/3 1/3 0 0 0 0 0 07
2/3 0 1/3 0 0 0 0 0
1/3 1/3 0 1/3 0 0 0 0
p_|1/3 0 1/3 0 1/3 0 0 0 )
13 0 0 1/3 0 1/3 0 0 |’
13 0 0 0 1/3 0 1/3 0
/3 0 0 0 0 1/3 0 1/3
13 o0 0o o0 0 0 1/3 1/3.
where p;; = P(Xy = j|Xx—1 = i) for all states 4,5 and for k = 1,2,... . This represents

a fairly natural Markov chain. It looks like a finite one dimensional random walk
with equal probabilities of one step to the right or one step to the left except near
the endpoints. There is also a probability of a movement directly to zero. So this
Markov Chain could represent a population with limited capacity which increases
with a birth, decreases with a death, and allows a mass migration of everyone out of
the present location, which would lower the population to zero. In studying models,
we begin with simple cases so we take all three probabilities to be equal. We stop
with a maximum of 7 individuals just to illustrate the results.

The Fibonacci connection to the above matrix, discussed in section 2, was discov-
ered by chance. We find the limiting probability (steady state) vector for this Markov
chain and show that it has Fibonacci type entries. We explain why this happens and
find a whole class of transition matrices with similar properties. In section 3, we
extend the state space to the entire set of positive integers. We find the limiting
probability vector in two different ways leading to further results. We also consider
other types of sequences. In section 4, we present a few additional comments.

The usual problem in Markov chains is to find the limiting probability vector for a
given transition matrix. In some sense, we are solving a reverse problem here of finding
a transition matrix which will give a particular limiting vector. The Metropolis-
Hastings algorithm and the Gibbs sampler ([2] Evans and Rosenthal) have the same
goal but with different purpose and a different type of result.

2. LIMITING PROBABILITIES FOR A FINITE STATE SPACE

To find the limiting vector corresponding to the matrix (1), we define the row vector
= (o, m1, o, T2, T3, T4, 5, e, T7). L hen we solve the system m = 7P with the additional
normalizing condition that 327, m; = 1. We get the results ng = 277, 75 = 577, 14 = 1377,
T3 = 347‘(’7, Ty = 897‘(’7, T = 2337‘(’7, and 7o = 61077.

The Fibonacci numbers are

=1 Fy=1 Fy =2 Fy =3 Fs=5 Fy=38
Fr=13 Fy=21 Fy=34 Fio=55 F;=89 Fipo=144
Fi3=233 Fiu =377 Fi5=610 Fig=0987 F;=1597 Fyz=258



From 1 =mp +---+m we obtain =7 = 1/987. Thus the limiting vector is
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We are surprised to obtain every odd indexed Fibonacci number from Fi5 to Fi,
each divided by the sum of those Fibonacci numbers, as the limiting probability of a
very natural Markov process.

We can find a whole class of probability transition matrices with the same lim-
iting probability vector. We use uniformization methods which convert probability
transition matrices for discrete time Markov chains into infinitesimal generators (rate
matrices) for continuous time Markov processes and vice-versa. Although some au-
thors (e.g. Medhi [3]) discuss the conversion in both directions, we were unable to
find a reference to the result given in Theorem 2.1. (A geometric interpretation for
the 2 x 2 case appears in Brill and Hlynka [4].)

Theorem 2.1. Let P be a nxn probability transition matriz for a discrete time Markov
chain (DTMC) with limiting vector =. Then the class of matrices of the form (P —
I)/q + I has the same limiting vector where q is a number such that q¢ > mawx; ;j{q;;}
where P — I = [q;;] and I 1s the n x n identity matriz.

Proof. Since © = rP, it follows that 0 = n(P — I). Also P — I satisfies the conditions
of a rate matrix of a continuous time Markov process (CTMP), namely that the
rows sum to 0, the off diagonal entries are nonnegative and the diagonal entries are
negative. We can divide the entries of P — I by a real number ¢ > 0 and still have a
rate matrix with the same limiting probability vector. However, we want to convert
our rate matrix back to a transition matrix so we need ¢ at least as large as the largest
absolute entry in P —I. Select any such ¢. Then 0 =#n(P —1)/q. Add = = Iz to both
sides to get 7 = (P —I)/q+ I). Because of the way we chose ¢, we know (P —1)/q+ I
satisfies the conditions of a (DTMC) probability transition matrix, namely that the
rows sum to 1 and all the entries lie between 0 and 1. We still have the same limiting
vector. 1

Using Theorem 2.1, we derived a class of probability transition matrices of Fibonacci
type. We now present the general result.

