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1. Introduction

For an introduction to branching processes, see Ross [3], for example. A
branching process with one particle in Generation 0 may generate 0, 1, 2, . . .
offspring in Generation 1 with probabilities b0, b1, b2, . . . respectively. Let the
generating function be β(s) =

∑∞
i=0 bis

i, where bi ≥ 0 for all i, and
∑∞

i=0 bi = 1.
Each particle in Generation 1 behaves the same way as the 1 item in Generation
0. This process continues forever or until extinction.

The Fundamental Theorem of Branching Processes states that the proba-
bility of extinction α is the smallest real non-negative root of the equation
s = β(s).

In Section 2 of this paper, we present two methods of finding a class of
branching processes with a common probability of extinction. One member of
our class of branching processes with common extinction probability involves
the Fibonacci numbers. In Section 3, we generalize the results of Section 2,
and use a two sided ballot theorem. This allows us to obtain a new expression
for the n-th Fibonacci number, which appears as one of the special cases in
Section 2.

2. Common Extinction Probability

Let us consider the branching process with probability generating function
β(s) = b0 + b2s

2. Call this the Basic Branching Process Model. The quadratic
generating function can be used to find the probability of ruin in the “gambler’s
ruin” problem. Assume a gambler begins with exactly 1 unit, and bets exactly
1 unit at each stage. He/she has probability p of winning and q of losing each
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Figure 1. Random Walk Path.

bet, where p + q = 1. Then β(s) = q + ps2. If the gambler plays against an
infinitely rich opponent, the probability that the gambler eventually loses all
his/her money (gambler’s ruin) is the smallest positive root α of s = q + ps2.
If p ≤ q, then α = 1.

We can view the gambler’s assets at any step as a random walk path. For
example the gambler’s assets at consecutive steps might be 1, 2, 1, 2, 3, 2, 3,
which would correspond to the path joining the points (0, 1), (1, 2), (2, 1),
(3, 2), (4, 3), (5, 2), (6, 3). This is illustrated in Figure 1.

The generating function β(s) = q + ps2 implicitly defines the end of the
first generation as the result after 1 step and consists of the values 0,2 with
probabilities q and p respectively. However, for the same random walk, we can
define the end of the first generation in many other ways. For example, we
could define the end of the first generation to be the step on which the random
walk takes a downward step for the first time. This happens on step 1 with
probability q, leaving an amount 0. It happens on step 2 with probability pq
leaving an amount 1. It happens on step 3 with probability p2q, leaving an
amount 2, etc. Thus the generating function is β(s) = q + qps + qp2s2 + · · · =

q

1 − ps
which is a different generating function that has the same probability

of extinction.
We plot these two generating functions β1(s) = q + ps2 and β2(s) =

q

1 − ps
for q = .2, p = .8 together with the line β(s) = s. The result appears in
Figure 2. Note that all three curves meet at one point, which means that the
probability of extinction for the 2 branching models is the same. The lower
curve on the right is β2(s).

Another example of a definition for the end of the first generation might be
to be the minimum of the sixth step or the step at which the random walk
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Figure 2. Two Generating Functions With Same Extinction Probability

first reaches 0. For any definition we choose, we get a corresponding generat-
ing function. Each distinct generating function defines a different branching
process, where the generating function gives the probabilities of number of indi-
viduals at the next generation. But since each process is describing the SAME
random walk in a different way, the different branching processes (with their
distinct generating functions) must have a common extinction probability. We
look at three cases arising from the random walk model, each of interest on its
own, and each with its own combinatorial structure.

2.1. Case 1. For the random walk of Section 1, define the end of Generation
1 to be the step at which the random walk first reaches either level 0 or 3 given
that the process starts at level 1. A typical path might end after the transitions
(0, 1), (1, 2), (2, 1), (3, 2), (4, 1), (5, 0). The probability of that particular path is
pqpqq = p2q3. We can count the number of such restricted paths from (0, 1)
to (2i − 1, 0) or from (0, 1) to (2i, 3), for i = 1, 2, . . . . The number of paths
from (0, 1) to (1, 0), (3, 0), (5, 0), . . . is 1, 1, 1, . . . respectively. The number
of paths from (0, 1) to (2, 3), (4, 3), (6, 3), . . . is 1, 1, 1, . . . respectively. Thus
the probability of eventually reaching level 0 is
a = 1q + 1pq2 + 1p2q3 + · · · = q

1 − pq
, 0 < p < 1. The probability of eventually

reaching level 3 is b = 1p2 + 1p3q + 1p4q2 + · · · = p2

1 − pq
. of course a + b = 1.



