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                                             Abstract 

 
In this study, we firstly derived the theoretical time-dependent distribution of the number 

of customers in the M/M/1 system with arrivals before opening time. Then, simulation 

methods were used to study the time-dependent distribution of the number of customers 

in three models, which are a regular M/M/1 system, an M/M/1 system with arrivals 

before opening time and an M/M/3 system with arrivals before opening time. We 

compared the simulation results with analytic results in the regular M/M/1 case. We 

compared the simulation results of an M/M/1 system with arrivals before opening time to 

those of an M/M/3 system with arrivals before opening time. 
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                             Chapter 1      Introduction 
 
 
Section 1.1 Simulation and numerical analysis 

 
Simulation and numerical analysis are almost as old as human civilization. A major 

impetus to developing numerical procedures was the invention of the calculus by Newton 

and Leibnitz, as this led to accurate mathematical models for physical reality, 

engineering, medicine, and business. These mathematical models cannot usually be 

solved explicitly, and numerical methods to obtain approximate solutions are needed [1]. 

Furthermore, in the real world, many complex stochastic processes may not be modeled 

exactly or easily. Simulation may be an efficient method to study these sophisticated 

processes. 

 

The invention of the computer gave rise to the development and wide application of 

simulation and numerical analysis. Applications include atmospheric modeling, 

operational research and investment strategy. In an atmospheric study, these techniques 

are used to simulate the behavior   of the Earth’s atmosphere, to understand the possible 

effect of human activities on our atmosphere. A large number of variables need to be 

introduced. Many types of numerical analysis procedures are used in atmospheric 

modeling, including computational fluid mechanics and the numerical solution of 

differential equations. The system is so complex that the explicit solution is not available. 

Based on high speed computing techniques, methods of simulation and numerical 

analysis will result in a real-time forecast of climate and weather[2]. In operational 

research, simulation is widely used in allocation of resources, supply chain management 

and quality control. It may help managers make better decisions[3].  

 

In the financial market, stock and option prices depend heavily on macroeconomic and 

microeconomic factors, such as the interest rate, monetary policies, employment rate, 

financial statements, and so on. Since the financial market undergoes apparently 

stochastic fluctuations, simulation is a natural tool. Researchers try to forecast these 

possible changes and assess the possible effects of these changes on stock indices and 
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stock prices. In these cases, computer simulation may be the unique choice. Monte Carlo 

methods are widely used.  In addition, other numerical algorithm may be adopted. The 

method used is determined by accuracy and speed. Ultimately, the method must give 

quick and accurate answers to real-time problems in financial market. These answers can 

help managers and stock traders adjust their portfolios and trading strategy[4]. Efficiency 

and reliability are key demands when methods of simulation and numerical analysis are 

employed. 

 

Fortran, C, C++ and Java are popular computer programming languages. Matlab is the 

most widely used software package for simulation and numerical analysis[5]. It includes 

many toolboxes, which may be directly used to solve problems in the financial market, 

engineering and communication. Maple is another useful software package.    

 

Section 1.2 Application of simulation techniques in queue problems 

 
Simply, if a phenomenon is concerned with “lines”, “servers” or “waiting”, then it may 

be classified as a queueing problem. In real life, gas station flow is a queueing problem; 

the cars are in a line, and gas pumps are servers. In a grocery store, cashiers are servers. 

Similar situations exist in banks or emergency departments of hospitals. A recent  

application of queueing theory is the study of world wide web. The retrieval of 

information is another example of a queueing problem[6]. 

 

Briefly speaking, queueing systems include two factors: one is commodity flow, such as 

customers in a bank and a retrieval request in a computer network; the other is the server 

(or servers). Based on the commodity flow, a queueing system is categorized into steady 

state flow and transient flow. In steady state flow, the system is in an equilibrium state. In 

this situation, time is not taken into account when the system is analyzed. In transient 

flow, the characteristics of the system are concerned with time. The randomness, 

unpredictability, or the unsteady nature of this flow gives considerable complexity to the 

solution and understanding of such problems. When time approaches infinity, transient 
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flow may become steady state flow. For example, in this study, the queue is transient at 

the moment the server(s) open(s), but as time evolves, the system tends to steady state. 

 

When queueing problems are studied, the distributions of interarrival and service times 

are often given via the arrival rates and service rates. Performance measures obtained 

include the expected waiting time, the expected number of customers in the system, and 

the distribution of the number of customers in the system. The relation between the 

expected values and the distributions of arrival and departure is also important. However, 

in most complex systems, we cannot build a clear and simple relation between the 

expected values and the parameters of the distributions. Therefore, methods of simulation 

have to be employed. 

 

 In this paper, some systems with arrivals before opening time are studied via simulation 

techniques. The situation of arrivals before opening time exists widely, for example, 

customers arrive before a bank opens. These types of systems involve transient flow. So 

the expected values and the distribution of the number of customers in the system depend 

on time. The distribution of the number of customers is a critical issue. This determines 

the expected values. Therefore, we will concentrate on the study of this distribution. For 

every model, the distribution of the number of customers in the system at different time 

points is reported. As time evolves, the system approximates the steady-state system. 

Comparing the distribution from simulation with the one from theoretical study at steady 

state, we may check whether our simulation is good, and determine when the system may 

be regarded to be in steady state. The evolution of the system from transient to steady 

state is another interesting issue, that is, from chaos to order. 
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                         Chapter 2 Models and theoretical distributions 

 
In this chapter, three models will be studied. The chapter includes a description of models 

and the theoretical distribution of the number of customers in the system at some time 

points. The three models are (1) regular M/M/1 model; (2) M/M/1 model with arrivals 

before opening time; (3) M/M/3 model with arrivals before opening time. 

 

Section 2.1 Regular M/M/1 model 

 

For this model, the system has one server and an unlimited waiting room. The interarrival 

and service time are exponential with a constant arrival rate ra and a constant service rate 

rd. At the opening time (t=0), no arrival is in the system. We study the process from 

transient to steady state. Therefore, we do not take closing of the system into account[6]. 

The server follows the “ first comes, first served” policy.  
 

 Let Pk(t) be the probability of k customers in the system at time t. Then the differential-

difference equations of the regular M/M/1 model are:  

 

)()()()(
)(

11 tPrtPrtPrr
dt
tdP

kdkakda
k

+− +++−=       k≥1 

                                                                                                                     ( 2.1) 

)()(
)(

10
0 tPrtPr
dt
tdP

da +−=                                       k=0 

Initial condition:  P0(0)=1 

                   

These differential-difference equations may be solved analytically by many methods[6],[7] 

or the numerical solution may be obtained via computer numerical analysis. The explicit 

formula is given below. 
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and here )(xIk  is the modified Bessel function of the first kind of order k. 

 

When the above equations are employed to calculate the distribution of the number of 

customers in the system at time t, no condition is imposed on ρ. However, if ρ is greater 

than 1, that is, the arrival rate is larger than the service rate. Then as time approaches 

infinity, the limiting probabilities will be zero for any finite k. In that case, the modified 

Bessel function will diverge. If ρ is less than 1, the Bessel function always converges. 