Theorem 2.2. Assume 0 <b<1/3.

1-b b 0 0 ... 0 0 1
% 1-3b b 0o .0 0
b b 1-3 b .0 0
Let P=| 0 b 1-3b 0 (2)
b 0 0 .. 1-3b b
L b 0 0 0O ... b 1-2bl

be an n x n transition matriz for a discrete time Markov chain. Then the limiting

probability vector is © = (Fj;;‘l : F;z* o ).
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Proof. The states of the Markov Chain are labeled {0,1,2,...,n — 1}. The balance
equation for state n — 1 comes from the last column. Thus

Tno1=bmp_o+ (1 —2b0)7,_1 SO Tp_o = 2T,_1.

The balance equations for states i =1,...,n —2 from columns 2,...,n — 1 are of type

T =bmi_1 + (1 — 36)7'('1' + b7Ti+1.

This reduces to
7Ti+1=37Ti—7Ti_1. (3)

The theorem claims that the limiting vector is proportional to every other Fibonacci
number ordered from largest to smallest. To confirm that our matrix will give Fi-
bonacci type ratios, we need to check the Fibonacci number relationship in reverse of
the above order for every second Fibonacci number. Corresponding to (3), we must
show F;_, = 3F; — F;,, for all i. We note that

Fio=F —F,_1=F —(Fiq1— F) =2F, — Fiy1 = 2F; — (Fiyo — Fi) = 3F; — Fipo,

as needed. The last column information that =, _» = 2w, ; corresponds to I3 = 2F;
for the Fibonacci numbers, and plays the role of the initial condition. Thus we get
the limiting probabilities proportional to the odd indexed Fibonacci numbers. Since
Fy + F3+ -+ Fy,_1 = Fy, and since the limiting probabilities must sum to 1, i.e.
7o+ -+ m_1 = 1, the limiting probability vector follows. &

Note that the first column of the transition matrix in the above result does not
enter into the calculation of the limiting probability vector. Its information is already
accounted for because the rows sum to 1.

In the following corollary, we slightly modify the transition matrix to give a limiting
probability vector proportional to even indexed Fibonacci numbers.

Corollary 2.3. Assume 0 <b<1/3.

1-b b 0 0 ... 0 0 7
% 1-3b b 0o . 0 0
b b 1-3 b .0 0
Let P=| 0 b 1-3b 0 (4)
b 0 0 .. 1-3b b
L 26 0 0 0 ... b 1-3b]

be an n x n transition matriz for a discrete time Markov chain. Then the limiting

1 : Fopn Fon s F
probability vector is & = (2T it 1)

Proof. We note that columns 2,...,n — 1 are the same as in Theorem 2.1. The last
column is changed to reflect the change in the initial condition and the first column
is changed so that the rows sum to 1. The last column implies that p,_» = 3p,_; and
this corresponds to the initial condition of Fibonacci numbers that F, =1 and F, = 3.
The result follows. B
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Our next objective is to find a transition matrix which will give ALL of the first n
Fibonacci numbers, rather than every other one. Determining such a matrix causes
some difficulty. It turns out that we cannot find a matrix of the same type used to
generate alternating Fibonacci numbers, but there is a solution with a similar type
of transition matrix. The new matrix has a subdiagonal with almost all zeros. Our
result is as follows.

Theorem 2.4. Assume 0 <b<1/2.

ri—o b 0 0 0 0 0 7
b 1-2b b 0 0 0 0
b 0 1-2b b 0 0
Letp=| * b 0 1= 0 (5)
0 0 . 1-2b b 0
0 0 0 0 1-2b b
L O 0 0 0 b 0 1—-0b]

be an n x n transition matriz for a discrete time Markov chain. Then the limiting

-7 . F, Frn— F
probability is = = (5=, 5 0 Foy)-

Proof. The states of the Markov Chain are labeled {0,1,2,...,n — 1}. The balance
equation for state n—1 comes from the last column and represents the initial condition
for Fibonacci recursion. Thus 7, 1 = br, 2+ (1 —b)T,_1 SO Ty = Tp_1.