Proposition 2.1. The two branching processes defined by their two gen-
erating functions

β(1)(s) = q + ps2

β(2)(s) =
q

1 − pq
+

p2

1 − pq
s3, (1)

have a common extinction probability.

Proof. The result is true since we are describing the same random walk
process and merely changing our definition of the end of a generation. We
observe that the smallest root of the first equation in (1) is q/p if q < p. It is
easy to check that this is the smallest positive root of the second equation in
(1). �

There is another simple way of getting a class of branching processes with the
same limiting probability as our Basic Branching Process Model. This involves
changing the probability of 1 offspring and adjusting the other probabilities
accordingly.

Proposition 2.2. Let β1(s) = b0 + b1s +
∑n

i=2 bis
i be the probabil-

ity generating function of a branching process with probability of extinction
α. Then the branching process with probability generating function β2(s) =
1 − k

1 − b1
b0 + ks +

∑n
i=2

1 − k

1 − b1
bis

i has the same probability of extinction (for

0 ≤ k < 1).

Proof. If there is a single particle in one generation and it generates exactly
one particle in the next generation, there is no change in the number of particles
there will be no effect on the probability of extinction. Thus we preserve the
probability of extinction by changing the b1 coefficient of s in β1(s) to any other
value k in [0, 1) and adjusting the other probabilities proportionately (to each
other) so that the sum of the new probabilities is still 1. �

Example 2.1. β1(s) = (1/3) + (1/2)s + (1/6)s2 is the pgf of a branching
process with the same limiting probability as the branching process with pgf
β2(s) = (1/6) + (3/4)s + (1/12)s2.

2.2. Case 2. Define the end of Generation 1 to be the step at which the random
walk first reaches either level 0 or 4 given that the process starts at level 1.
A typical path might be 1, 2, 1, 2, 1, 2, 3, 4. The probability of that particular
path is pqpqppp = p5q2. We can count the number of such restricted paths from
(0, 1) to (2i− 1, 0), for i = 1, 2, . . ., or from (0, 1) to (2i− 1, 4), for i = 2, 3, . . . .
The number of paths from (0, 1) to (1, 0), (3, 0), (5, 0), (7, 0), (9, 0), . . . is 1, 1,
2, 4, 8 . . . respectively. The number of paths from (0, 1) to (3, 4), (5, 4), (7, 4),
(9, 4), . . . is 1, 2, 4, 8, . . . respectively. Thus the probability of eventually
reaching level 0 is



a = 1q + 1pq2 + 2p2q3 + 4p3q4 + · · · =
q − pq2

1 − 2pq
, 0 < p < 1. The probability of

eventually reaching level 4 is b = 1p3 + 2p4q + 4p5q2 + · · · = p3

1 − 2pq
.

Proposition 2.3. Let 0 < p < 1 and q = 1 − p. The branching processes
defined by their generating functions

β(1)(s) = q + ps2,

β(2)(s) =
q

1 − pq
+

p2

1 − pq
s3,

β(3)(s) =
q − pq2

1 − 2pq
+

p3

1 − 2pq
s4, (2)

have a common extinction probability.

2.3. Case 3. Define the end of Generation 1 to be the step at which the
random walk first reaches either level 0 or 5 given that the process starts at
level 1. This is the case in which the Fibonacci numbers appear. A typical path
might be 1, 2, 3, 2, 1, 0. The probability of that particular path is ppqqq = p2q3.
We can count the number of such restricted paths from (0, 1) to (2i + 1, 0), for
i = 1, 2, . . . , or from (0, 1) to (2i, 5), for i = 2, 3, . . . . The number of paths from
(0, 1) to (1, 0), (3, 0), (5, 0), (7, 0), (9, 0), . . . is 1, 1, 2, 5, 13, . . . respectively.
The number of paths from (0, 1) to (4, 5), (6, 5), (8, 5), (10, 5), . . . is 1, 3, 8,
21, . . . respectively. We observe that the Fibonacci numbers show up in the
counts of the number of paths. We now show why this is true. See Vorob’yev
[4], for more information on Fibonacci numbers.

Proposition 2.4. The number of paths from (1, 0) to (2i + 1, 0), for
i = 1, 2, . . . , which do not touch level 5 or level 0 except on the last step is
F2i−1. The number of paths from (1, 0) to level (2i, 5), for i = 2, 3, . . . , which
do not touch level 5 or level 0 except on the last step is F2i−2.

