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Abstract

When waiting for a bus/elevator/subway with a long queue, which is the better

strategy: keep waiting or go to the previous station/floor. We discuss a type of queue

with random batch service (M/MY /1) based on a bus queueing model. We compare

two strategies based on different conditions.
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Chapter 1

Introduction

In this chapter, we will first introduce some theoretical results before analyzing two

strategies. To analyze the waiting time in both strategies, we have to discuss the

number of passengers, or the queue length, in both stations. Obviously, the queue

length is influenced by how often a bus and a passenger arrive at the station. This is

exactly a queueing system. Therefore we have to understand how a queueing system

works in order to solve our problem.

To explain how a queueing system works, we have to introduce a very important

process in queueing theory – the Poisson process. It has many nice properties. To

simplify the model, we often assume passenger arrivals follow a Poisson process. The

Laplace transform is also a very powerful tool that we use in our analysis.

Then we will focus on the queue model itself. We will first discuss one of the

most basic models, the M/M/1 system, and also discuss some methods to analyze

the system. Then we expand the model to a more complex M/MY /1 system.
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1.1 Poisson Process and “PASTA”

As we mentioned before, the Poisson process is important in queue theory due to its

nice properties. We begin from the definition. The following statement is retrieved

from “Queueing Systems”, written by I. Adan and J. Resing, March,2015.[1]

“ Let N(t) be the number of arrivals in [0, t] for a Poisson process with rate λ,

i.e. the time between successive arrivals is exponentially distributed with parameter

λ and independent of the past. Then N(t) has a Poisson distribution with parameter

λt, so

P (N(t) = k) =
(λt)k

k!
e−λt, for k = 0, 1, 2... (1.1)

“ The mean, variance and coefficient of variation of N(t) are

E(N(t)) = λt, V ar(N(t)) = λt, c2N(t) =
1

λt
(1.2)

“ By the memoryless property of Poisson distribution, we can verify that

P (arrival in (t, t+ ∆t]) = λ∆t+ o(∆t) (1.3)

“ Hence, when ∆t is small,

P (arrival in (t, t+ ∆t]) ≈ λ∆t (1.4)
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“ So in each small time interval of length ∆t the occurrence of an arrival is equally

likely. In other words, Poisson arrivals occur completely randomly in time.

“ The Poisson Process is an extremely useful process for modeling purposes in

many practical applications. An important property of the Poisson Process is called

“PASTA”. (Poisson Arrivals See Time Averages).

“(PASTA) For queueing systems with Poisson arrivals, (M/./. systems), arriving

customers find on average the same situation in the queueing system as an outside

observer looking at the system at an arbitrary point in time. More precisely, the

fraction of customers finding on arrival the system in some state A is exactly the

same as the fraction of time the system is in state A.”

We will use this property to analyze an M/MY /1 system later.

1.2 Laplace Transform

The Laplace transform LX(s) of a nonnegative random variable X with distribution

function f(x) is define as:

LX(s) = E(e−sX) =

∫ ∞
x=0

e−sxf(x)dx (1.5)

Notice that

LX(0) = E(e−X·0) = E(1) = 1 (1.6)
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and

L
′

X(0) = E((e−sX)
′
)|s=0

= E(−Xe−sX)|s=0

= −E(X) (1.7)

Similarly,

L
(k)
X (0) = (−1)kE(Xk) (1.8)

There are many useful properties of Laplace Transform. These properties can

make our calculations easier when dealing with probability.

Let X, Y, Z be three random variables with Z = X+Y and X, Y are independent.

Then the Laplace Transform of Z can be found:

LZ(s) = LX(s) · LY (s) (1.9)

Moreover, when Z with probability p equals X, with probability 1− p equals Y ,

then

LZ(s) = pLX(s) + (1− p)LY (s) (1.10)

Now we will introduce Laplace Transforms of some useful distributions.

• Suppose X is a random variable which follows an exponential distribution with
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rate λ. The Laplace Transform of X is

LX(s) =
λ

λ+ s
(1.11)

• Suppose X is a random variable which follows an Erlang − r distribution with

rate λ. Then X can be written as:

X = X1 +X2 + · · ·+Xr (1.12)

where Xi are i.i.d. exponential with rate λ. Therefore, we have

LX(s) = LX1(s) · LX2(s) . . . LXr(s)

=
( λ

λ+ s

)r
(1.13)

• Suppose X is a constant real number c, then

LX(s) = E(e−sX)

= E(e−sc)

= e−sc (1.14)
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1.3 Basic Queueing Systems

We use Kendall’s notation to describe a queueing system [3] and denote by:

A/B/m/K/n/D (1.15)

where

• A: distribution of the interarrival times

• B: distribution of the service times

• m: number of servers

• K: capacity of the system, the maximum number of customers in the system

including the one being serviced

• n: population size of sources of customers

• D: service discipline

We use G to denote general distribution, use M for exponential distribution (M

stands for Memoryless), use D for deterministic times.[1]

We usually only use A/B/m to describe a queueing system, where A stands for

distribution of interarrival times, B stands for distribution of service times and m

stands for number of servers. Hence M/M/1 denotes a system with Poisson arrivals,

exponentially distributed service times and a single server. M/G/m denotes an m-
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server system with Poisson arrivals and generally distributed service times, and so

on.

In this section, we will introduce one of the most basic queueing models, the

M/M/1 system, which is a system with Poisson arrivals, exponentially distributed

service times and a single server. The following part is retrieved from “Queueing

Systems”, written by Adan and Resing, March,2015.[1]

We first assume the interarrivals follow the exponential distribution with rate λ,

and service time follows the exponential distribution with rate µ. Further, in the

single service model, to avoid queue length instability, we assume that:

ρ =
λ

µ
< 1 (1.16)

Here ρ is the fraction of time the server is working (called the utility factor).

We first consider time-dependent behavior of this system, then the limiting be-

havior. Let pn(t) denote the probability that at time t there are n customers in the

system. Then by (1.3), when ∆t→ 0,

p0(t+ ∆t) = (1− λ∆t)p0(t) + µ∆tp1(t) + o(∆t) (1.17)

pn(t+ ∆t) = λ∆tpn−1(t) + (1− (λ+ µ)∆t)pn(t) + µ∆tpn+1(t) + o(∆t)(1.18)

where n = 1, 2, ...

Hence, by letting ∆t → 0, we obtain the following infinite set of differential

equations for pn(t).
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p
′

0(t) = −λp0(t) + µp1(t) (1.19)

p
′

n(t) = λpn−1(t)− (λ+ µ)pn(t) + µpn+1(t), , n = 1, 2, ... (1.20)

It is very difficult to solve these differential equations. However, when we focus

on the limiting or equilibrium behavior of this system, it is much easier.

It can be shown[2] that when t → ∞, p′n(t) → 0 and pn(t) → pn. It follows that

the limiting probabilities pn satisfy equations

0 = −λp0 + µp1 (1.21)

0 = λpn−1 − (λ+ µ)pn + µpn+1, , n = 1, 2, ... (1.22)

Moreover, pn also satisfy
∞∑
n=0

pn = 1, (1.23)

which is called the normalization equation. We can also use a flow diagram to

derive the normalization equations directly. For an M/M/1 system, the flow diagram

is shown in figure (1.1):

0 1 2 . . . n− 1 n . . .

λ

µ

λ

µ

λ

µ

Figure 1.1: Process diagram for M/M/1 Queue, k=1,2,3,...
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The rate matrix of the system is:

Q =



−λ λ 0 0 0 . . .

µ −(µ+ λ) λ 0 0 . . .

0 µ −(µ+ λ) λ 0 . . .

0 0 µ −(µ+ λ) λ . . .