The balance equation for state n — 2 comes from the second last column and implies
that 7, 3 = 2m,_» = 27,_;. The balance equations for states 1,...,n —3 come from
columns 2,...,n —2 and are of type

T =bmi_q1 + (1 — 2())7‘(’1' + b?TH_Q.

This reduces to

it = 2T — Ti—1- (6)
Since the 7;’s are giving the Fibonacci ratios in reverse order, we must show that
F,_y = 2F; 1 — Fi5 for all i. If we can show that Fibonacci numbers satisfy this
property, then we can conclude that the limiting probabilities must be proportional
to Fibonacci numbers. In fact

2k —Fipo=2Fn—-Fnhw—-F=Fnhn-F=Fn-Fn+F1=F_

as required. The initial conditions are implied by the final two columns. But F; +
Fy+---+F, = F,1»—1 and since the limiting probabilities must sum to 1, the desired
limiting probability form follows.

We consider the special case of b= 1/2 in the Fibonacci matrix in Theorem 2.4. Then
the matrix has 0 entries on most of the diagonal, and the form is quite simple. For
example, if n =5, our n x n matrix becomes
/2 1/2 0 0 0
/2 0 1/2 0 0
P=1{1/2 0 0 1/2 0
0 1/2 0 0 1/2
0o 0 1/2 0 1/2
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The limiting vector in this case is (5/12,3/12,2/12,1/12,1/12).

In the above example, and in our earlier results, the limiting probability vector has
entries in descending order of magnitude. The states are currently named {0,1,2,...,n—
2,n—1}. If we simply reverse the names of the states by i — n—1—i, the new transition
matrix in the previous example would be

12 0 1/2 0 0
12 0 0 1/2 0
P=|0 1/2 0 0 1/2
0o 0 1/2 0 1/2
0o 0 0 1/2 1/2

and the limiting vector is in ascending order (1/12,1/12,2/12,3/12,5/12). This new
matrix is obtainable by flipping the original one over the secondary diagonal.

If we consider the Fibonacci transition matrix P given by (5), there is a rate matrix
for a continuous time Markov process with the same limiting probability. That matrix
is

[—b b 0 0 0 0 07
b —2b b 0 0 0 0
b 0 —2b b 0 0
por=|0 0T X (7
0 0 LT =2 b 0
0 0 0 0 —-2b b
0 0 0 0 b 0 —b

This looks very close to the rate matrix for an E,/M/1 queueing system (Kleinrock
[3]) for p =1, except for the second row. It also looks like a rate matrix for a queueing
system with individual arrivals and bulk service (of size 2). One possible description
of the model allows a server to serve a single customer if only one customer is in
the system, but must serve two customers at a time (at the same rate as for one
customer) if there are at least two customers available for service. So we have the
remarkable result that for a very natural queueing system (with a finite buffer), the
limiting probabilities have Fibonacci ratios.

In Mandelbaum, Hlynka, and Brill [6], it was observed that ANY probability dis-
tribution has a birth and death representation. Let F; be the Fibonacci numbers.
Consider a transition diagram of a birth and death process of type:

Fn—l Fn—2 Fn—3 Fl

— — — —

=1
-
i

I



This system has a rate matrix

[—Fn1 Fna 0 0 0 7
Fn An Fn—2 0 0
0 Fn—l An—l Fn—3 0 (8)
0 0 Az P

L O 0 0 Fy, —F5

where A, =—F,— F;_4.

The limiting vector for this rate matrix is exactly the same as for the rate matrix
(7) and for the transition matrix (5). However, there are major differences in the form
of the matrices (7) and (8). First (8) is the rate matrix of a birth and death process
and is a tridiagonal matrix. Also, the components are already Fibonacci numbers so
it is not surprising that the limiting vector yields Fibonacci numbers. By contrast,
in the much more interesting rate matrix (7), there are no Fibonacci entries, and
the matrix corresponds to a fairly natural queueing system, yet the limiting vector
is the same as that of (8). Thus we can have more than one class of rate matrix (or
transition matrix) that generates Fibonacci type limiting vectors, but some matrix
classes are “nicer” than others.

