Scheduling a Rescue

Nian Liu ${ }^{1}$ Myron Hlynka ${ }^{2}$
${ }^{1}$ School of Mathematics and Statistics Central South University
Changsha, Hunan, China.
${ }^{2}$ Department of Mathematics and Statistics
University of Windsor
Windsor, ON, Canada.

Canqueue 2019, Toronto

Outline

(1) Introduction

(2) Additive Analysis
(3) Simple Example
(4) Multiplicative Analysis
(5) Numerical Example

Problem Description

In June and July of 2018, a group of thirteen persons on a soccer team was trapped in flooded caves in Thailand. One statement that appeared in the media stated that rescuers chose to take the strongest boys first. This was argued to give the best chance of survival. Later statements said that the weaker boys actually were removed first.

Problem Description

From wikipedia, "For the first part of the extraction, eighteen rescue divers consisting of thirteen international cave divers and five Thai Navy SEALs were sent into the caves to retrieve the boys, with one diver to accompany each boy on the dive out. There were conflicting reports that the boys were rescued with the weakest first or strongest first. In fact, the order was which boy volunteered first."

Problem Description

In the end, all thirteen people were rescued.

Problem Description

In the end, all thirteen people were rescued.
We consider different models and criteria for which removing the stronger persons first may or may not be the best strategy. The models to be presented do not fit precisely into standard queueing or perishable inventory or survival analysis type models, and the objective here is different than in other settings.

Symbols

Symbols

Symbol	Definition
n	number of items
i	Tabēl ōf añ ìtēm āccōrding to it its order of being processed
${ }^{-} \bar{P}_{0}(\bar{i})$	initial probability of succeess for \bar{i}-th iteem
-	the times of start of processing for the i-th item
\bar{T}_{i}	processing time starts ($T_{i}=t_{i+1}-t_{i}$)
	$=1$ if item \bar{i} is successsfully processed, 0 else

We consider those n items to be processed one at a time, and assume $T_{i}=T$ for all i.
For the Thailand situation, we have $n=13$.

Measures of Success

- The expected number of successfully processed items (expected number of rescued people).
- The probability that all items are successfully processed (probability that all people are rescued).

Analysis Outline

- Constant Probabilities $P_{0}(k)$
- Variable Probabilities $P_{1}\left(t_{k}\right)$
- Additive Decrease

$$
P_{1}\left(t_{k}\right)=P_{0}(k)+f\left(t_{k}\right)
$$

- Multiplicative Decrease

$$
P_{1}\left(t_{k}\right)=P_{0}(k) \cdot f\left(t_{k}\right)
$$

Theorem

For the generalized binomial model, both $E(Y)$ and P (all successes) are constant regardless of the order in which items occur.

Constant Probabilities

Theorem

For the generalized binomial model, both $E(Y)$ and P (all successes) are constant regardless of the order in which items occur.

Proof.

Note that $E\left(X_{i}\right)=1 p_{i}+0\left(1-p_{i}\right)=p_{i}$.

$$
\begin{aligned}
& E(Y)=\sum_{i=1}^{n} E\left(X_{i}\right)=\sum_{i=1}^{n} p_{i} \\
& P(\text { all successes })=\prod_{i=1}^{n} p_{i}
\end{aligned}
$$

Since the expressions for $E(Y)$ and P (all successes) do not change when we change the order in which the items are processed, the result follows.

Variable Probabilities

Assume that as time goes by, the probabilities change from P_{0} to P_{1}, where $P_{1}\left(t_{k}\right)$ is the probability of success of processing the k-th item.

$$
\begin{gathered}
E(\text { number of successes })=\sum_{i=1}^{n} E\left(X_{i}\right)=\sum_{k=1}^{n} P_{1}\left(t_{k}\right) \\
P(\text { all successes })=\prod_{i=1}^{n} P_{1}\left(t_{k}\right)
\end{gathered}
$$

Variable Probabilities

Additive Decrease
Introduction

With constant interval T, the ordered processing start times for the items are $\vec{v}=(0, T, 2 T, \ldots,(n-1) T)=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.

According to additive method, $P_{1}\left(t_{k}\right)=P_{0}(k)+f\left(t_{k}\right)$ where $f\left(t_{k}\right)<0$.

Variable Probabilities

Additive Decrease

Theorem

$$
\text { If } P_{0}(i)+f\left(t_{i}\right)>0, \forall i, k \text {, then }
$$

$$
\begin{aligned}
& E(\# \text { successes })=\sum_{i=1}^{n} P_{1}\left(t_{i}\right) \\
&=\sum_{i=1}^{n}\left(P_{0}(i)+f\left(t_{i}\right)\right) \\
&=\sum_{i=1}^{n} P_{0}(i)+\sum_{i=1}^{n} f((i-1) T) \\
&\left.\begin{array}{rl}
P(\text { all successes }) & =\prod_{i=1}^{n} P(i-t h ~ i t e m ~ i s ~ s u c c e s s ~
\end{array}\right) \\
&=\prod_{i=1}^{n}\left(P_{0}(i)+f((i-1) T)\right)
\end{aligned}
$$

Variable Probabilities

Additive Decrease

According to the arithmetic/geometric mean inequality, with $\sum_{i=1}^{n} P_{1}\left(t_{i}\right)$ fixed, the product of n terms would be larger when terms are close(r) to each other.

That is to say, the probability that all items succeed depends on the order of service while the expected number of successes does not. In this case, it is better to attend to the weaker items first.

Introduction
Additive Analysis

Variable Probabilities

Additive Decrease

The former result would change if the assumption $P_{0}(i)+f\left(t_{i}\right)>0$ does not hold.

Variable Probabilities

Additive Decrease

The former result would change if the assumption $P_{0}(i)+f\left(t_{i}\right)>0$ does not hold.

Theorem
If for some i we have $P_{0}(i)+f\left(t_{i}\right) \leq 0$, then

$$
\begin{gathered}
E(\# \text { successes })=\sum_{i=1}^{n} P_{1}\left(t_{i}\right)=\sum_{i=1}^{n}\left(P_{0}(i)+f\left(t_{i}\right)\right)^{+} \\
P(\text { all successes })=\prod_{i=1}^{n} P_{1}\left(t_{i}\right)=\prod_{i=1}^{n}\left(P_{0}(i)+f\left(t_{i}\right)\right)^{+}=0
\end{gathered}
$$

Variable Probabilities

The expected number of successes could be written as

$$
\begin{aligned}
E(\# \text { successes }) & =\sum_{i=1}^{n} P_{1}\left(t_{i}\right) \\
& =\sum_{i=1}^{n}\left(P_{0}(i)+f\left(t_{i}\right)\right)-\sum_{P_{0}(i)+f\left(t_{i}\right)<0}\left(P_{0}(i)+f\left(t_{i}\right)\right) \\
& =\sum_{i=1}^{n}\left(P_{0}(i)+f\left(t_{i}\right)\right)+\sum_{P_{0}(i)<-f\left(t_{i}\right)}\left|P_{0}(i)+f\left(t_{i}\right)\right|
\end{aligned}
$$

If $\frac{\mathrm{d}}{\mathrm{d} t} f(t)<0$, then items with bigger P_{0} should be processed earlier, so that the number of terms s.t. $P_{0}(i)<-f\left(t_{i}\right)$ and values of those terms will all increase, which would lead to a higher expected number of successes. In this case, it is better to attend to the stronger items first, assuming that the expected number is more important than P (all Successes).

Simple Example

$$
\begin{aligned}
& P_{0}=(.9, .8, .7) . t=(0,1,2) . f(t)=-.1 * t=(0,-.1,-.2) \\
& \text { Then } P_{1}=P_{0}-f(t)=(.9-0, .8-.1, .7-.2)=(.9, .7, .5) \\
& E(\# \text { successes })=.7 . P(\text { allsuccess })=.9 * .7 * .5=.315 \\
& === \\
& P_{0}=(.7, .8, .9) . t=(0,1,2) . f(t)=-.1 * t=(0,-.1,-.2) \\
& \text { Then } P_{1}=(.7-0, .8-.1, .9-.2)=(.7, .7, .7) \\
& E(\# \text { successes })=.7 . P(\text { allsuccess })=.7 * .7 * .7=.343 \\
& \text { Choose weaker items first. }
\end{aligned}
$$