...
...

...
...

...
. . .


(1.24)

Notice that the sum of each row equals 0.

To determine the equations from the flow diagram, we need to use a global balance

principle. Global balance principle states that for each set of states A under the

equilibrium condition, the flow out of set is equal to the flow into that set.

Based on figure(1.1), we have

State Rate In = Rate Out

0 µp1 = λp0

1 λp0 + µp2 = (λ+ µ)p1

2 λp1 + µp3 = (λ+ µ)p2

...

This is exactly the normalization equation. To solve the equation, we first assume

ρ =
λ

µ
, which is known as the utilization factor. From the equilibrium equation of

state 0, we have:

p1 = ρp0 (1.25)
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When we plug (1.25) into the equilibrium equation of state 1, we have:

λp0 + µp2 = (λ+ µ)ρp0

= (
λ2

µ
+ λ)p0 (1.26)

That is

µp2 =
λ2

µ
p0 (1.27)

Therefore,

p2 = ρ2p0 (1.28)

Generally, we have

pk = ρkp0 (1.29)

Since
∞∑
n=0

pn = 1 (1.30)

Using (1.29), we can replace pk by p0. Then we have

∞∑
n=0

ρnp0 = 1 (1.31)

That is

1

1− ρ
p0 = 1

p0 = 1− ρ (1.32)
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Moreover, for any k, we have

pk = ρk(1− ρ) (1.33)

Finally, we find the limiting probability pk in the M/M/1 system. The expected

queue length L is given by

E(L) =
∞∑
i=0

i · pi

=
∞∑
i=0

i · ρi(1− ρ)

= (1− ρ)
∞∑
i=0

iρi

= ρ(1− ρ)
∞∑
i=1

iρi−1

= ρ(1− ρ)(
∞∑
i=1

ρi)
′

= ρ(1− ρ)(
ρ

1− ρ
)
′

=
ρ

1− ρ
(1.34)

In the next section, we will use a similar method to analyze a more complicated

queueing system.

1.4 M/MY /1 Queue

We consider a more complicated queueing system with a single server, Customers

are served in a batch. The batch size of customers may be fixed or random. We
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assume customer interarrivals and service follow exponential distributions with rate

λ, µ respectively. Then we have an M/MY /1 queue. We further assume the batch

size Y of customers being served follows a general distribution:

P (Y = k) = pk, for k = 1, 2, 3, ...c (1.35)

where c is the maximum number of customers in a service and pk satisfies:

c∑
k=1

pk = 1 (1.36)

We now consider the queue length after each service when the system is in equi-

librium. The probability that the system has m customers before a service and the

system is empty after the service, is the probability that the server can serve at least

m customers, which is
∑c

i=m pi. On the other hand, the probability that the system

has m customers before the service and the system has n customers after the service,

where n is a positive integer and less than m, is the probability that the server serves

exactly m− n customers, which is pm−n.

The flow diagram for M/MY /1 is shown as below.
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0 1 2 3 · · · c c+ 1 . . .

λ

∑c
i=1 piµ

λ

p1µ∑c
i=2 piµ

λ λ

∑c
i=3 piµ

p1µ

p2µ

λ λ

pcµ pcµ

p1µ

Figure 1.2: Process diagram for M/MY /1 Queue

The corresponding rate matrix is:

Q =



−λ λ 0 0 0 . . .

µ(
∑c

i=1 pi) −(µ(
∑c

i=1 pi) + λ) λ 0 0 . . .

µ(
∑c

i=2 pi) µp1 −(µ(
∑c

i=1 pi) + λ) λ 0 . . .

µ(
∑c

i=3 pi) µp2 µp1 −(µ(
∑c

i=1 pi) + λ) λ . . .

...
...

...
...

...
. . .


(1.37)

Since

c∑
k=1

pk = 1 (1.38)
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the rate matrix can be simplified as:

Q =



−λ λ 0 0 0 0 0 . . .

µ(
∑c

i=1 pi) −(µ+ λ) λ 0 0 0 0 . . .

µ(
∑c

i=2 pi) µp1 −(µ+ λ) λ 0 0 0 . . .

µ(
∑c

i=3 pi) µp2 µp1 −(µ+ λ) λ 0 0 . . .

...
...

...
...

...
. . . . . . . . .

µpc µpc−1 µpc−2 . . . µp1 −(µ+ λ) λ . . .

0 µpc µpc−1 µpc−2 . . . µp1 −(µ+ λ) . . .

...
...

...
...

...
...

...
. . .


(1.39)

It is a banded matrix.

To make this clear, we can rewrite the rate matrix as a block matrix:

Q =



A B 0 0 0 . . .

C D B 0 0 . . .

0 C D B 0 . . .

0 0 C D B . . .

...
...

...
...

...
. . .


(1.40)
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A,B,C,D are both (c+ 1)× (c+ 1) matrices. Where:

A =



−λ λ 0 0 . . . 0 0

µ(
∑c

i=1 pi) −(µ+ λ) λ 0 . . . 0 0

µ(
∑c

i=2 pi) µp1 −(µ+ λ) λ . . . 0 0

µ(
∑c

i=3 pi) µp2 µp1 −(µ+ λ) . . . 0 0

...
...

...
...

...
...

...

µ(
∑c

i=c−1 pi) µpc µpc−1 µpc−2 . . . −(µ+ λ) λ

µpc µpc−1 µpc−2 µpc−3 . . . µp1 −(µ+ λ)


(1.41)

B =



0 0 0 0 . . . 0

0 0 0 0 . . . 0

...
...

...
...

...
...

0 0 0 0 . . . 0

λ 0 0 0 . . . 0


(1.42)

C =



0 µpc µpc−1 µpc−1 . . . µp2 µp1

0 0 µpc µpc−1 . . . µp3 µp2

...
...

...
...

...
...

...

0 0 0 0 . . . µpc µpc−1

0 0 0 0 . . . 0 µpc

0 0 0 0 . . . 0 0



(1.43)
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D =



−(µ+ λ) λ 0 0 . . . 0 0

µp1 −(µ+ λ) λ 0 . . . 0 0

µp2 µp1 −(µ+ λ) λ . . . 0 0

µp3 µp2 µp1 −(µ+ λ) . . . 0 0

...
...

...
...

...
...

...

µpc−1 µpc µpc−1 µpc−2 . . . −(µ+ λ) λ

µpc µpc−1 µpc−2 µpc−3 . . . µp1 −(µ+ λ)


(1.44)

We are interesting in the performance when the queue is in equilibrium. We treat

the number of customers in the queue as states and denote the limiting probability

of being in state i by πi, which represents that the queue length is i. Obviously the

summation of all πi is 1. Moreover, we assume when the system is in equilibrium, the

flow rate into any state is always equal to the flow rate out of the state (See section

(1.3)). So, we can determine a series of equations for πi based on Figure (1.2), with

respect to parameters λ, µ and pi.
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State Rate In = Rate Out

0 (π1
∑c

i=1 pi + π2
∑c

i=2 pi + · · ·+ πcpc)µ = π0λ

1 π0λ+ (π2p1 + · · ·+ πc+1pc)µ = π1λ+ π1µ

...

k πk−1λ+ (πk+1p1 + · · ·+ πk+cpc)µ = πkλ+ πkµ

...

c πc−1λ+ (πc+1p1 + · · ·+ π2cpc)µ = πcλ+ πcµ

...

c+k πc+k−1λ+ (πc+k+1p1 + · · ·+ π2c+kpc)µ = πc+kλ+ πc+kµ

...

Defining
λ

µ
= ρo (notice that this is NOT the utilization factor in M/MY /1

system), we can then simplify the equations as follows:

πk = ρ−1o (πk+1

c∑
i=1

pi + πk+2

c∑
i=2

pi + · · ·+ πc+kpc), for k = 0, 1, 2, ... (1.45)

or

πk = ρ−1o

c∑
j=1

(πj+k

c∑
i=j

pi), for k = 0, 1, 2, ... (1.46)

With the fact
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∞∑
i=1

πi = 1 (1.47)

we can solve for πi in practice. Then, we can also find the expected number of

waiting passengers E(L) in the M/MY /1 queue by the following equation.

E(L) =
∞∑
i=0

iπi (1.48)
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Chapter 2

Comparison of two strategies

Now, consider the following situation. We have to wait for a bus in a rush hour at

Station A. Since the queue is long, it might take some time to get on the bus. One

strategy is to take a bus going the opposite direction and go to the previous station

B and wait for a bus. It might take some time to get to the previous station, but

it might take less time to get on a bus. Following graphs indicates two different

strategies. Strategy A(stay at station A):

Figure 2.1: Strategy A
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Strategy B(go to previous station B and return)

Figure 2.2: Strategy B

We are interested in which strategy is less time-consuming. We will use the

knowledge we introduced in Chapter 1 to find the distribution of time to get on

a bus. We will also compare the expected time to get on a bus for both strategies

based on different conditions. Similar problems exist for subways, elevators.

To simplify the calculation, we first make several assumptions and add notations.

• When we arrive at station A, there are already N passengers in the queue. We

only care about the time spent to get on a bus. We don’t care about passengers

arriving after us. Hence, we are not concerned with the passenger arrivals at

station A.

• Unlike station A, the queue length at station B is unknown until we get there.

In order to find the expected queue length at station B, we have to consider the

passenger arrivals. We assume passenger arrivals at station B follow a Poisson

Process with rate λ.
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• Bus interarrivals at stations A and B are exponential with the same rate µ.

• The maximum capacity of each bus is c.

• We define YAi
and YBi

as the number of passengers who can get on the ith bus

at station A,B. Here YAi
and YBi

are two discrete random variables with values

between 0 and c. Moreover, YAi
are i.i.d. and YBi

are i.i.d..

• We assume there is no full bus at station B, i.e. P (YBi
= 0) = 0

Now we begin to analyze the simplest model.

2.1 No Waiting At Station B and constant service

We assume passengers at station B are so few that we can always get on the first

coming bus at station B. In this case, we make two more assumptions to simplify the

model.

• Each bus at station A can serve S passengers, where S is a constant positive

integer, i.e. YA = S.

• A bus will spend time t from station B to A and from A to B, where t is a

constant.

Under such conditions, we consider our first strategy A. We need to wait bN
S
c+ 1

buses to get on, where b.c is the floor function. Let TAi
and TBi

denote the time

between (i − 1)st and ith bus arrival at station A,B respectively. Then by our as-

sumption, TAi
and TBi

are i.i.d. with exponential distributions with rate µ. Let TA
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denote the time we spend from arrival at station A till we get on a bus with strategy

A. Then we have:

TA = TA1 + TA2 + ...+ TA
b
N

S

c+1

(2.1)

Let T̃Ai
(s) denote the Laplace transform for TAi

. Since TAi
are i.i.d. exponential

with rate µ, we have

T̃A(s) = T̃A1(s) · T̃A2(s) · ... · T̃A
b
N

S

c+1

(s)

= T̃A1(s)
b
N

S
c+1

=
( µ

µ+ s

)bN
S
c+1

. (2.2)

This is the Laplace transform for an Erlang − (bN
S
c + 1) distribution, which

implies TA follows an Erlang − (bN
S
c+ 1) distribution.

Moreover,

E(TA) = −T̃ ′A(0) = (bN
S
c+ 1)

1

µ
(2.3)

On the other hand, consider another strategy B. It includes four periods.

1. Waiting for the first bus from the opposite direction at station A. Let this time

be TO, where TO follows an exponential distribution with rate µ.

2. The bus spends time t from station A to B.
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3. Waiting for the first bus at station B, we use TWB to denote it. Since we assume

we can always get on the first bus at station B, so we have TWB = TB1 here.

4. The bus spends time t from station B to A again.

Let TB denote the time we spend from arrival at station A, until we return to

station A, going through station B. Then we have:

TB = TO + t+ TB1 + t = TO + TB1 + 2t (2.4)

Since TB1 and TO are i.i.d. with exponential distributions with rate µ, we have

T̃B(s) = T̃B1(s) · T̃O(s) · e−2st

= e−2st
( µ

µ+ s

)2
. (2.5)

Therefore,

E(TB) = −T̃ ′B(0) =
2

µ
+ 2t (2.6)

So we can compare the expectations of TA and TB to decide which strategy is

better. When

t < (bN
S
c − 1)

1

2µ
, (2.7)

we should use strategy B. Otherwise, we should wait patiently at station A.
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In the next section, we discuss a more complex model. Instead of each bus serving

S passengers, we assume each bus can serve Y passengers, where Y is a random

variable with specified distribution.

2.2 No Waiting At Station B and random service

We now assume YAi
is the number of passengers who can get on the ith bus at station

A, where YAi
are i.i.d. with values between 0 and c, where c is the maximum capacity

of an empty bus. Further we let

P (YAi
= j) = pAj

, for i = 1, 2, 3, ...; j = 0, 1, 2, 3, ..., c (2.8)

where
c∑
i=0

pAi
= 1 (2.9)

Since we assume we can always get on the first bus at station B, the previous

analysis doesn’t change for strategy B. We still have:

E(TB) =
2

µ
+ 2t (2.10)

On the other hand, if we assume

Sn =
n∑
i=1

YAi
(2.11)
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then SAn denotes the number of passengers being served by the first nth buses at

station A. Then the probability that we need to wait exactly k buses to get on at

station A is found as follows:

When N 6 c,

P (
k∑
i=1

YAi
> N,

k−1∑
i=1

YAi
< N + 1) = P (SAk

> N,SAk−1
< N + 1)

=
N∑
i=0

(P (SAk−1
= i) ·

c∑
k=N−i+1

pAk
)

=
N∑
i=0

(P (SAk−1
= i)(1−

N−i∑
k=0

pAk
)) (2.12)

If we define qj =
∑j

k=0 pAk
, then we have

P (
k∑
i=1

YAi
> N,

k−1∑
i=1

YAi
< N+1) =

N∑
i=0

P (SAk−1
= i)−

N∑
i=0

P (SAk−1
= i) · qN−i (2.13)

Further, we can simplify the result, noticing that:

N∑
i=0

P (SAk
= i) =

N∑
i=0

i∑
j=0

[P (SAk−1
= j)P (YAk

= i− j)]

=
N∑
i=0

i∑
j=0

P (SAk−1
= j) · pAi−j

=
N∑
j=0

N∑
i=j

P (SAk−1
= j) · pAi−j

=
N∑
j=0

P (SAk−1
= j) ·

N∑
i=j

pAi−j
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=
N∑
j=0

P (SAk−1
= j) ·

N−j∑
k=0

pAk

=
N∑
j=0

P (SAk−1
= j) · qN−j (2.14)

Therefore,

P (we get on exactly the kth bus) = P (
k∑
i=1

YAi
> N,

k−1∑
i=1

YAi
< N + 1)

=
N∑
i=0

P (SAk−1
= i)−

N∑
i=0

P (SAk
= i)(2.15)

so we have

E(TA) =
∞∑
k=1

P (
k∑
i=1

YAi
> N,

k−1∑
i=1

YAi
< N + 1) · E(

k∑
j=1

TAj
)

=
∞∑
k=1

P (
k∑
i=1

YAi
> N,

k−1∑
i=1

YAi
< N + 1) · (k

µ
)

=
1

µ
· (
∞∑
k=1

k · P (
k∑
i=1

YAi
> N,

k−1∑
i=1

YAi
< N + 1))

=
1

µ
· (
∞∑
k=1

k(
N∑
i=0

P (SAk−1
= i)−

N∑
i=0

P (SAk
= i))) (2.16)

We can find P (SAk
= i) by using a pseudo transition matrix. Define PA as the

pseudo transition matrix of queue length at station A. Then:
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PA =



pA0 0 0 0 0 . . . 0

pA1 pA0 0 0 0 . . . 0

pA2 pA1 pA0 0 0 . . . 0

pA3 pA2 pA1 pA0 0 . . . 0

pA4 pA3 pA2 pA1 pA0 . . . 0

...
...

...
...

...
. . .

pAN+1
pAN

pAN−1
pAN−2

pAN−3
. . . pA0



(2.17)

In strategy A, we are not interested in the passengers arriving after us, so we can

assume no other passengers arrive after us. Thus the queue length never gets longer.

Therefore, PA is a lower-triangular matrix. Then

PA[i, j]=P (next bus serves exactly i− j passengers)

Here PA[i, j] denotes the element at the ith column and the jth row of the matrix

PA.

So

P (SAk
= i) = P (YA1 + YA2 + · · ·+ YAk

= i)

= P k
A[i+ 1, 1] (2.18)

Similarly, P k
A[i+ 1, 1] denotes the element at the (i+ 1)th column and the 1st row

of the matrix P k
A. We will use this notation in following part.

When N > c, if we define
∑b

i=a pi = 0 for a > b, and define the pseudo transition
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matrix PA as:

PA =



pA0 0 0 . . . 0 0 0 · · ·

pA1 pA0 0 · · · 0 0 0 · · ·

pA2 pA1 pA0 · · · 0 0 0 · · ·

...
...

...
. . .

...
...

... · · ·

pAc pAc−1 pAc−2 · · · pA0 0 0 · · ·

0 pAc pAc−1 · · · pA1 pA0 0 · · ·

...
...

...
...

...
...

...
. . .



(2.19)

we can still get the same result as in the case N 6 c.

Moreover, we can also use recursion formula to solve for E(TA). Assume E(TA|i)

denotes the expected time for strategy A to get on a bus when there are i passengers

before us. Then, we can rewrite E(TA) to:

E(TA) = E(TA|N) (2.20)

When there are 0 passengers before us, we consider the first bus. If the bus is not

full, we can always get on since there are no passengers before us. The probability

of a bus not being full is 1 − pA0, and we need the expected time
1

µ
to get on,

since we assume the bus interarrivals follow an exponential distribution with rate µ.

Otherwise, the first bus is full with probability pA0, so we still have to wait E(TA|0)

to get on. In this case, the expected time we need is
1

µ
+ E(TA|0). So, we have:
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E(TA|0) =
1

µ
(1− pA0) + pA0(

1

µ
+ E(TA|0)) (2.21)

Similarly, we get recursion formulas for E(TA|i):

E(TA|0) =
1

µ
(1− q0) + pA0(

1

µ
+ E(TA|0)) (2.22)

E(TA|1) =
1

µ
(1− q1) + pA0(

1

µ
+ E(TA|1)) + pA1(

1

µ
+ E(TA|0)) (2.23)

E(TA|2) =
1

µ
(1− q2) + pA0(

1

µ
+ E(TA|2)) + · · ·+ pA2(

1

µ
+ E(TA|0)) (2.24)

where

qk =
k∑
i=0

pAi
(2.25)

We can simplify the recursion formulas as:

(1− pA0) · E(TA|0) =
1

µ
(2.26)

(1− pA0) · E(TA|1) =
1

µ
+ pA1 · E(TA|0) (2.27)

(1− pA0) · E(TA|2) =
1

µ
+ pA1 · E(TA|1) + pA2 · E(TA|0) (2.28)

Generally, if we define pAi = 0 when i > c, then for any k = 0, 1, 2..., we have the

recursion formula:

E(TA|k) =

1

µ
+
∑k

i=1 pAi
· E(TA|k − i)

1− pA0

(2.29)

In Chapter 3, we build two different programs based on (2.16) and (2.29). They
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give exactly the same results. However, using recursion is much more efficient.

Now, we can compare E(TA) and E(TB) as we did in section 2.1 to find which

strategy is better.

2.3 Waiting At Station B and random service

In this section, we will use previous results and the formulas given in section 1.4 to

get both Laplace transforms and expected times of the two strategies. We assume

both bus and passenger interarrivals follow exponential distributions with rates µ, λ,

respectively. We also assume we might need to wait at station B using strategy B.

We first obtain the Laplace transform for the time using strategy A with a given

number N . We let LAN
(s) denote the Laplace transform with N passengers before

us. Then:

LAN
(s) =


µ

µ+ s
[pA0LAN

(s) + · · ·+ pAS
LAN−c

(s)] for N > c;

µ

µ+ s
[pA0LAN

(s) + · · ·+ pAN
LA0(s) +

∑c
i=N+1 pAi

· 1] for N 6 c;

(2.30)

Specifically,

LA0(s) =
µ

µ+ s
[pA0LA0(s) + (1− pA0) · 1)] (2.31)

That is:
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LA0(s) =
µ(1− pA0)

µ(1− pA0) + s
(2.32)

We can find numerical solutions for all LAi
(s).

Strategy A in this section is identical to strategy A in section (2.2). So we still

have:

E(TA) =
1

µ
· (
∞∑
k=1

k(
N∑
i=0

P (SAk−1
= i)−

N∑
i=0

P (SAk
= i))) (2.33)

where

SAn =
n∑
i=1

YAi
(2.34)

and

P (SAk
= i) = P k

A[i+ 1, 1] (2.35)

If NA 6 c, PA can be found in (2.17). Otherwise, when NA > c, PA is given by:
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PA =



pA0 0 0 . . . 0 0 0 · · ·

pA1 pA0 0 · · · 0 0 0 · · ·

pA2 pA1 pA0 · · · 0 0 0 · · ·

...
...

...
. . .

...
...

... · · ·

pAc pAc−1 pAc−2 · · · pA0 0 0 · · ·

0 pAc pAc−1 · · · pA1 pA0 0 · · ·

...
...

...
...

...
...

...
. . .



(2.36)

Now, we focus on strategy B. Under this model, when we take a bus in the opposite

direction from station A to station B, the queue length at station B is unknown. As

in section (1.2), the system at station B is an M/MYB/1 system.

Since we assume the passenger arrivals follow a Poisson Process, then, by PASTA,

when we arrive at station B, the queue we see will match the equilibrium situation of

the system. Let LB be the queue length when we arrive at station B. Then:

P (LB = k) = πk, for k = 0, 1, 2, ...; (2.37)

where πk can be solved by:

πk = ρ−1o

c∑
j=1

(πj+k

c∑
i=j

pBi
), for k = 1, 2, 3, ... (2.38)

and
∞∑
k=1

πk = 1 (2.39)
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We define pBj
similar to pAj

here. Notice that pAj
, pBj

are different in our model.

Generally, when j is large, pBj
is greater than pAj

; when j is small, pBj
is smaller

than pAj
. The idea is that buses at station B have fewer passengers and more space

than buses at station A.

Now we obtain the Laplace transform and the expected time using strategy B.

Let TB be the time and let LB(s) be the Laplace transform.and TB. As in section

(2.1), we break strategy B into four different periods:

1. Waiting for the first bus from the opposite direction at station A. Let the time

be TO. Then TO follows an exponential distribution with rate µ.

2. The bus spends time TAB from station A to B.

3. Waiting for a bus at station B until we can get on. Let this time be TWB.

4. The bus spends time TBA from station B to A.

Then, we have

TB = TO + TAB + TWB + TBA (2.40)

TB is the total time to get on a bus which is at station A by going backward to

station B.

We assume TAB and TBA have same distribution (and may be constant). Using

tilde for Laplace transforms, we have

T̃B(s) = T̃O(s) · T̃AB(s) · T̃WB(s) · T̃BA(s)
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=
µ

µ+ s
· (T̃AB(s))2 · T̃WB(s) (2.41)

If TAB = TBA = t, where t is a constant, then from section (1.2), we have:

T̃AB(s) = e−st (2.42)

If TAB and TBA follow an exponential distribution with rate γ, then

T̃AB(s) =
γ

γ + s
(2.43)

Next we obtain T̃WB(s). Let LBM
denote the Laplace transform of time at station

B when there are M passengers in the queue at station B at the time we arrive. Then:

T̃WB(s) = π0LB0 + π1LB1 + π2LB2 + ...

=
∞∑
i=0

πiLBi
(s) (2.44)

and LBM
(s) satisfies

LBM
(s) =


µ

µ+ s
[pB0LBM

(s) + · · ·+ pBcLBM−c
(s)] for M > c;

µ

µ+ s
[pB0LBM

(s) + · · ·+ pBM
LB0(s) +

∑c
i=M+1 pBi · 1] for M 6 c;

(2.45)
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with

LB0(s) =
µ(1− pB0)

µ(1− pB0) + s
(2.46)

This is the Laplace Transform for an exponential distribution with rate µ(1−pB0).

By our assumption at the beginning, there is no full bus at station B, which implies

pB0 = 0, so

LB0(s) =
µ

µ+ s
(2.47)

which is exactly the Laplace transform of an exponential distribution with rate µ.

Further,

LB1(s) =
( µ

µ+ s

)2
pB1 +

µ

µ+ s
(1− pB1) (2.48)

which implies the time at station B given one passenger ahead of us follows an

Erlang− 2 distribution with rate µ with probability pB1 , and follows an exponential

distribution with rate µ with probability 1− pB1 . Next

LB2(s) =
( µ

µ+ s

)3
p2B1

+
( µ

µ+ s

)2
(pB1(1− pB1) + pB2)+

µ

µ+ s
(1−pB1−pB2) (2.49)

We know the time follows an Erlang−3 distribution with rate µ with probability p2B1

, and follows an Erlang−2 distribution with rate µ with probability pB1(1−pB1)+pB2

and follows an exponential distribution with rate µ with probability 1−pB1−pB2 . We

can solve LBi
step by step. Finally, we can find T̃WB(s) by (2.44). With all results,

we can find T̃B(s) from (2.41), the Laplace transform of time using strategy B.
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Specifically, we can use induction to prove that LBk
(s) can be written as

LBk
(s) =

k∑
i=0

( µ

µ+ s

)i+1

· γi (2.50)

where γi is a polynomial in pB1 , pB2 , . . . , pBk
. This gives us the idea that the distri-

bution of time to get on a bus when there are k passengers when we arrive at station

B follows:

• Erlang − (k + 1) distribution with rate µ with probability γk+1.

• Erlang − k distribution with rate µ with probability γk.

. . .

• Erlang − 1 distribution (also known as exponential distribution) with rate µ

with probability γ1.

To find the expected time spent using strategy B, we can use the property of

Laplace Transforms:

T̃
′

B(0) = −E(TB) (2.51)

We can also directly verify the expected time using strategy B from (2.40),

E(TB) = E(TO + TAB + TWB + TBA)

=
1

µ
+ 2E(TAB) + E(TWB) (2.52)
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We use the same assumption for TAB and TBA, namely

TAB = TBA = t (2.53)

Then we have

E(TB) =
1

µ
+ 2t+ E(TWB) (2.54)

Recall that TWB denotes the waiting time at station B. When we arrive at station

B, there is probability πk of having k passengers in the queue. Recall TBk
denotes our

waiting time when there are exactly k passengers in the queue at station B. Then,

E(TWB) =
∞∑
i=0

πiE(TBi
) (2.55)

When considering TBi
, there are exactly i passengers before us, and each bus will

serve a random number of passengers. This is a similar system to what we had at

station A. We already discussed this system in Section 2.2 and 2.3. Recall that YBi

denotes the number of passengers served by the ith bus at station B, pBi
denotes the

probability that a bus at station B can serve exactly i passengers. By using the result

(2.33), we have

E(TBk
) =

1

µ
· (
∞∑
i=1

i(
k∑
j=0

P (SBi−1
= j)−

k∑
j=0

P (SBi
= j))) (2.56)
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where

SBn =
n∑
i=1

YBi
(2.57)

From the previous section, we have:

P (SBk
= i) = P k

B[i+ 1, 1] (2.58)

where

PB =



pB0 0 0 0 0 . . . 0

pB1 pB0 0 0 0 . . . 0

pB2 pB1 pB0 0 0 . . . 0

pB3 pB2 pB1 pB0 0 . . . 0

pB4 pB3 pB2 pB1 pB0 . . . 0

...
...

...
...

...
. . .

pBW+1
pBW

pBW−1
pBW−2

pBW−3
. . . pB0



(2.59)

Here W is an arbitrary positive integer that is large enough. When we say large

enough, we mean W should be greater than the queue length at station B with high

probability.

Hence, we finally get E(TB) by using (2.54), (2.55) and(2.56), such that:

E(TB) =
1

µ
+ 2t+

1

µ

∞∑
k=0

πi · (
∞∑
i=1

i(
k∑
j=0

P (SBi−1
= j)−

k∑
j=0

P (SBi
= j))) (2.60)
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Chapter 3

Further Analysis

In Chapter 1 and Chapter 2, we discussed the properties of an M/MY /1 system, and

analyzed the expected time for two strategies based on three different assumptions.

We now use R to simulate the M/MY /1 system, and compare the simulation result

to our theoretical result to make sure the theory is correct. We also compare two

strategies with different parameters, in order to have a deeper understanding.

3.1 Limiting behavior of M/MY /1 System

We are going to discuss the limiting behavior in this section. First we want to show

that the number of customers in the system at the beginning will not impact the

probability of the number of customers in the system when it is in equilibrium.

To simulate this, we build up an M/MY /1 system with:

• λ = µ =
1

2
;
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• c = 6, p0 = 0.1, p1 = 0.4, p2 = 0.3, p3 = p4 = p5 = p6 = 0.05;

• The system will run for 300,000 steps.

The system typical behavior is as follows (for 3 random examples):

Figure 3.1: The number of passengers vs step number
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The graph gives three different M/MY /1 system behaviors with exactly the same

parameters – they perform differently. Therefore it is necessary to find the limiting

behavior. To check the limiting behavior, we first simulate the system with three

different initiate values, N = 0, 30, 50. If we treat the number of customers in the

system as states, then the limiting probability of system in states 0,1,2,..., and the

expected queue length with three different initiate values is:

N
πk π0 π1 π2 π3 π4 π5 . . . E(Length)

N=50 0.3019 0.2109 0.1474 0.1034 0.0718 0.0496 . . . 2.3127
N=30 0.3014 0.2098 0.1464 0.1032 0.0728 0.0511 . . . 2.3091
N=0 0.3013 0.2106 0.1467 0.1012 0.0710 0.0498 . . . 2.3336

Table 3.1: Comparison of probability for each state in M/MY /1 system with different
N

As can be seen in the table, the probability of each state and expected queue

length are almost the same. This confirms that the initiate value will not change the

system behavior in the long run.

Next, we want to compare the simulation results to theoretical results based on

our analysis in Chapter 1 by using R.

From Chapter 1, we know the limiting probability of each state, say πi, can be

solved from the equations:

πk = ρ−1o

c∑
j=1

(πj+k

c∑
i=j

pi), for k = 0, 1, 2, ... (3.1)

and
∞∑
i=1

πi = 1 (3.2)
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There are infinitely many equations with infinitely many unknowns. The method

we use is to truncate the upper bound of states, since πi will be close to 0 when i is

large.

If we assume the maximum number of states in system is W . Then the equations

will have W + 1 unknowns. We rewrite them as:

πk − ρ−1o
c∑
j=1

(πj+k

c∑
i=j

pi) = 0, for k = 0, 1, 2, ...W (3.3)

W∑
i=0

πi = 1 (3.4)

We use qk to denote
∑k

i=0 pi. Then the previous equations can be written as:

πk −
c∑
j=1

ρ−1o (1− qj−1) · πk+j = 0, for k = 0, 1, 2, ...W (3.5)

W∑
i=0

πi = 1 (3.6)

Here we define πi = 0 if i > W .
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Now, define the (W + 1)× (W + 1) matrix A as:

A =



1 −ρ−1o (1− q0) −ρ−1o (1− q1) −ρ−1o (1− q2) . . . 0 0

0 1 −ρ−1o (1− q0) −ρ−1o (1− q1) . . . 0 0

0 0 1 −ρ−1o (1− q0) . . . 0 0

0 0 0 1 . . . 0 0

...
...

...
...

...
. . .

...

0 0 0 0 . . . 1 −ρ−1o (1− q0)

1 1 1 1 . . . 1 1


(3.7)

and define the (W + 1)× 1 vector b as:

b = (0, 0, 0, . . . , 0, 1)T (3.8)

Then X = (π0, π1, π2, . . . , πW )T is the solution of the equation

AX = b (3.9)

We use R to solve the equation to find the limiting probabilities. Then, we com-

pare this result with the simulation result with 2,500,000 steps, based on the same

parameters as before. Here is the table:
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N
πk π0 π1 π2 π3 π4 π5 . . . E(Length)

Simulation 0.3007 0.2103 0.1473 0.1030 0.0719 0.0502 . . . 2.3227
Theoretical 0.3010 0.2104 0.1471 0.1028 0.0719 0.0502 . . . 2.3221

Table 3.2: Comparison of Simulation with Theoretical Results

The differences are extremely small. Our theory fits the simulation results. Hence

in the next section, we will use the truncation method to calculate the expected times

of two strategies.

We observe the change of the limiting state probabilities as λ changes. If i is

small, then πi increases as λ decreases.

Figure 3.2: Limiting probability of M/MY /1 system with λ
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3.2 Numerical results for Strategy A

From Section 2.2 and 2.3, we know the expected time to get on a bus for strategy A

is:

E(TA) =
1

µ
· (
∞∑
k=1

k(
N∑
i=0

P (SAk−1
= i)−

N∑
i=0

P (SAk
= i))) (3.10)

where

P (SAk
= i) = P k

A[i+ 1, 1] (3.11)

and

PA =



pA0 0 0 . . . 0 0 0 · · ·

pA1 pA0 0 · · · 0 0 0 · · ·

pA2 pA1 pA0 · · · 0 0 0 · · ·

...
...

...
. . .

...
...

... · · ·

pAc pAc−1 pAc−2 · · · pA0 0 0 · · ·

0 pAc pAc−1 · · · pA1 pA0 0 · · ·

...
...

...
...

...
...

...
. . .



(3.12)

Recall that:

E(TA|k) =

1

µ
+
∑k

i=1 pAi
· E(TA|k − i)

1− pA0

(3.13)

for k = 0, 1, 2, ...N .

Since in strategy A, we don’t need to consider passenger arrival rate, E(TA) doesn’t

involve λ. From (3.10), we can justify that the expected time E(TA) to get on a bus
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for strategy A, is directly proportional to
1

µ
.

We now consider the relationship between the expected time E(TA) and the num-

ber of passengers N in the queue at the beginning.

To study the relationship between E(TA) and N better, we selected three different

groups of pi:

• S = 6, p0 = p1 = p2 = p3 = p4 = 0, p5 = 0.8, p6 = 0.2;

• S = 6, p0 = p1 = p2 = p3 = p4 = p5 = 0, p6 = 1, an extreme situation, every bus

is empty;

• S = 6, p0 = p1 = p2 = p3 = 0, p4 = p5 = p6 =
1

3
, ;

We have the following graph:

Figure 3.3: expected time for strategy A with different pi
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The graph indicates some interesting properties of how the probability of pas-

sengers being served each time will influence the expected time of strategy A as N

grows.

• As N increases, the expected time increases. The length of each stage K equals

the maximum passengers a bus can serve;

(i.e. K = max
06l6S,pl 6=0

l)

• The graph will become smooth gradually and eventually becomes a line when

N gets large except when each bus serves a constant number of passengers;

• When pk is large for k close to K, which means buses tend to be empty or

nearly empty, the stages are clear in the graph. Conversely, if pk is large where

k is close to 0, which means the buses tend to be full or nearly full, the stages

become unrecognizable, and the expected time E(TA) will have almost a linear

relationship with N .

Under our assumptions, buses arriving at station A will always be full or nearly

full, so the expected time E(TA) to get on a bus for strategy A will most likely have

a linear relationship with the number of passengers N in the queue at the beginning.
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3.3 Numerical results for Strategy B

From Section 2.3, we calculate the expected time E(TB) to get on a bus for strategy

B theoretically. Recall:

E(TB) =
1

µ
+ 2t+ E(TWB) (3.14)

where

E(TWB) =
∞∑
i=0

πiE(TBi
) (3.15)

Then πi can be solved from

πk −
c∑
j=1

ρ−1o (1− qj−1) · πk+j = 0, for k = 0, 1, 2, ...W (3.16)

W∑
i=0

πi = 1 (3.17)

As we mentioned in Section(3.1), let

qk =
k∑
i=0

pBi
(3.18)

E(TBk
) can be obtained by

E(TB|k) =

1

µ
+
∑k

i=1 pBi
· E(TB|k − i)

1− pB0

(3.19)

for k = 0, 1, 2, ...W .
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Alternatively

E(TBk
) =

1

µ
· (
∞∑
j=1

j(
k∑
i=0

P (SBj−1
= i)−

k∑
i=0

P (SBj
= i))) (3.20)

where

P (SBk
= i) = P k

B[i+ 1, 1] (3.21)

and

PB =



pB0 0 0 0 0 . . . 0

pB1 pB0 0 0 0 . . . 0

pB2 pB1 pB0 0 0 . . . 0

pB3 pB2 pB1 pB0 0 . . . 0

pB4 pB3 pB2 pB1 pB0 . . . 0

...
...

...
...

...
. . .

pBW+1
pBW

pBW−1
pBW−2

pBW−3
. . . pB0



(3.22)

We use various parameters to study how the expected time changes when passen-

ger and bus arrival rates change. Here are some parameter choices.

• The distribution of the number of passengers each bus can serve is: p0 =

0.1, p1 = 0.4, p2 = 0.3, p3 = p4 = p5 = p6 = 0.05.

• The time t that a bus will spend from station A to B, or B to A is 3.

• Based on pi the expected number of passengers a bus can serve is 1.9. Hence
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the passenger service rate is 1.9µ. To keep the system stable, we need λ < 1.9µ.

When we construct the graph, the range for µ is (0.5, 1.5), the range of λ is

(0.2, 0.9).

In order to find the expected time to get on a bus for strategy B, we need to

use the conclusion in Section 3.1. Obviously, E(TB) does not depend on N , and the

relationship between λ, µ and E(TB) can be found in following graphs:

Figure 3.4: Expected time of Strategy B using µ
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Figure 3.5: Expected time of Strategy B using λ

As can be seen, when µ decreases, E(TB) falls steadily. When λ increases, E(TB)

increases smoothly. We show the trend more directly from the 3D graph

Figure 3.6: Expected time of Strategy B with λ and µ
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From graph (3.6) we find that E(TB) increases dramatically in the neighbourhood

of point (0.5, 0.9), at which point the utilization factor ρ is very close to 1. This gives

us the idea that the expected time of strategy B is strongly related to the utilization

factor ρ.

3.4 Comparison of two strategies

From our previous analysis, the expected time to get on a bus in both strategies

depends on many parameters. In practice, we want to set up a criterion to decide our

selection of the two strategies. We should consider all parameters.

However, in our model, some of the parameters maybe unknown and not be im-

mediately observable. i.e. the passenger and bus arrivals, the probabilities of the

number of passengers who can be served by a bus. We can only use N , where N is

the number of passengers at station A at the beginning, as our decision parameter.

If we know the other parameters approximately, we can easily use N as a criterion

to make our decision. So in this section, we want to fix all other parameters, and

compare the expected time of both strategies with different values of N .

Here are our parameter choices.

• The distribution of the number of passengers each bus can serve at the two

station is: pA0 = 0.1, pA1 = 0.4, pA2 = 0.3, pA3 = pA4 = pA5 = pA6 = 0.05;

pB0 = 0.0, pB1 = 0.4, pB2 = 0.4, pB3 = pB4 = pB5 = pB6 = 0.05. Most of the

time, when we consider going to station B, we assume that the bus at station
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B will serve more people than the bus at station A.

• The time t that a bus will spend from station A to B, or B to A is 3.
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We make a graph to compare the expected times of the two strategies with N :

Figure 3.7: Comparison of time of Strategy A and Strategy B

Notice that E(TB), the expected time for strategy B, does not depend on N .

Therefore, the graph of E(TB) with N will always be a horizontal line. Also, as we

mentioned in section 3.2, since the buses arriving at station A are always nearly full,

the graph of the expected time E(TA), will behave like a straight line with N . In this

case, if there are more than 10 passengers before us at the beginning, then strategy

B is better than strategy A.
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Chapter 4

Discussion

We can make further improvements based on our results.

• In our model, we only discuss the M/MY /1 system, in which we assume the bus

interarrivals follows an exponential distribution. In practice, bus interarrivals

are more likely to follow a deterministic distribution, which means the bus will

come to the station every t time units. We don’t need to change much in our

results in such an M/DY /1 system, since we solved for the expected time to get

on a bus for both strategies by using the expected number of buses we need,

times the expected time to wait for a bus. If we change the bus interarrival

times from an exponential distribution to a constant, we just need to change all

1

µ
to t, This won’t change the result much.

• The passenger arrivals is another interesting topic. According to “Study on

Distribution Law of Passenger Arrival of Passenger Service Facilities in Urban

Rail Transit Station”, by J. Sun, 2014 [4], there are many different predicted
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distributions for passenger interarrivals: exponential [5], uniform [7], normal

[6], deterministic [8] and PH (phase-type) [9]. Each distribution has its own

advantages and disadvantages, based on different modes of transportation, such

as metro, railway or coach. These distributions might not all fit the passenger

interarrival times at a regular bus station, but still it is possible and interesting

to discuss a queueing system which has random service with a different passenger

interarrival times.

• In section 3.2, we noticed that under some conditions, the expected time to get

on a bus for strategy A will have an approximate linear relationship with the

passengers number N at station A at the beginning, but we pointed out several

special conditions and we did not study them deeply. It should be possible to

verify the predicted linear models more generally.

• We chose the distribution of the number of passengers that each bus can serve,

because we cannot find any realistic data to tell us what distribution should be

used.

• The bus queueing model can be extend to different settings, such as subway

or elevator. Some assumptions could change when the settings change. For

example, unlike buses, elevators are expected to have different interarrival times

at different floors. The interarrival times will be influenced by the algorithm

that the elevator uses.

• Another interesting topic was mentioned by Dr. Qi-Ming He at CanQueue 2017.
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If we desire that we get a seat on the bus/subway, instead of being concerned

with the waiting time, what should the model be? In this case, we have to

divide the passengers into two different types. Type A passengers just want to

get on as soon as possible, type B passengers will not get on until they can have

a seat. We will also assume there are two different maximum capacities, say

c1, c2, where c1 denotes the maximum capacity of the bus/subway, c2 denotes

the number of seats in the bus/subway. This will be a much more complex

model, but we expect it can be solved.
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Appendix A

R Code

Note: The code showing below is calculating one expected number point for specific

λ’s, β’s.

#Program I:Limiting probability of M/MˆY/1 system by
simulation:

library(lattice)

N=15; l=0.5; m=.5 ;t=2500000; s=1; c=7;# l stands for
passengers interarrivals rate; m stands for bus
interarrival rate; #c stands for maximum capacity of bus;
s stands for repeat times.

p1=c(0.1,0.4,0.3,0.05,0.05,0.05,0.05) # p1[i] stands for p(
a bus can serve i passengers).

p=p1[1] # p[i] stands for p(a bus can
serve less than i passengers)

p[1]=p1[1]
for(i in 2:c)
+ {p=c(p,sum(p1[1:i]))}
ez=matrix(0:0,s);

for(kk in 1:s)
{
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x=c(N)
for (i in 1:t)
{d=length(x); e=runif(1); f=runif(1);

for (j in 1:c)
{
if (f<p[j])
{k=j-1;break} #k stands for number of passengers

served in each steps
}
a=l/(l+m);n=(e<a)*(x[d]+1)+(e>a)*max(0,x[d]-k);x=c(x,n)
}
g=max(x[1:t]) #g stands for maximum of queue length during

simulation
yy=table(factor(x, levels = 0:g))
y<-as.matrix(yy,header=FALSE)
z1=matrix(0:0,g+1)
for(i in 1:(g+1))
{z1[i]=y[i]/sum(y[1:(g+1)])}

zz=matrix(0:0,g) #zz=i*P(L=i)
for(i in 1:g)
{zz[i]=(i-1)*z1[i]}

ez[kk]=sum(zz[1:g]) #ez=sum(i*P(L=i))
}

z1 #z1 stands for the limiting probability at each states
ez #ez stands for expected queue length in system

#Program II:Limiting probability of M/MˆY/1 system by
truncation (theoretical way)

library(’expm’)
l=0.5; m=.5 ;t=2; c=7;r=30;# l stands for passengers arrival

rate; m stands for bus arrival rate;
#c stands for maximum capacity of bus +1;
#b stands for the queue length at the beginning;r stands for

the upper bounded of state
p1=c(0:0,100)
q=c(0:0,100)
co=c(0:0,100)
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p1=c(0.1,0.4,0.3,0.05,0.05,0.05,0.05) # p1[i] stands for P(L
=i-1),IF CHANGE P1, NEED TO CHANGE c

p1[(c+1):100]=c(0:0)
rho=m/l

ct=c(0:0,r) #ct stands for b as in Ax=b

for(i in 1:r)
{if (i!=r)
{ ct[i]=0}else
{ct[i]=1}
}

ep=sum((0:(c-1))*p1[1:c]) #ep stands for expected numbers of
passengers being served each time

for(i in 1:(c+1))

{q[i]=sum(p1[1:i])}

q[(c+2):100]=1 #q[i] stands for p1+p2+p3+...p(i-1)

for(i in 1:(c+2))