We found one further interesting transition matrix which gives the first n Fibonacci
numbers in the limiting vector, but in a strange order. We present a specific example
when n = 7. Let

Y

Il
SO oo ooy
S © OO Ly e
C OO GO
COowigwoo
O o im s © OO
R = B e Sl R
= N e N e )

The limiting probability vector in this case is (1/53)(2,5,13,21,8,3,1). Note the alter-
nating Fibonacci numbers in the vector. This particular class of threshold matrices
has some potential applications in medicine.

Since the recursion relationship for the Lucas numbers is the same as that of the
Fibonacci numbers, we should be able to get a corresponding probability transition
matrix by modifying the last two columns of (5). We find that the following matrix
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gives the Lucas numbers.

r1-b b 0 0 ... 0 0 0 7
b 1-20 b 0o .0 0 0
b 0 1-20 b . e 0 0
0 b 0 1-2b ' 0
: : : : . 9)
0 0 LT 120 b 0
0 0 0 .0 1-3b 2
L o 0 0 0 ... b 0 1-bl

The tribonacci numbers are defined by Ty =1, To =1, Ty =2, and T), = Ty, 1+ T2 +Th_3
for n=4,.... We notice in (5) that there is a subdiagonal of (almost all) zeros. If we
modify the lower triangular part by inserting an extra subdiagonal of zeros, we get
yet another Markov transition matrix. This new matrix is

r1—>b b 0 0 .. 0 0 0 7
b 1—2b b 0 .0 0 0
b 0 1—2b b .0 0 0
b 0 0 1—2b 0 0 (10)
0 b 0 0 0
0 0 0 ... 0 1-—2b b
L 0 0 0 0 .. 0 0 1-b]
&Tn—l

c . T ..
and has limiting vector ( ,...,gl), where S ="  T,. In a similar manner we

S’ S
can define and generate tetranacci numbers, pentanacci numbers, and so on. The
corresponding rate matrices P — I model finite buffer queueing systems with bulk
service where the bulk size for tribonacci numbers is 3, for the tetranacci numbers is

4, and so on.

3. THE INFINITE STATE SPACE

We next consider the infinite state space {0, 1,2,...} with the same matrix structure

as in (2). First note that G = lim,_. F;“ is the famous “golden ratio.” G satisfies

n

1 . .
G’-G-1=0and G= \/5;_ . We obtain the following pretty theorem.
Theorem 3.1. Assume 0 <b<1/3.
[1-0b b 0 0 0 i
2b 1-3b b 0 0
Let P=| b b 1—3b b 0 (11)
b

b 0 b 1-3b
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be a transition matriz for a discrete time Markov chain. Then the limiting probability

F, .
—"— L satisfies L> + L -1 = 0 and

vector is ©# = (L, L3, L%, ...), where L = lim, .
Fn+1

L= \/52_ 12’5 the reciprocal of the golden ratio.

Proof. First we note that the Markov chain defined by the transition matrix is positive
recurrent for 0 < b < 1/3. Next we look at the first coordinate % from the result

2n
in Theorem 2.2. Thus the first coordinate in the limiting vector in the infinite state
Iy F,

space case is lim,, .. = lim,, oo —— = L. The second coordinate is
F2n Fn+1
lim Fon—3 lim Fon_3 Fon—2 Fon—1 13
n— 00 - n— 00 - .
2n Fop_o Fo,_1 Foy

Continuing in this way, we get our result in terms of L. The fact that the sum of the
probabilities must equal 1 gives a quadratic in L from which L is determined. 1

We also attempted to find the limiting vector using conventional techniques. This
created a difficulty but also revealed a known result about Fibonacci numbers.

5—1 . .
Theorem 3.2. Let L = \/_2 be the reciprocal of the golden ratio. Then
L2+l = F2n+1L — Fy, fOT‘ n=1,2,....

Proof. This result can be proved directly in a fairly simple manner by using the fact
that L? = 1-L to lower the powers. However, we wish to indicate how we rediscovered
the result using probability methods. The balance equations from (11) are

mo = (1 — b)mo + 2bmy + by + brg + ... (12)
7T1=b7T0+(1—3b)7T1+b7T2 (13)
7T2=b7T1+(1—3b)7T2+b7T3 (14)

From (12) and the fact that >>;° = = 1, we obtain 7 = 2m — 1.