The steady state probabilities are non zero and sum to 1. Therefore, when time moves 

from a finite value to infinity, the system evolves to steady state flow from transient flow. 

In steady state, the distribution of the number of customers in the system and other 

expected values are independent of time. The theoretical distribution for the steady state 

probability of k customers in the system is: 

 

)1()( ρρ −×= kkP         .                                                                                       (2.6)  

 

where k=0, 1, 2….,  and ρ is defined in equation 2.3.  
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For the regular M/M/1 model, the distribution of the number of customers in the system 

is simple when the system is in equilibrium. The time-dependent  distribution is complex. 

For more complex queue models, the explicit formula for the time-dependent probability 

may be not available. This is why the simulation method is used. 

 

Section 2.2   M/M/1 model with arrivals before opening time 

 

In the M/M/1 model with arrivals before opening time, the time when the server starts to 

work is defined as the time origin (t=0). However, some customers arrive at the system 

and wait in the line before the server opens. Therefore, when the server begins to work, 

there may already be some customers in the system. Service follows the “first comes, first 

served” policy.  

 

Assume that there are i customers in the system at t = 0. Then the differential-difference 

equation 2.1 is still correct, but the initial condition changes. The new initial condition is 

k = i at t = 0, i=0,1,2... By solving equation 2.1 again, the time-dependent distribution can 

be shown below[6]: 
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                                                                                                                               (2.7) 

 

Where )( itPk  is the conditional probability that there are k customers in the system at 

time t, given i customers in the system at t = 0.  

 

Property: Let p(i) be the probability of i customers in the system at time 0. Then the 

unconditional probability of k customers in the system at t ( t ≥ 0)[7] is : 
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In our study, we assume arrivals before opening time follow a nonhomogenous Poisson 

process. Therefore, the distribution of the number of arrivals before opening time[7] is : 

 

m
i

e
i
mip −=

!
)()(            i= 0, 1, 2…                                                              (2.9) 

 

where  

                         ∫=
∞−

0
)( dttm λ                                                                        (2.10) 

 

We assume )(tλ  has an exponential form. It is common in many real life situations that 

many customers arrive just before opening time with a few arriving earlier. Thus we 

choose 

 
tet ×= 05.0)(λ                                                                                                   (2.11) 

 

although other choices can be made. Therefore, in our case  

 

20
05.0
1

==m                                                                                                (2.12) 

 

For practical simulation, we choose the time limit prior to opening to be –200 to 0, so, 

 

)1(20)()( 10
0

200

tedtttm −

−
−=∫= λ                                                      (2.13) 

 

As discussed in section 2.1, the above equations may be used to calculate the distribution 

of the number of customers in the system at any time. However, the after-opening arrival 
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rate has to be less than the service rate. Then the Bessel function will always converge. 

Shortly after opening time, the effect of any arrivals before opening time is obvious. As 

time approaches infinity, )( itpk  approximates )(kp . So for large t, an M/M/1 

system with arrivals before opening time behaves the same as a regular M/M/1. Equation 

2.6 will be applied to two M/M/1 models. 

 

Section 2.3 M/M/3 model with arrivals before opening time  

 

This model has three servers and one unlimited waiting room. The three service rates are 

constants; they may be same or different. Customers may arrive at the system before the 

servers start to work. Arrivals before opening time follow a nonhomogeneous Poisson 

process, exactly the same as described by equations 2.9 to 2.13. As in the M/M/1 process, 

the three servers follow a “ first comes, first served” policy. 

 

For the M/M/3 system, the time-dependent distribution of the number of customers in the 

system is not available in the literatures, even for the system beginning with 0 customers 

at t=0, as the differential-difference equations are complex. For the steady state system, 

the distribution is not available when three service rates are different and rules must be 

chosen as to which server to join. The steady state distribution with three same service 

rates may be derived easily[6].  

 

Assume ra  is the arrival rate after the opening time, and rd is the service rate of each 

server. So, the total service rate Rk is: 

 

Rk = min [krd , 3rd]      where k = 0, 1, 2, 3…  is the number of customers in the system 

 

The theoretical distribution of the number of customers in the steady system is:  

 

!
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In some special cases, although the three service rates are different, the theoretical steady 

state distribution of the number of customers in the system may be found. For example, if 

two of the service rates are 0, that is, two corresponding servers close and the system is 

actually an M/M/1 model. Therefore, the theoretical distribution is described by equation 

2.6.  

 

Section 2.4 Summary 

 

In this chapter, three models were described. The time-dependent theoretical distributions 

of the number of customers are available for the two M/M/1 models. However, the 

explicit forms are complex. So, it is not easy to use them in practical situations. The time-

dependent theoretical distribution is not available for the M/M/3 model with arrivals 

before opening time. Therefore, a simulation method and numerical analysis are 

employed. They will be studied in next chapter.    
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                       Chapter 3 Simulation algorithms 

 
In this chapter, some basic simulation methods will be introduced. In addition, these 

techniques will be employed to simulate the two M/M/1 models and the M/M/3 model 

with arrivals before opening time processes. 

 

Section 3.1   Simulation of an exponential distribution 

 

Let the rate be r. Then the pdf of an exponential distribution is[7],[8]: 

 
rtretp −=)(            t ≥ 0                                                                                   (3.1) 

Therefore, the corresponding cdf is: 

 
rtetF −−=1)(    t  ≥ 0                                                                                      (3.2) 

From the equation 3.2, we may derive : 

 

r
Ft )1ln( −

−=                                                                                                 (3.3) 

Since the domain of F is [0, 1], F may be directly generated from random number U(0,1), 

and the corresponding t is generated based on equation 3.3. Since (1-F) is a random 

number in the range of [0, 1], therefore, equation 3.3 can be replaced by 

 

r
Ft )ln(

−=                                                                                                     (3.4) 

 

The algorithm for generating an exponential distribution is: 

 

      Step 1:  Generate the random number u in [0,1]. 
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      Step 2: set 
r
ut )ln(

−= . 

Recall that the t in equation 3.4 and step 2 of the above algorithm is the interval between 

two consecutive events. If continuous time is required,  we replace the step 2 above by 

the one below: 

 

      Step 2 : 
r
utt current

)ln(
−=   

  

The above algorithm is used to obtain the arrival times after opening time and departure 

times. 

 

Section 3.2 The rejection method and simulation of nonhomogenous Poisson process 

 

Often, if the random variable X has density function f(x), but there is not the simple 

relation between the CDF and x like equation 3.2. Therefore, the variable X with density 

function f(x) may not be generated directly. On the other hand, suppose the random value 

x has a density function g(x) that is easy to be obtain. We can create the random value x 

with density f(x) by generating y from function g and then accepting this generated value 

with a probability proportional to f(y)/g(y). Specially, let c be a constant such that 

 

c
yg
yf

≤
)(
)(

     for all y                                                                                        (3.5) 

 

The above technique is called the rejection method[8]. The algorithm is : 

 

Step 1: Create Y having density g, using a random number u1. 