Proof. Let a2i+1 be the number of paths from (0, 1) to (2i + 1, 0) which are
strictly below level 5 and strictly above level 0, except on the last step. Let
a2i be the number of paths from (0, 1) to (2i, 5) which are strictly below level
5 and strictly above level 0, except on the last step. Consider a path which
ends at (2i+1, 0). At the previous step the path must have been at (2i, 1). At
the step previous to that, the path must have been at (2i − 1, 2). At the step
previous to that, the process must have been at either (2i− 2, 1) or (2i− 2, 3).
See Figure 3.

But all allowable paths from (0, 1) to (2i−1, 0) must pass through (2i−2, 1),
and the number of such paths is a2i−1. All allowable paths from (0, 1) to (2i, 5)
must pass through (2i−1, 4) and hence through (2i−2, 3). The number of such
paths is a2i. Hence a2i+1 = a2i + a2i−1. We can easily check that a3 = 1 and
a4 = 1. This is the defining relationship for the Fibonacci numbers (shifted).
Thus a3 = F1, a4 = F2, and in general ai = Fi−2 for i = 3, 4, . . .. �
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Figure 3. Path Counting Recursion

Proposition 2.5. Let 0 < p < 1 and q = 1−p. Let a =
q − 2pq2

1 − 3pq + p2q2
and

b = 1 − a. Then the branching processes defined by their generating functions

β(1)(s) = q + ps2,

β(2)(s) =
q

1 − pq
+

p2

1 − pq
s3,

β(3)(s) =
q − pq2

1 − 2pq
+

p3

1 − 2pq
s4,

β(4)(s) = a + bs5, (3)

have a common extinction probability.

Proof. The probability of eventually reaching level 0 is
a = 1q + 1pq2 + 2p2q3 + 5p3q4 + 13p4q5 + · · · = q + pq2

∑∞
i=0 F2i+1p

iqi. The
probability of eventually reaching level 4 is
b = 1p4 + 3p5q + 8p6q2 + 21p7q3 = p4

∑∞
i=0 F2i+2p

iqi. We can sum the series
for a and b if we use the following well known expression for the Fibonacci
numbers ([4]).



Fi =
1√
5


(1 +

√
5

2

)i

−
(

1 −√
5

2

)i

 . Thus

a = q + pq2
∞∑

i=0

F2i+1p
iqi

= q + pq2
∞∑

i=0

(pq)i 1√
5


(1 +

√
5

2

)2i+1

−
(

1 −√
5

2

)2i+1



=
q − 2pq2

1 − 3pq + p2q2
.

b = p4
∞∑

i=0

F2i+2p
iqi

= p4
∞∑

i=0

(pq)i 1√
5


(1 +

√
5

2

)2i+2

−
(

1 −√
5

2

)2i+2



=
1 − q − 3pq + 2pq2 + p2q2

1 − 3pq + p2q2
.

Again we apply the fact that the two generating functions for the two branching
processes are really simply descriptions of the same random walk process with
different definitions of the end of the first generation. �

Note: The value for a in the previous proposition can also be obtained by
using results for probabilities of entering absorbing states and the fundamental
matrix (I − Q)−1 for Markov chains.

We have presented four branching processes with common extinction prob-
abilities and it is clear that we can continue our technique and find infinitely
many members in the class.

3. The General Case

In section 2, we considered, for k = 3, 4, 5, random walks that began at (0, 1)
and reached level k on their last step, with the restriction that stay above level
0 and below level k until the last step. We will now consider arbitrary positive
values of k.

We use the two sided ballot theorem (See Feller [1], p. 96, #3 or Narayana
[2], p. 12). It is restated using our notation. In the following result, we use the
convention that

(
n
r

)
is 0 if r < 0 or r > n.

Proposition 3.1. (The Two Sided ballot theorem) Let a and b be positive
integers. Let n and x be positive integers, such that −a < x < b. Then the
number of paths from (0, 0) to (n, x) such that the path never touches or crosses



level −a or level b, is given by

k =
(

n

(n + x)/2

)

−
(

n

(n + x + 2a)/2

)
−
(

n

(n + x − 2b)/2

)

+
(

n

(n + x + 2a + 2b)/2

)
+
(

n

(n + x − 2a − 2b)/2

)

−
(

n

(n + x + 4a + 2b)/2

)
−
(

n

(n + x − 2a − 4b)/2

)

+
(

n

(n + x + 4a + 4b)/2

)
+
(

n

(n + x − 4a − 4b)/2

)

−
(

n

(n + x + 6a + 4b)/2

)
−
(

n

(n + x − 4a − 6b)/2

)
+ . . . . (4)

The proof appears in the appendix. By using this two sided ballot theorem,
it is easy to count the number of paths from (1, 0) to (n, k) which are above
level 0 and below level k until the last step. We could then find generating
functions of the type given in (3), with coefficients expressed in terms of a
summation involving the counts. Alternatively, we could use the fundamental
matrix approach to obtain the coefficients of the generating function. We next
apply the two sided ballot theorem result to Case 3 of Section 2.