From (13), we obtain m = 37 — mp = 57 — 3.

An induction argument gives 7, = Fy,11m0 — F2,. From Theorem 3.1, #, = L2"*! for
n=0,1,.... Equating the two expressions for =, gives the result.

NOTE:

(1) The limiting case of the transition matrix from the even indexed Fibonacci num-
bers is exactly the same as for the odd indexed case. The limiting vector in both
cases has components which are just powers of L.

(2) One standard method of finding the limiting probabilities is to use generating
functions. If we define ¢(z) = Y o, mz*, then we can obtain an expression for ¢(z)by
multiplying (12) by 2°, (13) by 2!, (14) by 22, and so on. Summing both sides and
solving for ¢(z) yields

z—mo(l —2)

This still leaves the difficulty of finding =y, so it is fortunate that we already used the
limit of the finite case to give us 7o = L. Kleinrock uses the roots of the denominator
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of the generating function to obtain the value of mo. Our method is equivalent but
perhaps more accessible.

In a similar manner to the previous results, we can find the limiting vector for the
infinite state transition matrix (corresponding to (5)).

Theorem 3.3. Assume 0 < b < 1/2.

rl—b b 0 0 0 "
b 1-2b b 0 0
b 0 1-2 b 0
Let P = (15)
0 b 0 1-2 b
0 0 b 0  1-2b

be a transition matrix for a discrete time Markov chain. Then the limiting probability

. F 5—1. .
vector is = = (L%, L3, L%,...), where L = lim, . 7 T o= \/_2 is the reciprocal of the
n+1

golden ratio.
Proof. The proof follows in the same manner as in Theorem 3.1. §

For the Tribonacci number matrix extended to the space of all nonnegative integers,
we have the following result.

Theorem 3.4. The limiting vector corresponding to the Markov transition matrix

rl—b b 0 0 0 :
b 1-2b b 0 0
b 0 1-2 b 0
(16)
b 0 0 1-2 b
0 b 0 0 1-2b

is (1 - M,(1—-M)M,(1—-M)M?,...) where M >0 satisfies 1 = z + 22 + 23.
Proof. In the finite case, the matrix (10) yields (&, T’gl,..
% = o exists. Let M = lim,_0 T—;l Now Tyy1 = T + Tpo1 + To.
Divide by T,,41 to get 1 = M + M? + M3. Then lim,, Tt
the limiting vector is (a,aM,aM?,...). But the limiting probabilities sum to 1 so

1= : féM. Thus o =1 — M and the result follows.

T
.,gl), where § =" | T;.

Hon

We know lim;, 0

= aM and so on. Thus

4. CONCLUSION AND ACKNOWLEDGMENT

In this paper we have illustrated that the Fibonacci numbers (and variants) make
their appearance in the limiting vector of a class of natural Markov transition matrices
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and infinitesimal generators. We showed that a fixed Fibonacci type limiting vector
can arise from more than one type of transition matrix. Our methods allow us to
obtain limiting vectors for certain infinite state processes in a relatively easy manner,
by working with properties of the finite state version. Traditionally, rate matrices
for birth and death processes have been a major focus of probability models and
will continue to have that role. Hopefully, our presentation will encourage other
models to be examined more carefully. Beyond the work of this paper, we have found
other matrices giving various forms of Fibonacci type sequences, but this paper has
presented the most interesting relationships that we have discovered. Generalizations
of some of the material appear in Sajobi [7].

Unanswered questions include the following. Can we obtain a “nice” transition
matrix such that the limiting vector gives every third Fibonacci number, every fourth
Fibonacci number, and so on? Given an infinite state space transition matrix, under
what circumstances can we finitely truncate (with adjustments) to get a sufficiently
“nice” finite state limiting vector, which can be used to obtain the infinite state
limiting vector in an easy manner? Are there other nice queueing models that give
surprisingly nice limiting probability vectors?

Special cases of the matrices discussed in this paper can be examined easily with
computational packages, such as MAPLE, R, MATLAB. A large power of the matrix
will make all the rows equal to the limiting probability vector. Dividing the limiting
probability vector by the minimal entry will give a vector of Fibonacci or other types
of numbers, as indicated by the theorems.

This research was partially funded through a grant from NSERC —Natural Sciences
and Engineering Research Council (of Canada).
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