Step 2: Create a random number u2. 
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Step 3: If 
)(
)(

2 ycg
yfu ≤  , set x=y. Otherwise, return to step 1. 

 

The rejection method and the above algorithm may be employed to generate a random 

value x from a nonhomogeneous Poisson process[8]. 

 

A homogeneous Poisson process assumes stationary increments at rate r, and the 

probability with k events in a unit time is: 

 

!
)(

k
erkp
rk −

=                                                                                               (3.6) 

The relation between the Poisson process and the corresponding exponential distribution 

is used to generate random value k by considering the corresponding exponential 

distribution. Suppose the events occurring in time range (0, T) are collected, where, T ≥ 

0. We may successively generate the interarrival times, and stop when their sum exceeds 

T. For the case, -T ≤ t ≤ 0, the algorithm is described below: 

 

Step 1: Set the initial condition: t =0 and k=0. 

Step 2: Produce a random number u. 

Step 3: 
r
utt )ln(

+= . If | t |> T, stop. (Note: in this step, t ≤ 0, events occur at [-T,0]; 

when 
r
utt )ln(

−= , t ≥ 0, events occur at [0,T] ). 

Step 4: k = k +1, S(k) = t. 

Step 5: Go to Step 2. 

 

In Chapter 2, the nonhomogeneous Poisson process was mentioned. The 

nonhomogeneous Poisson process is an extremely important counting process for 

modeling purposes, because it allows the rate to vary with time. In our study, it is 



 13

employed to model the arrivals before opening time, for the arrival rate may increase as 

we approach the opening time. This kind of process is complex; therefore, it is not easy to 

derive explicit and analytical results. Simulation methods will be used to analyze such 

models.  

 

Suppose the arrival rate for a nonhomogeneous Poisson process is defined by r(t), and we 

want to simulate the first T time units of this process. We may select a constant r such 

that  

 

rtr ≤)(    for all –T ≤ t ≤  0                                                                                  (3.7) 

 

So, we consider a homogeneous Poisson process with a constant rate r. We know how to 

simulate the homogeneous process. Therefore, the nonhomogeneous process may be 

simulated by the rejection method. The algorithm is: 

 

Step 1:  Set t = 0 and k = 0. 

Step 2: Generate a random number u. 

Step 3: 
r
utt )ln(

+= , if | t | > T, stop. (Note: in this step, t ≤ 0, since events occur at 

[-T,0]). 

 

Step 4: Generate a random number v. 

Step 5: If 
r
trv )(

≤ , set k = k + 1, S(k)=t. 

Step 6: Go to step 2. 

 

The final k represents the number of events in the period from -T to 0. The vector S = 

(S(1), S(2)….) records the time when the event occurs.  
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Section 3.3 The simulation of two M/M/1 processes 

 

In this study, two M/M/1 processes are simulated, one is a regular M/M/1 process and the 

other is an M/M/1 process with arrivals before opening time. In fact, the general idea for 

the algorithm is the same, the difference is the selection of some arguments in the process 

of arrivals before opening time. If T = 0 (see the algorithm of nonhomogeneous process 

in section 3.2), the regular M/M/1 process is simulated. Otherwise, arrivals before 

opening time exist. 

 

The algorithm above will be used to simulate complex systems like M/M/1 and M/M/3 

processes. They are the important components. In addition, the simulation of a 

probabilistic model involves generating the stochastic mechanism of the model and 

recording the resultant flow of the model over time. Therefore, some variables have to be 

defined in order to keep track of the evolution of the process over time and determine 

relevant quantities[6].    

 

Section 3.3.1  Definition of some variables 

Time variable t: It represents the amount of time that has evolved. 

Counter variables: These variables count the number of times that certain events have 

occurred by time t. We define some counter variables: (1) Nob: the number of customers 

in the system at opening time. If no arrivals at t=0, Nob = 0; (2) Noa: the number of 

customers who arrive after the server opens; (3) Na: the number of arrivals by time t; 

(4)Nd: the number of departures by time t;  

System state variables: This defines the “state of system” at the time t. We define 

variable n as the number of customers in the system. 

Event variables: (1)ta: arrival time; (2) td: departure time.   

 

Output variables: In this simulation, the system state variable n is also an output 

variable. When waiting time is studied, the vectors recording the arrival time and 

departure time should be output variables. Ab: the vector recording the arrival time 

before opening time; Aa: the vector recording the arrival time after opening time. D: the 
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vector recording the departure time. Two vectors recording the arrival time are required, 

since the method of calculating waiting time is different for the two types of arrivals. 

 

Section 3.3.2 Algorithm 

 

Generating arrivals before opening time 

       Set time T; If we want no arrival before opening time, set T = 0. In general, T defines 

the starting time to collect arrivals before opening time. 

        Simulate a nonhomogeneous process on the interval (-T,0), and record the arrival 

time Ab and the number of arrivals by opening time Nob. 

 

Initialize 

         Set t = 0; Na = Nob; Noa=0; Nd = 0; 

         Set n = Nob; ta = t + random arrival time  

         If n = 0, td = ∞  (since server is empty);  

         Otherwise td = t + random departure time (one customer is assigned to this    

server). 

EL = [ta, td]; (a vector which stores next arrival time and departure time) 

 

Case 1 ta = min (EL); (Next event is an arrival) 

          Set t = ta (moving time to ta). 

           If t > tstop, stop. (tstop is criterion of stopping simulation ) 

           Otherwise: 

                Reset   Na = Na + 1 (one more customer arrives); 

                 Reset   Noa = Noa + 1  (one more customer arrives after opening time) 

                 reset   n =  n + 1      (one more customer is in the system); 

                  reset  Aa(Noa) = t (recording the arrival time); 

                  reset  ta = t + random arrival time  (next arrival time). 

                  If n = 1 (the server is available, the current arrival is assigned to  

                                       the server),  reset:  td = t + random service time (next departure 

time). 
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   EL = [ta, td]; 

 

Case 2  td = min(EL); (next event is a departure).  

           Set  t = td ; (move time to td) 

           If  t > tstop, stop. 

           Otherwise: 

                   Reset: Nd = Nd +1 (one more customer leaves) 

                    Reset: n = n-1        (one more customer leaves) 

                    Reset:  D(Nd) = t (recording the departure time) 

                    If n = 0,  td = ∞    (no customer is in the system, the server is empty ). 

                    Otherwise: 

                            td = t + random departure time.  

      EL = [ta, td]; 

 

 

Collect output data:  repeat case1 and case 2 until t > tstop, then no reset occurs, 

stop simulating and collect n the number of customers in the system at t = tstop. 

 

The above algorithm is a complete process to simulate an M/M/1 system. When the 

system is simulated N times, and N is very large, the probability of n customers in the 

system may be estimated with the frequency of occurrence of n customers in the system 

at t = tstop.    

 

Section 3.4 The simulation of the M/M/3 process with arrivals before opening time 

 

The simulation of an M/M/3 queue with arrivals before opening time is a sophisticated 

process. It involves three servers. Therefore, the relation among three servers should be 

defined; and the policy of assigning customers to servers should be clearly described. In 

addition, more variables are required to keep track of the evolution of the system, and to 

define system states and count the number of events. 
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In this study, three servers are regarded as be independent. When a customer is assigned 

to a specific server, this server works; otherwise, it has a rest and waits for a new 

assignment no matter whether other servers are busy or not. As described in chapter 2, 

the service policy is “first comes, first served”. When more than one customer are in the 

queue, and more than one server are available, the customers will be assigned to an 

available server randomly. We assume a single line for the three servers.     

 

Section 3.4.1  Definition of some variables  

 

Time variable t: It represents the amount of time that has evolved. 

Counter variables: These variables count the number of times that certain events have 

occurred by time t. We define some counter variables: (1) Nob: the number of customers 

in the system at opening time, if no arrivals at t=0, Nob = 0; (2) Noa: the number of  

arrivals after opening time; (3) Na: the number of arrivals by time t. It is sum of Nob and 

Noa;  (3) Nd: the number of departures by time t; (4) C1, C2, and C3 are the number of 

departures by time t from server 1, server 2 and server 3, respectively.  

System state variables: These define the “state of system” at the time t. We define a 

vector ss, where ss(1) : the number of customers in the system; ss(2), ss(3), ss(4): the 

indicator of the status of the server 1, server 2 and server 3. For example, ss(2) = n means 

that the nth customer is served by server 1, and ss(2)= 0 represents server 1 is available.  

Event variables: (1) ta: arrival time; (2) t1, t2 and t3: departure times from server 1, 

server 2 and server 3, respectively.   

 

Output variables: In this simulation, the system state variable ss(1) is also an output 

variables. When waiting time is studied, the vectors recording the arrival time and 

departure time should be output variables. Ab: the vector recording the arrival time 

before opening time; Aa: the vector recording arrival time after opening time. D: the 

matrix recording the departure time.  
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Section 3.4.2 Algorithm 

 

Generating arrivals before opening time 

       Set time T; If we want no arrival before opening time, set T = 0. In general, T defines 

the starting time to collect arrivals before opening time. 

        Simulate a nonhomogeneous process on the interval (-T,0), and record the arrival 

time Ab and the number of arrivals by opening time Nob. 

 

Initialize 

         Set  t = 0; Na = Nob;  Noa=0;  C1 = 0; C2 = 0; C3 = 0; 

         Set  n = Nob; ta = t + random interarrival time    (next arrival time) 

         Set  t1 = ∞; t2 = ∞; t3 = ∞;  (since three servers are empty);  

 

         Set ss(1) = Nob (the number of customers in the system), ss(2)=ss(3)=ss(4)=0 (three 

servers are available) 

 

At t = 0, randomly assigning customers to servers    

        Case 1 Na = 1 (one customer is in the system at t = 0) 

         Randomly determine which server will be used. 

         If server i is used by customer 1, where i = 1, 2, 3, then: 

            Reset:  ss(i+1) = 1 (renew the system state variables) 

            Reset:  ti = t + random service time of server i (renew departure time from  

                         Server i)                                      

 

         Case 2, Na =2 (two customers are in the system at t = 0) 

          Randomly determine which server will be used by customer 1 

            If server i is used by customer 1, where i = 1, 2, 3, then: 

                 Reset:  ss(i+1) = 1 (renew the system state variable). 

                 Reset: ti = t + random service time of server i (renew departure time from  

                            Server i). 

                 Randomly determine which empty server will be used by customer 2. 
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                     If server j is used by customer 2,  where j = 1, 2, 3 with j ≠ i, then: 

                          Reset: ss(j+1) = 2 (assign customer 2 to server j) 

                          Reset: tj = t  + random service time of server j (renew the departure  

                                   time from server j). 

 

         Case 3, Na ≥ 3 (more than two customers are in the system at t = 0) 

          Randomly determine which server will be used by customer 1 

           If server i is used by customer 1,  where i = 1, 2, 3, then: 

                 Reset:  ss(i+1) = 1 (assign customer 1 to server i). 

                  Rest: ti = t + random service time of server i (renew the departure 

                           time from server i). 

                 Randomly determine which empty server will be used by customer 2. 

                     If server j is used by customer 2,  where j = 1, 2, 3 with j ≠ i, then: 

                          Reset: ss(j+1) = 2 (assign customer 2 to server j)  

                          Reset: tj = t  + random service time of server j (renew the departure 

                                      time from server j). 

                           Reset: ss(k+1) = 3 (assign customer 3 to server k,  

                                          where k = 1, 2, 3 with k ≠ i ≠ j). 

                           Reset:  tk= t  + random service time of server k (renew the departure 

                                           time from server k). 

 

EL = [ta, t1, t2, t3] (a matrix stores next arrival time and departure time). 

 

Simulate the system as time evolves 

Case 1 ta = min (EL); (Next event is an arrival) 

          Set: t = ta (moving time to ta). 

           If t > tstop, stop. (tstop is the simulation stopping criterion) 

           Otherwise: 

                Reset   Na = Na + 1 (one more customer arrives); 

                Reset   Noa = Noa + 1  (one more customer arrives after opening time) 

                Reset  Aa(Noa) = t (recording the arrival time); 
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                Reset: ta = t + random arrival time  (next arrival time). 

                 

                If ss = 0 (no customer is in the system), then: 

                    Reset: ss(1) = ss(1) +1 (renew the number of customer in the system). 

                    Randomly determine which server will be used. 

                    If server i is used by customer Na, where i = 1, 2, 3, then: 

                    Reset:  ss(i+1) = Na (renew the system state variables) 

                    Reste:  ti = t + random service time of server i (renew departure time from  

                         Server i). 

 

                If ss(1)=1 & ss(i+1)≠0 (one customer is in the system, server i is used), then:  

                    Reset: ss(1) = ss(1) +1 (renew the number of customer in the system). 

                    Randomly determine which server will be used. 

                    If server j is used by customer Na, where j = 1, 2, 3 with j ≠ i, then: 

                    Reset:  ss(j+1) = Na (renew the system state variables) 

                    Reset:  tj = t + random service time of server j (renew departure time from  

                         Server j). 

 

                If ss(1)=2 & ss(i+1)=0 (two customers are in the system,  

                               server i is available, i = 1, 2, 3), then: 

                    Reset: ss(1) = ss(1) +1 (renew the number of customer in the system). 

                    Reset:  ss(i+1) = Na (renew the system state variables) 

                    Reset:  ti = t + random service time of server i (renew departure time from  

                         Server i). 

 

                If ss(1)>=3 (no server is free), then: 
                     Reset: ss(1) = ss(1) +1 (renew the number of customer in the system). 

EL = [ta, t1, t2, t3]; 

 

Case 2  ti = min(EL); (next event is a departure from server i).  

           Set t = ti ; (move time to ti) 



 21

           If t > tstop, stop. 

           Otherwise: 

                   Reset: Nd = Nd +1 (one more customer leaves from the system) 

                    Reset: Ci = Ci + 1        (one more customer leaves from server i). 

                    Set: ii = ss(i+1). 

                    Reset:  D(ii) = t (recording the departure time of customer ii from server i) 

                     

                    If ss(1) ≤ 3 (before customer ii leaves, less than three customers are  

                                        in the system),  then: 

                        Reset: ss(1) = ss(1) -1 (one customer leaves from the system) 

                        Reset: ss(i+1) = 0 (server I is free). 

                        Rest: ti = ∞    (the server i is empty ). 

                    Otherwise: 

                        Reset: ss(1) = ss(1) -1 (one customer leaves from the system). 

                        Set: ssT=[ss(2), ss(3),ss(4)] (temporary matrix) 

                        Set: m=max(ssT)    (look for the max index be served ). 

                        Reset: ss(i+1)=m+1 (customer m+1 will be assigned to server i). 

 

  EL = [ta, t1, t2, t3] 

  

Collect output data:  repeat simulating the stochastic process along t until t > tstop, 

then no reset occurs, stop simulating and collect ss(1) the number of customers in 

the system at t = tstop. 

 

The above algorithm is a complete process to simulate an M/M/3 with arrivals before 

opening time. When the system is simulated N times, and the N is very large, the 

probability of n customers in the system may be estimated with the frequency of 

occurrence of n customers in the system at t = tstop.    
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Section 3.5 Summary 

 

In this chapter, first, we discussed the algorithm to simulate an exponential and a Poisson 

distribution. Second, these algorithms were employed to simulate a complex stochastic 

process, such as an M/M/1 system and an M/M/3 queue with arrivals before opening 

time. In order to keep track of the evolution, some counter variables and system state 

variables were defined. The various output variables were designed to satisfy different 

studies. The vectors recording arrival time and departure time may be outputted. 

However, since we focus on the distribution of the number of customers in the system, 

the number of customers in the system at t=tstop is a single output.      
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                        Chapter 4     Results and Analysis 

 
 Section 4.1 The theoretical distribution of the number of customers in a regular 

M/M/1 system 

 

For an M/M/1 queue without arrivals at opening time, the theoretical time-dependent 

distribution of the number of customers in the system is described by equations 2.2 – 2.5. 

When the system is in steady state, the limiting probability is shown by equation 2.6. The 

modified Bessel function of the first kind of order k is directly calculated by the Matlab[5] 

function. Other parts are derived by a Matlab program, where the stop criterion of sum in 

equation 2.2 is set to be 10-8. The arrival rate is 1.0, and the service rate is 1.5, but we do 

not define the unit. The service rate is greater than the arrival rate in order to converge as 

time approaches infinity. 

 

At t =0: we assume the distribution for a regular M/M/1 process is  

                P(k) = 1,     where k = 0 

                P(k) = 0,      where k = 1, 2, 3,… 

The distribution at opening time (t = 0) is supposed. 

 

At t = 2: 

  The exact distribution is shown in table 4.1.1 

 

Table 4.1.1 The theoretical probability of the number of customers for a regular 

M/M/1 queue at t = 2 

Number(k) Prob 
0 0.48483 
1 0.28255 
2 0.14094 
3 0.06004 
4 0.02201 
5 0.00702 
6 0.00197 
7 0.00049 
8 0.00011 
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The corresponding histogram is shown in Fig.4.1.1. 

 

 

 
Probability of the number of customers (MM1, 

Theory, t=2)

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0 4 8 12 16 20 24 28 32 36 40 44 48
the number of customers (k) 

pr
ob

 

 
   Fig 4.1.1 The theoretical distribution of the number of customers at t = 2 for a 

regular M/M/1 system 

 

From table 4.1.1 and fig. 4.1.1, we know, for a regular M/M/1 queue at t = 2, the 

maximum probability is 0.4848 at k = 0. The probability decreases rapidly with k. When 

k is larger than 10, the probability is smaller than 10-5. Based on the distribution above, 

we may derive the expected number of customers in the system at t = 2, which is 0.88. 

 

At t = 20: 

The distribution is shown in table 4.1.2 and Fig. 4.1.2 

 

As shown in Table 4.1.2 and Fig. 4.1.2, the maximum probability is 0.3414 at k = 0. The 

expected number at t = 20 is 1.86. 
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Table 4.1.2 The theoretical probability of the number of customers for a regular 

M/M/1 queue at t = 20 
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Fig 4.1.2 The theoretical distribution of the number of customers at t = 20 for a 

regular M/M/1 system 

 

 

At t = 200:   

The distribution is shown in table 4.1.3 and Fig. 4.1.3 

 

 

Number(k) Prob 
9 0.007004 
10 0.004343 
11 0.002658 
12 0.001605 
13 0.000956 
14 0.000561 
15 0.000324 
16 0.000184 
17 0.000103 

Number(k) Prob 
0 0.341448 
1 0.227072 
2 0.150494 
3 0.099297 
4 0.065152 
5 0.042462 
6 0.027457 
7 0.017595 
8 0.011163 
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Table 4.1.3 The theoretical probability of the number of customers for a regular 

M/M/1 queue at t = 200 
Number(k) Prob 

0 0.333333 
1 0.222222 
2 0.148148 
3 0.098765 
4 0.065844 
5 0.043896 
6 0.029264 
7 0.019509 
8 0.013006 
9 0.008671 
10 0.005781 
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Fig 4.1.3 The theoretical distribution of the number of customers at t = 200 for a 

regular M/M/1 system 

 

The data shown in Table 4.1.3 and Fig. 4.1.3 are calculated by using the equation 2.2. 

However, when the equation 2.6 is used, the results are exactly the same.  As shown in 

Table 4.1.3 and Fig. 4.1.3, the maximum probability is 0.3333 at k = 0. The expected 

number at t = 200 is 2.0. 

 

Number(k) Prob 
11 0.003854 
12 0.002569 
13 0.001713 
14 0.001142 
15 0.000761 
16 0.000507 
17 0.000338 
18 0.000226 
19 0.00015 
20 0.0001 
21 6.68E-05 
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By comparison of tables and figures in this section, we know that: (1) The maximum  

probability occurs at k = 0  no matter how time shifts; (2) The distribution disperses as 

time evolves, (3) The expected number of customers in the queue increases as time 

increases. Therefore, a customer may have shorter waiting time when it arrives just after 

opening time. 

 

Section 4.2  The distribution of the number of customers in a regular M/M/1 

                       system via simulation    

 

In this section, the distribution of the number of customers in a regular M/M/1 system via 

simulation will be shown. By comparison of results in this section and above, we will test 

if the program works well. The program is written via Matlab. At every time, the whole 

process will be simulated 10000 times. The probability of the number of customers is 

estimated by the frequency of occurrences. 

 

At t = 0 : 

                P(k) = 1,     where k = 0 

                P(k) = 0,      where k = 1, 2, 3,…….. 

The distribution at opening time (t = 0) is supposed. 

 

At t = 2: 

The distribution is shown in table 4.2.1 and Fig. 4.2.1 

Table 4.2.1 The probability of the number of customers for a regular M/M/1 queue 

via simulation at t = 2 

number times prob 
0 4882 0.4882 
1 2783 0.2783 
2 1397 0.1397 
3 627 0.0627 
4 221 0.0221 
5 66 0.0066 
6 18 0.0018 
7 5 0.0005 
8 1 0.0001 
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From Table 4.2.1 and Fig.4.2.1, the maximum probability is 0.4882 at k = 0. The 

distribution rapidly decreases as k increases. The expected number is 0.8833. Comparing 

Table 4.2.1 and Fig. 4.2.1 to Table 4.1.1 to Fig. 4.1.1, we may conclude that the 

simulation program works well. 
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Fig. 4.2.1 The distribution of the number of customers at t = 2 for a regular M/M/1 

system via simulation 

 

At t = 20: 

The distribution is shown in table 4.2.2 and Fig. 4.2.2 
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Table 4.2.2 The probability of the number of customers for a regular M/M/1 queue 

at t = 20 via simulation 

Number(k) Times Prob 
0 3439 0.3439 
1 2225 0.2225 
2 1529 0.1529 
3 997 0.0997 
4 664 0.0664 
5 416 0.0416 
6 271 0.0271 
7 176 0.0176 
8 110 0.011 
9 85 0.0085 
10 38 0.0038 
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Fig. 4.2.2 The distribution of the number of customers at t = 20 for a regular M/M/1 

system via simulation 

 

Number(k) Time Prob 
11 22 0.0022 
12 10 0.001 
13 7 0.0007 
14 5 0.0005 
15 5 0.0005 
16 1 0.0001 
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From Table 4.2.2 and Fig.4.2.2, the maximum probability is 0.3439 at k = 0. The 

distribution rapidly decreases as k increases. The expected number is 1.8507.  

 

At t = 200: 

The distribution is shown in table 4.2.3 and Fig. 4.2.3 

 

Table 4.2.3 The probability of the number of customers for a regular M/M/1 queue 

at t = 200 via simulation 
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Fig. 4.2.3 The distribution of the number of customers at t = 200 for a regular 

M/M/1 system via simulation 

Number Times Prob. 
10 54 0.0054 
11 34 0.0034 
12 21 0.0021 
13 11 0.0011 
14 10 0.001 
15 6 0.0006 
16 4 0.0004 
17 5 0.0005 
18 2 0.0002 

Number Times Prob 
0 3358 0.3358 
1 2180 0.218 
2 1465 0.1465 
3 1021 0.1021 
4 660 0.066 
5 430 0.043 
6 325 0.0325 
7 207 0.0207 
8 122 0.0122 
9 85 0.0085 
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The maximum probability is 0.3358 at k = 0. The expected number is 1.9872. 

Comparing the tables and figures in this section to those in section 4.1, we conclude that 

the simulation works well. 

 

Section 4.3  The distribution of the number of customers in an M/M/1 system with  

                           arrivals before opening time via simulation    

 

In this section, the distribution of the number of customers in an M/M/1 queue with 

arrivals before opening time will be reported. The distribution results from simulating 

this process. The arrivals before opening time follow a nonhomogeneous Poisson 

process, which is described in equations 2.9 – 2.13. After opening time, the arrival rate 

and service rate are 1.0 and 1.5, respectively. 

 

At t = 0:    

 The distribution is shown in Table 4.3.1 and Fig.4.3.1 

 

Table 4.3.1 The distribution of the number of customers at t = 0 for an M/M/1 

system  with arrivals before opening time via simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number Times Prob 
0 0 0 
1 0 0 
2 0 0 
3 0 0 
4 0 0 
5 1 0.0001 
6 5 0.0005 
7 4 0.0004 
8 12 0.0012 
9 29 0.0029 

10 64 0.0064 
11 93 0.0093 
12 184 0.0184 
13 274 0.0274 
14 367 0.0367 
15 455 0.0455 
16 649 0.0649 
17 761 0.0761 
18 781 0.0781 
19 869 0.0869 
20 907 0.0907 

Number Times Prob 
21 888 0.0888 
22 746 0.0746 
23 694 0.0694 
24 570 0.057 
25 458 0.0458 
26 358 0.0358 
27 288 0.0288 
28 207 0.0207 
29 115 0.0115 
30 79 0.0079 
31 59 0.0059 
32 34 0.0034 
33 20 0.002 
34 16 0.0016 
35 6 0.0006 
36 2 0.0002 
37 0 0 
38 2 0.0002 
39 1 0.0001 
40 1 0.0001 
41 0 0 
42 0 0 
43 1 0.0001 
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Fig. 4.3.1 The distribution of the number of customers at t = 0 for an M/M/1 system  

                    with arrivals before opening time via simulation 

 

From Table 4.3.1 and Fig.4.3.1, the maximum probability is 0.0907 at k = 20. The 

expected number is 20.1184. The distribution is a Poisson distribution which looks 

approximately normal since the mean is fairly large. 

 

At t = 2:  

The distribution is shown in Table .4.3.2 and Fig.4.3.2 

 

From Table 4.3.2 and Fig.4.3.2, the maximum probability is 0.083 at k = 19. The 

distribution looks symmetric. The expected number is 18.9362.  
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Table 4.3.2 The distribution of the number of customers at t = 2 for an M/M/1 

system with arrivals before opening time via simulation 
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Fig. 4.3.2 The distribution of the number of customers at t = 2 for an M/M/1 system  

                    with arrivals before opening time via simulation 

number times prob 
0 1 0.0001 
1 0 0 
2 0 0 
3 7 0.0007 
4 5 0.0005 
5 19 0.0019 
6 25 0.0025 
7 41 0.0041 
8 52 0.0052 
9 108 0.0108 

10 151 0.0151 
11 249 0.0249 
12 318 0.0318 
13 397 0.0397 
14 479 0.0479 
15 596 0.0596 
16 716 0.0716 
17 697 0.0697 
18 828 0.0828 
19 830 0.083 
20 811 0.0811 

Number Times Prob 
21 699 0.0699 
22 622 0.0622 
23 562 0.0562 
24 452 0.0452 
25 373 0.0373 
26 306 0.0306 
27 202 0.0202 
28 179 0.0179 
29 88 0.0088 
30 75 0.0075 
31 48 0.0048 
32 23 0.0023 
33 17 0.0017 
34 10 0.001 
35 4 0.0004 
36 2 0.0002 
37 3 0.0003 
38 1 0.0001 
39 2 0.0002 
40 2 0.0002 
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At t = 20:  

The distribution is shown in Table 4.3.3 and Fig.4.3.3 

 

Table 4.3.3 The distribution of the number of customers at t = 20 for an M/M/1 

system with arrivals before opening time via simulation 

        

Number Times Prob 
0 748 0.0748 
1 555 0.0555 
2 438 0.0438 
3 416 0.0416 
4 390 0.039 
5 403 0.0403 
6 430 0.043 
7 499 0.0499 
8 513 0.0513 
9 452 0.0452 

10 464 0.0464 
11 488 0.0488 
12 488 0.0488 
13 420 0.042 
14 414 0.0414 
15 418 0.0418 
16 348 0.0348 
17 343 0.0343 
18 276 0.0276 
19 279 0.0279 
20 221 0.0221 
21 184 0.0184 
22 169 0.0169 
23 142 0.0142 

 

 

From Table 4.3.3 and Fig.4.3.3, there are at least two local maxima of probability. The 

first maximum is 0.0748 at k = 0; the second is 0.0513 at k = 8; the third is 0.0488 at k = 

12. The third local maximum may be real or simply occurs due to our particular 

simulation.  The expected number is 10.4463.                                                                                                     

 

Number Times Prob 
24 108 0.0108 
25 77 0.0077 
26 71 0.0071 
27 63 0.0063 
28 49 0.0049 
29 40 0.004 
30 23 0.0023 
31 18 0.0018 
32 17 0.0017 
33 11 0.0011 
34 11 0.0011 
35 9 0.0009 
36 1 0.0001 
37 0 0 
38 3 0.0003 
39 0 0 
40 0 0 
41 0 0 
42 0 0 
43 0 0 
44 0 0 
45 0 0 
46 0 0 
47 0 0 
48 1 0.0001 
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Fig. 4.3.3 The distribution of the number of customers at t = 20 for an M/M/1 system  

                    with arrivals before opening time via simulation 

 

At t = 200: 

The distribution is shown in Table 4.3.4 and Fig.4.3.4 

 

Table 4.3.4 The distribution of the number of customers at t = 200 for an M/M/1 

system with arrivals before opening time via simulation 

                           
Number Times Prob Prob-st 

0 3288 0.3288 0.333333
1 2214 0.2214 0.222222
2 1379 0.1379 0.148148
3 1033 0.1033 0.098765
4 723 0.0723 0.065844
5 444 0.0444 0.043896
6 300 0.03 0.029264
7 221 0.0221 0.019509
8 128 0.0128 0.013006
9 83 0.0083 0.008671

10 64 0.0064 0.005781

Number Times Prob. Prob-st 
11 36 0.0036 0.003854
12 30 0.003 0.002569
13 16 0.0016 0.001713
14 16 0.0016 0.001142
15 8 0.0008 0.000761
16 4 0.0004 0.000507
17 2 0.0002 0.000338
18 4 0.0004 0.000226
19 4 0.0004 0.00015 
20 1 0.0001 0.0001 
21 2 0.0002 6.68E-05 



 36

Probability of the number of customers in the 
systems (M/M/1,arrival before open,simu,t=200)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20
The number of customers

Pr
ob Simulation

Prob for steady state

 
Fig. 4.3.4 The distribution of the number of customers at t = 200 for an M/M/1 

system with arrivals before opening time via simulation 

 

In table 4.3.4, Prob-st represents the probability with k customers in steady state. Prob-st 

is calculated from equation 2.6. By comparison of the two histograms in Fig.4.3.4, we 

conclude that, by t = 200, the system is in steady state.  

 

Section 4.4  The distribution of the number of customers in an M/M/3 system with  

                           arrivals before opening time via simulation    

 

In this section, we will report the distribution of the number of customers in an M/M/3 

queue with arrivals before opening time. The distribution is derived by simulating this 

process. The arrivals before opening time are described in section 4.3. Therefore, the 

distribution at t = 0 is not discussed in this section. After opening time, the arrival rate is 

1.0. The system includes three servers. The service rates of these servers are 0.4, 0.5 and 
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0.6, respectively. The sum of these service rates matches the service rate in the M/M/1 

model . 

 

At t = 2:  

The distribution is shown in Table 4.4.1 and Fig.4.4.1 

 

From Table 4.4.1 and Fig.4.4.1, the local maximums of the probability are 0.0801 at k = 

18, or 20. The distribution looks symmetric. The expected number is 18.9986. 

 

 

 

Table 4.4.1 The distribution of the number of customers at t = 2 for an M/M/3 

system with arrivals before opening time via simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number Times Prob 
21 699 0.0699 
22 624 0.0624 
23 543 0.0543 
24 466 0.0466 
25 354 0.0354 
26 300 0.03 
27 229 0.0229 
28 156 0.0156 
29 104 0.0104 
30 80 0.008 
31 51 0.0051 
32 39 0.0039 
33 21 0.0021 
34 16 0.0016 
35 12 0.0012 
36 3 0.0003 
37 2 0.0002 
38 0 0 
39 3 0.0003 
40 0 0 
41 1 0.0001 

Number Times Prob 
0 0 0 
1 0 0 
2 3 0.0003 
3 1 0.0001 
4 7 0.0007 
5 7 0.0007 
6 21 0.0021 
7 35 0.0035 
8 75 0.0075 
9 102 0.0102 

10 145 0.0145 
11 244 0.0244 
12 310 0.031 
13 429 0.0429 
14 487 0.0487 
15 603 0.0603 
16 653 0.0653 
17 781 0.0781 
18 801 0.0801 
19 792 0.0792 
20 801 0.0801 
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Fig. 4.4.1 The distribution of the number of customers at t = 2 for an M/M/3 system  

                    with arrivals before opening time via simulation 

 

At t = 20: 

The distribution is shown in Table 4.4.2 and Fig.4.4.2 

 

Table 4.4.2 The distribution of the number of customers at t = 20 for an M/M/3 

system with arrivals before opening time via simulation 

 
 
 

 

 

 

 

 

 

 

 

Number Times Prob 
16 346 0.0346 
17 319 0.0319 
18 306 0.0306 
19 278 0.0278 
20 239 0.0239 
21 202 0.0202 
22 152 0.0152 
23 130 0.013 
24 112 0.0112 
25 83 0.0083 
26 76 0.0076 
27 63 0.0063 
28 44 0.0044 
29 30 0.003 
30 30 0.003 
31 18 0.0018 

Number Times Prob 
0 239 0.0239 
1 553 0.0553 
2 610 0.061 
3 505 0.0505 
4 469 0.0469 
5 500 0.05 
6 478 0.0478 
7 492 0.0492 
8 495 0.0495 
9 450 0.045 

10 472 0.0472 
11 463 0.0463 
12 522 0.0522 
13 426 0.0426 
14 452 0.0452 
15 387 0.0387 
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  Fig. 4.4.2 The distribution of the number of customers at t = 20 for an M/M/3 

system with arrivals before opening time via simulation 

 

From Table 4.4.2 and Fig.4.4.2, it appears that there are two local maximums of 

probability. The first maximum is 0.061 at k = 2. The second is 0.0522 at k = 12. The 

expected number is 10.6873. Compared to the distribution shown in Fig.4.3.3, the 

probability distribution of the number of customers of an M/M/3 system with arrivals 

before opening time at t = 20 is different from the corresponding the M/M/1 system with 

arrivals before opening time. The distribution shown in Fig.4.3.3 has at least two local 

Number Times Prob 
38 3 0.0003 
39 1 0.0001 
40 2 0.0002 
41 2 0.0002 
42 1 0.0001 

Number Times Prob. 
32 17 0.0017 
33 12 0.0012 
34 8 0.0008 
35 6 0.0006 
36 4 0.0004 
37 3 0.0003 
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maximums, but here only two. The global maximum in Fig 4.3.3 occurs at k = 0, here at 

k = 2. 