There we had counts involving the Fibonacci numbers and considered paths
from (0, 1) to (2i + 1, 0), i = 1, 2, . . ., which were above level 0 and below level
5. We observe that each such path passes through (2i − 1, 2). Shifting down
one unit gives paths from (0, 0) to (2i− 1, 1) which are above −1 and below 4.
So take a = 1, b = 4, n = 2i − 1, and x = 1 in the two sided ballot theorem.
This gives an expression for F2i−1. Similarly we get an expression for F2i−2 by
taking a = 1, b = 4, n = 2i − 2, and x = 2 in the two sided ballot theorem.

Proposition 3.2. For i = 1, 2, . . . , we have

F2i−1 =
(

2i − 1
i

)
−
(

2i − 1
i + 1

)
−
(

2i − 1
i − 4

)
+
(

2i − 1
i + 5

)
+
(

2i − 1
i − 5

)

−
(

2i − 1
i + 6

)
−
(

2i − 1
i − 9

)
+ . . . . (5)

For i = 2, 3, . . . , we have

F2i−2 =
(

2i − 2
i

)
−
(

2i − 2
i + 1

)
−
(

2i − 2
i − 4

)
+
(

2i − 2
i + 5

)
+
(

2i − 2
i − 5

)

−
(

2i − 2
i + 6

)
−
(

2i − 2
i − 9

)
+ . . . . (6)



The expression in Property 3.2 is an infinite sum but becomes finite for any
given value of i because the binomial coefficients all become zero after some
number of steps.

Example 3.1.

F50 = F2i−2|i=26 =
(

50
26

)
−
(

50
27

)
−
(

50
22

)
+
(

50
31

)
+
(

50
21

)

−
(

50
32

)
−
(

50
17

)
+
(

50
36

)
+
(

50
16

)

−
(

50
37

)
−
(

50
12

)
+
(

50
41

)
+
(

50
11

)

−
(

50
42

)
−
(

50
7

)
+
(

50
46

)
+
(

50
6

)

−
(

50
47

)
−
(

50
2

)
+
(

50
1

)
= 12586269025

4. Conclusion

We have given methods of generating a class of branching processes which
all have the same limiting probability. We recognize that there are many more
branching processes with the same limiting probability but finding them is a
subject of future research. We have successfully applied the two sided ballot
theorem to our setting. We have found counts of the number of restricted paths
from (0, 1) to (2i + 1, 0) or (2i, 5) subject to the restriction that the path is
above 0 an below 5 until the last step. Surprisingly, these counts turn out to
be Fibonacci numbers. We then used the two sided ballot theorem to obtain a
new expression for Fibonacci numbers.
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APPENDIX

Proof. (of the Two Sided Ballot Theorem)
Let N , Na, Nb, Nab, Nba, Naba, . . . represent the number of paths from (0, 0)
to (n, x) with restrictions of the following types respectively:
(a) N has no restrictions
(b) Na requires paths to touch −a at some time
(c) Nb requires paths to touch b at some time
(d) Nab requires paths to touch −a followed by b at some time
(e) Naba requires paths to touch −a, b, −a at some time in that order. This
would include paths such as
. . . ,b, . . . , −a, . . . , −a, . . . , b, . . . , b, . . . , −a, . . .

With this notation, the total number of paths from (0, 0) to (n, x) which are
always below b and above −a is

k = N − Na − Nb + Nab + Nba − Naba − Nbab + Nabab + Nbaba − . . .

=
(

n

(n + x)/2

)

−
(

n

(n + x + 2a)/2

)
−
(

n

(n + x − 2b)/2

)

+
(

n

(n + x + 2a + 2b)/2

)
+
(

n

(n + x − 2a − 2b)/2

)

−
(

n

(n + x + 4a + 2b)/2

)
−
(

n

(n + x − 2a − 4b)/2

)
+

+
(

n

(n + x + 4a + 4b)/2

)
+
(

n

(n + x − 4a − 4b)/2

)

−
(

n

(n + x + 8a + 4b)/2

)
−
(

n

(n + x − 4a − 8b)/2

)

�


