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1. INTRODUCTION:

There are many reasons for wanting to generate random points inside a polygon. The most

common polygon in which random points are generated is the square. This is especially easy and

can be used to study various properties of random points in the square. For example, we might want

to know the distribution of the distance between two randomly chosen points in a square in order to

approximate how long it might take a mobile helicopter ambulance in a random position to respond

to an emergency in a different random position or to find the expected connection length between

two random points on a computer chip.
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As n→∞, a regular n-gon approaches a circle. It is easy to generate uniform points in a circle

using inclusion/exclusion methods. It is also possible to generate uniform random points inside a

circle directly without using inclusion/exclusion. One obvious (but incorrect) method to generate

uniform random values inside a circle of radius 1 is to generate polar coordinates (r, θ) where r is

a value from a uniform distribution on (0, 1) and θ is a random value from a uniform distribution

on (0, 2π). The correct method gives higher weights to the values of r which are farther from the

center. One should generate a random value θ from a uniform distribution on (0, 2π) and generate

a value r =
√
u where u is a random value r from a uniform distribution on (0, 1) (McCrae, 2005).

Excluding the square, it is not so easy to generate uniform random points inside a regular polygon

such as a triangle, a pentagon, a hexagon. It is certainly possible using inclusion/exclusion but this

method could involve some (perhaps minor) complications in programming. Our method, although

it involves some complex expressions, is easy to implement.

2. METHODOLOGY:

Consider a regular polygon with n sides (a regular n-gon). Orient the n-gon so that one of

the vertices is situated on the positive X axis at (a, 0) and so that the center of the circle that

circumscribes the polygon is centered at (0,0). This is always possible.

An n-gon can be divided up into n congruent isosceles triangles by drawing lines from (0,0)

to the vertices of the n-gon. See Figure 1. Consider the triangle with vertices O, A, B where

O = (0, 0), A = (a, 0) and B is the first vertex on the polygon which is encountered when moving

counterclockwise from the vertex A. Let the sides of the triangle opposite O, A, B be o, a, b.

The angle AOB has 2π/n radians. The angle OAB has
(n− 2)π
2n

radians. Let θ be an angle at O

measured counterclockwise from the line segment AO, with 0 ≤ θ ≤ 2π/n. The line from O with
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angle θ will intersect AB at some point D whose distance from O is denoted by R(θ). See Figure

2. For the triangle DAO, we apply the Law of Sines. Angle AOD has θ radians. Angle OAD has

(n− 2)π
2n

radians. Hence angle ODA has π − θ − (n− 2)π
2n

radians. Apply the Law of Sines to get

sin

µ
π − θ − (n− 2)π

2n

¶
a

=

sin

µ
(n− 2)π
2n

¶
R(θ)

.

Then

R(θ) =

a sin

µ
(n− 2)π
2n

¶
sin

µ
π − θ − (n− 2)π

2n

¶ =

a sin

µ
(n− 2)π
2n

¶
sin

µ
θ +

(n− 2)π
2n

¶ .
We intend to use the inverse c.d.f. method to generate random values (Ross, 2002). First we

adjust R(θ) so that
R(θ)

k
is a probability density function on 0 ≤ θ ≤ (n− 2)π

2n
. Here k must be

k =

Z 2π/n

0

R(θ)d(θ) =

Z 2π/n

0

a sin(
(n− 2)π
2n

)

sin(θ +
(n− 2)π
2n

)

d(θ)

= a sin(
(n− 2)π
2n

)ln(| csc(θ + (n− 2)π
2n

)− cot(θ + (n− 2)π
2n

)|)|2π/n0

Next observe that

cscx− cotx = 1

sinx
− cosx
sinx

=
1− cosx
sinx

=
1− cos

³
2(
x

2
)
´

2

2

sinx
= sin2(

x

2
)
2

sinx

= sin2(
x

2
)

2

2 sin(
x

2
) cos(

x

2
)

=
sin(

x

2
)

cos(
x

2
)
= tan(

x

2
)

This simplificiation is indeed fortunate, since if such a simplication did not exist, we might not be

able to find a closed expression that we can use when applying the inverse cdf method to generate

random values.
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Thus, k = a sin

µ
(n− 2)π
2n

¶
ln| tan

θ +
(n− 2)π
2n
2

 ||2π/n0 .

If 0 ≤ θ ≤ 2π
n
, then

(n− 2)π
2n

≤ θ +
(n− 2)π
2n

≤ 2π
n
+
(n− 2)π
2n

and

(n− 2)π
4n

≤
θ +

(n− 2)π
2n
2

≤ π

n
+
(n− 2)
n

π

4
≤ π

3
+
1

3

π

4
<

π

2

for n = 3, 4, 5, . . .

Thus, for our region of interest, we can ignore the absolute value, and we obtain

ln| tan

θ +
(n− 2)π
2n
2

 | = ln(tan
θ +

(n− 2)π
2n
2

).
So

k = a sin

µ
(n− 2)π
2n

¶
ln(tan

 2πn +
(n− 2)π
2n

2

)− ln(tan
 (n− 2)π2n

2

)
= a sin

µ
(n− 2)π
2n

¶
ln(tan

µ
(n+ 2)π

4n

¶
)− ln(tan

µ
(n− 2)π
4n

¶
).

This makes

f(θ) =
1

k
R(θ) for 0 ≤ θ ≤ 2π

n

a pdf. Next we compute the cdf F (θ).

F (θ) =

Z θ

0

f(τ)dτ =
1

k

Z θ

0

R(τ)dτ

=
1

k
a sin

µ
(n− 2)π
2n

¶
ln(tan

τ +
(n− 2)π
2n
2

)|τ=θτ=0

=
1

k
a sin

µ
(n− 2)π
2n

¶
(ln(tan

θ +
(n− 2)π
2n
2

)− ln(tanµ(n− 2)π
4n

¶
))
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To simulate θ, we solve, u1 = F (θ) for θ, where u1 ≡ Unif(0,1). Therefore,

ku1

a sin

µ
(n− 2)π
2n

¶ + ln(tanµ(n− 2)π
4n

¶
) = ln(tan

θ +
(n− 2)π
2n
2

).
Hence

θ =
−(n− 2)π

2n
+ 2arctan

exp ku1

a sin

µ
(n− 2)π
2n

¶ + ln(tanµ(n− 2)π
4n

¶
)

 .
This generates the θ part of the random point (r, θ).

Given the value of θ, we next generate the value r. First we compute R(θ) for the given value of

θ. Then we generate the value of r in the same manner that is used to generate uniform random

values in the interior of a circle. In other words, we give more weight to values that are farther away

from the origin. Since the maximum possible value of r for the given value is R(θ), we adjust the

values of r accordingly. Thus we get r = R(θ)
√
u2, where u2 ≡ is Unif(0,1). The pair of values thus

determined gives (r, θ), where 0 ≤ θ ≤ 2π/n.

To generate values inside the the entire n-gon, we generate a third random value u3 which is

Unif(0,1). Then letting [x] be the greatest integer function of x, we find u = [nu3] is uniform in

{0, 1, ..., n−1}. Then, (r, θ+u2π
n
) gives polar coordinates of a uniform random point over the entire

n-gon.

3. CONCLUSION:

We have given a method to generate points inside a regular polygon. The method allows for

easy programming and only requires a good uniform(0,1) generator. The method is not particularly

efficient since it requires three uniform(0,1) values to generate a single two dimensional point. The

method could be modified (by defining a c.d.f. over all the whole interval (0, 2π)) to convert every
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pair of uniform(0,1) values into a point inside the polygon, but only at the cost of addition effort in

programming. But no inclusion/exclusion is required, which would require effort more in program-

ming. The method might be adjusted to non-regular polygons but only with extra work, which may

not be warranted.
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Figure 1. Regular Pentagon 
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Figure 2: Triangular Section 
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