 

 At t = 200: 

The distribution is shown in Table 4.4.3 and Fig.4.4.3 

 

From Table 4.4.3 and Fig.4.4.3, the maximum probability is 0.2296 at k = 2. The 

expected number is 2.8943. At t = 200, the distribution of the M/M/3 queue is different 

from that of the M/M/1 queue. First, the location of the maximum of probability is at k = 

2 for this M/M/3 queue, but at k = 0 for the M/M/1 queue; second, the expected number 

of this M/M/3 queue is greater than that of the M/M/1 queue. This is reasonable because 

when there are one or two customers in the system, the M/M/3 model completes service 

slower than the M/M/1 model. 

 

Table 4.4.3 The distribution of the number of customers at t = 200 for an M/M/3 

system with arrivals before opening time via simulation (service rates are different) 

 

  

 

   

       

 

Number Times Prob1 
0 1109 0.1109 
1 2166 0.2166 
2 2296 0.2296 
3 1503 0.1503 
4 967 0.0967 
5 645 0.0645 
6 417 0.0417 
7 289 0.0289 
8 201 0.0201 
9 134 0.0134 

10 105 0.0105 

Number Times Prob 
11 52 0.0052 
12 29 0.0029 
13 34 0.0034 
14 18 0.0018 
15 12 0.0012 
16 7 0.0007 
17 8 0.0008 
18 4 0.0004 
19 1 0.0001 
20 2 0.0002 
21 1 0.0001 
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  Fig. 4.4.3 The distribution of the number of customers at t = 200 for an M/M/3 

system with arrivals before opening time via simulation (service rates are different)    

 

At t = 200, we also simulate another M/M/3 queue with arrivals before opening time, 

which has three equal service rates of 0.5. In this case, we also compute the steady state 

probabilities.   

 

Table 4.4.4 The distribution of the number of customers at t = 200 for an M/M/3 

system with arrivals before opening time via simulation (service rates are same)   
 Number Times Prob Prob-st 

0 1088 0.1088 0.1111 
1 2197 0.2197 0.2222 
2 2251 0.2251 0.2222 
3 1476 0.1476 0.14813 
4 1010 0.101 0.098756
5 647 0.0647 0.065837
6 448 0.0448 0.043891
7 283 0.0283 0.029261
8 200 0.02 0.019507
9 141 0.0141 0.013005
10 89 0.0089 0.00867 
11 53 0.0053 0.00578 

Number Times Prob Prob-st 
12 41 0.0041 0.003853
13 28 0.0028 0.002569
14 22 0.0022 0.001713
15 6 0.0006 0.001142
16 8 0.0008 0.000761
17 2 0.0002 0.000507
18 3 0.0003 0.000338
19 1 0.0001 0.000226
20 0 0 0.00015 
21 2 0.0002 0.0001 
22 2 0.0002 6.68E-05 
23 0 0 4.45E-05 
24 2 0.0002 2.97E-05 
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Probability of the number of customers in the system (M/M/3  

queues, same rates, simu and theory)
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 Fig. 4.4.4 The distribution of the number of customers at t = 200 for an M/M/3 

system with arrivals before opening time via simulation (service rates are same)   

  

The variable of prob-st represents the steady state probability with the number k in the 

system, calculated by using equations 2.14 – 2.17. By comparing the two distributions 

shown in Fig.4.4.4, we conclude that the program works well. 
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                      Chapter 5 Conclusion and Future Work 

 
Conclusion 

 

In this major paper, three queueing models were studied by using simulation. They were 

(1) regular M/M/1 queue; (2) M/M/1 queue with arrivals before opening time; (3) M/M/3 

queue with arrivals before opening time. We may conclude that (1) the system will 

evolve from transient flow to steady state flow if the after-opening arrival rate is less than 

the total service rate; (2) for a regular M/M/1 queue, the expected number of customers in 

the system increases with time. Therefore, a customer arriving early will have shorter 

expected waiting time; (3) for queues with arrivals before opening time, if the expected 

number at t=0 exceeds the steady state expected number, then a customer arriving late 

will have shorter expected waiting time since the expected number decreases as time 

increases; (4) for the two queues with arrivals before opening time, the M/M/1 system 

has a lower expected number than the M/M/3 model especially when time increases. 

 

Future work 

 

In this study, the expected waiting time is an important topic for queueing models. In  

future, we may derive the expected waiting time by using simulation, then study relations 

between the expected waiting time and the parameters of arrival and service distributions. 

In the references, we may find theoretical results for the M/M/1 system in the steady state 

case. We may extend the study to a nonsteady state system, or a system with multiple 

servers, and then derive the empirical formula by using regression.    

 

In this study, arrivals before opening time follow a nonhomogeneous Poisson process. 

The after-opening arrivals follow a homogeneous Poisson process, and the service time 

has an exponential distribution. In future, we may extend the study to other distributions. 

It may be difficult or impossible to obtain theoretical results, but we may easily simulate 

these processes and find numerical results. 
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Another interesting topic for future work is the evolution of a system from transient to 

steady state. We may study how to determine when a system is in a steady state, and 

study how long it takes for a system to evolve from transient to steady state. These 

systems may have arrivals before opening time, and different distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 45

References 

 
[1] Kendall E. Atkinson, An Introduction to Numerical Analysis  (2nd edition), John 

Wiley & Sons, Inc (1989) 

[2] D. Jacob, Introduction to Atmospheric Chemistry, Princeton Univ. Press (1999) 

[3] James B. Ayers, Handbook of Supply Chain Management, The CRC press (2000) 

[4] Rudiger Seydel, Tools for Computational Finance, Springer-Verlag, (2002) 

[5] Desmond J. Higham and Nicholas.J.Higham, Matlab Guide, The Society for 

Industrial and Applied Mathematics, (2005) 

[6] Leonard Kleinrock, Queueing Systems, Vol.1,  John Wiley & Sons, Inc (1975) 

[7] S.M.Ross, Introduction to Probability Models (8th edition), Academic Press, (2003)  

[8] S.M.Ross, Simulation (3rd edition), Academic Press, (2002) 

     

 

 

 