Simple Example

$$
\begin{aligned}
& P_{0}=(.9, .1) . t=(0,1) . f(t)=-.2 * t=(0,-.2) \\
& \text { Then } P_{1}=P_{0}-f(t)=(.9-0, .1 .-.2)=(.9,-.1) \leftarrow(.9,0) \\
& E(\# \text { successes })=.45 . P(\text { allsuccess })=0 \\
& === \\
& P_{0}=(.1, .9) . t=(0,1) . f(t)=-.2 * t=(0,-.2) \\
& \text { Then } P_{1}=(.1, .9-.2)=(.1, .7) \\
& E(\# \text { successes })=.4 . P(\text { allsuccess })=.1 * .7=.07 \\
& \text { Choose stronger items first to maximize total expected success. }
\end{aligned}
$$

Variable Probabilities

Multiplicative Decrease

According to multiplicative method,

$$
P_{1}\left(t_{k}\right)=P_{0}(k) \cdot f\left(t_{k}\right)
$$

where $f\left(t_{k}\right) \in(0,1)$.

Variable Probabilities

Multiplicative Decrease

Theorem

With multiplicative decrease, there are

$$
\begin{aligned}
E(\# \text { successes }) & =\sum_{i=1}^{n} P_{1}\left(t_{i}\right)=\sum_{i=1}^{n}\left(P_{0}(i) \cdot f\left(t_{i}\right)\right) \\
P(\text { all successes }) & =\prod_{i=1}^{n} P_{1}\left(t_{i}\right)=\prod_{i=1}^{n}\left(P_{0}(i) \cdot f\left(t_{i}\right)\right) \\
& =\prod_{i=1}^{n} P_{0}(i) \cdot \prod_{i=1}^{n} f\left(t_{i}\right)
\end{aligned}
$$

Corollary

E (\#successes) is maximized if higher prob. of success items are processed first.
$P($ all successes $)$ is independent of the order of service.

Numerical Example

The Thailand rescue serves as a numerical example of the model we have built.

Considering people who were trapped in the cave would get weaker over time, we set $\frac{\mathrm{d}}{\mathrm{d} t} f(t)<0$ for both additive and multiplicative situation.

Numerical Example

Probabilities with additive decrease

For example, set $T=1$ and choose $f(t)=-0.06 t$ for additive decrease, generate 13 random values uniformly on $(0.5,1)$ to represent the probabilities $P_{0}(j)$ of success for person j at time 0 .

As $t_{k}=\sum_{i=1}^{k-1} T=k-1$,
we have $P_{1}\left(t_{k}\right)=\left(P_{0}(k)-0.06(k-1)\right)^{+}, k=1,2, \ldots, 13$.

Numerical Example

Probabilities with additive decrease
The probabilities are presented in a matrix shown below, where the square at j-th row and j-th column corresponds to the j-th person's probability of survival if he is saved at the i-th stage. The bigger the square is and the darker its color, the bigger the probability.

Figure 1: Prob that customer j survives if served at stage i

Numerical Example

Probabilities with additive decrease

Set $P_{0}=(0.5337,0.5897,0.6306,0.6336,0.6916,0.7068$, $0.7229,0.7593,0.7649,0.8395,0.9046,0.9339,0.9733)$, the expected number of survivors and the probability that all those trapped survive are shown in table 1.

Table 1: E (\#survivors) and P (all survive)

	Stronger First	Weaker First
E (\#survivors)	5.2612	5.0046
P (all survive)	0	2.6720×10^{-6}

Numerical Example

Probabilities with multiplicative decrease

Choose $f(t)=0.95^{t}$ for this condition. With the same vector P_{0}, the expected number of survivors and the probability that all those trapped survive are shown in table 2.

Table 2: E (\#survivors) and P (all survive)

	Stronger First	Weaker First
E (\#survivors)	7.4918	7.0136
P (all survive)	0.0003	0.0003

Summary Table

		MaxExp WeakFirst StrFirst		MaxP(ALL) WeakFirst StrFirst	
Add	All large p	Tie	Tie	Win	Lose
Decr	Some small p	Lose	Win	Win	Lose
Mult Decr	All p	Lose	Win	Tie	Tie
Add	Some large p	Lose	Win	Lose	Win
Incr	No large p	Tie	Tie	Lose	Win
Mult	Some large p	Lose	Win	Lose	Win
Incr	No large p	Win	Lose	Tie	Tie

The End

Thank you for your attention!