{if(i==1)
{co[i]=1}else

{ co[i]=-rho*(1-q[i-1])}

}

co[(c+3):100]=0

Pi=matrix(c(0:0),r,r);

for (i in 1:(r))
{for (j in 1:(r))
{
if(i==r)
{Pi[i,j]=1}else
if(j<i)
{Pi[i,j]=0}else if (j-i<(c+2))
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{Pi[i,j]=co[j-i+1]}else
{Pi[i,j]=0}

}
}

pi=solve(Pi,ct)
pi #pi stands for the limiting probability of the system

eq=0
for (i in 1:r)
{eq=eq+(i-1)*pi[i]}
eq #eq stands for expected queue length in system

#Program III: Comparison of two strategies based on the same
parameters

library(’expm’)
library(’lattice’)
l=0.5; m=.5 ;t=3; c=7;r=30;# l stands for passengers arrival

rate; m stands for bus arrival rate; t stands for the
time a bus takes from A to B

#c stands for maximum capacity of bus +1;b stands for the
queue length at the beginning;r stands for the rank of
the matrix

pb=c(0:0,100)
qb=c(0:0,100)
co=c(0:0,100)
pb=c(0,0.4,0.4,0.05,0.05,0.05,0.05) # p1[i] stands for P(L=i

-1),IF CHANGE P1, NEED TO CHANGE c
pb[(c+1):100]=c(0:0)
rho=m/l

ct=c(0:0,r) #ct stands for b as in Ax=b

for(i in 1:r)
{if (i!=r)
{ ct[i]=0}else
{ct[i]=1}
}
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ep=sum((0:(c-1))*pb[1:c]) #ep stands for expected numbers of
passengers being served each time at B

for(i in 1:(c+1))

{qb[i]=sum(pb[1:i])}

qb[(c+2):100]=1 #q[i] stands for p1+p2+p3+...p(i
-1)

for(i in 1:(c+2))

{if(i==1)
{co[i]=1}else

{ co[i]=-rho*(1-qb[i-1])}

}

co[(c+3):100]=0

Pi=matrix(c(0:0),r,r);

for (i in 1:(r))
{for (j in 1:(r))
{
if(i==r)
{Pi[i,j]=1}else
if(j<i)
{Pi[i,j]=0}else if (j-i<(c+2))
{Pi[i,j]=co[j-i+1]}else
{Pi[i,j]=0}

}
}

pi=solve(Pi,ct)
pi #pi stands for limiting probability
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ep=sum((0:(c-1))*pa[1:c]) #ep stands for expected numbers of
passengers being served each time at A

etm=matrix(0:0,r)
etb=0
et=0

for(k in 0:(r-1))
{b=k; x=c(b+1)
;et=0;

PS=matrix(c(0:0),b+2,b+2);
# P stands for the transition matrix
for (i in 1:(b+2))
{for (j in 1:(b+2))
{if(j>i)
{PS[i,j]=0}else if (j<i&&i-j>c-1)
{PS[i,j]=0}else
{PS[i,j]=pb[i-j+1]}

}
}

for(i in 1:(c+1))

{qb[i]=sum(pb[1:i])}

qb[(c+2):100]=1

for (i in 1:100)
{
aa=0
ab=0
ac=0
for(j in 0:b)
{

ab=ab+((PS%ˆ%(i-1))[(j+1),1])*qb[b-j+1]
ac=ac+((PS%ˆ%(i))[(j+1),1])
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aa=aa+((PS%ˆ%(i-1))[(j+1),1])
}

et=et+i*(aa-ab)

}
et=et*1/m

etm[k]=et
etb=etb+et*pi[k+1]

}

etb #etb stands for expected waiting time at station B

ETB=etb+2*t+1/m

ETB #ETB stands for time spend in Plan B

b=10; # l stands for passengers arrival rate; m stands for
bus arrival rate;

#c stands for maximum capacity of bus +1;b stands for the
queue length at the beginning

pa=c(0:0,100)
qa=c(0:0,100)
pa=c(0.1,0.4,0.3,0.05,0.05,0.05,0.05) # p1[i] stands for P(L

=i-1),IF CHANGE P1, NEED TO CHANGE c
pa[(c+1):100]=c(0:0)

n=x[1]
ep=sum((0:(c-1))*pa[1:c]) #ep stands for expected numbers of

passengers being served each time

eta=matrix(0:0,30)

for(k in 0:30)
{b=k;
P=matrix(c(0:0),b+2,b+2);
PS=matrix(c(0:0),b+2,b+2);
for (i in 1:(b+2))
{for (j in 1:(b+2))
{if(j>i)
{P[i,j]=0}else if (j<i&&i-j>c-1)
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{P[i,j]=0}else if (j==1&&i-j<c)
{P[i,j]=sum(pa[i:c])}else
{P[i,j]=pa[i-j+1]}

}
}
# P stands for the transition matrix
for (i in 1:(b+2))
{for (j in 1:(b+2))
{if(j>i)
{PS[i,j]=0}else if (j<i&&i-j>c-1)
{PS[i,j]=0}else
{PS[i,j]=pa[i-j+1]}

}
}

ea=0

for(i in 1:(c+1))

{qa[i]=sum(pa[1:i])}

qa[(c+2):100]=1

for (i in 1:100)
{
aa=0
ab=0
ac=0
for(j in 0:b)
{

ab=ab+((PS%ˆ%(i-1))[(j+1),1])*qa[b-j+1]
ac=ac+((PS%ˆ%(i))[(j+1),1])
aa=aa+((PS%ˆ%(i-1))[(j+1),1])
}

ea=ea+i*(aa-ab)

}
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ea=1/m*ea
eta[k+1]=ea #ea stands for E(T_A)
}

ETA=ea

X=matrix(0:0,31)
for (i in 1:31)
{X[i]=i-1;}
Y=matrix(0:0,31)
for(i in 1:31)
{Y[i]=eta[i]}
Z=matrix(0:0,31)
for(i in 1:31)
{Z[i]=ETB}
plot(Y˜X,xlab="Passengers at station A at the beginning",

ylab="Expected time to get on a bus",
type="o",lty=2,pch=4,col=4)
lines(Z˜X,type="o",lty=5,pch=0,col=6)
legend("topleft",legend=expression("Strategy A","Strategy B"

),col=c(4,6),lty=c(2,5),pch=c(4,0),cex=0.5)

#Program IV: 3D Graph of Expected time spend using Strategy
with both mu and lambda

library(’expm’)
library(’lattice’)
library(’plot3D’)
library("emdbook")
library(’shape’)
library(’rgl’)
library(’plotly’)
lambda=0.5; mu=.5 ;t=3; c=7;r=31;# lambda stands for

passengers arrival rate; mu stands for bus arrival rate;
t stands for the time a bus takes from A to B

#c stands for maximum capacity of bus +1;b stands for the
queue length at the beginning;r stands for the rank of
the matrix

pb=c(0:0,100)
qb=c(0:0,100)
co=c(0:0,100)
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pb=c(0.1,0.4,0.3,0.05,0.05,0.05,0.05) # p1[i] stands for P(L
=i-1),IF CHANGE P1, NEED TO CHANGE c

pb[(c+1):100]=c(0:0)
Ep=sum(c(0:(c-1))*pb[1:c])
Etbk=matrix(0:0,20,20)
etb=matrix(0:0,100)

for(k in 1:20)
{
mu=0.45+0.05*k;
for(l in 1:20)
{lambda=0.2+0.04*l

rho=mu/lambda

ct=c(0:0,r) #ct stands for b as in Ax=b

for(i in 1:r)
{if (i!=r)
{ ct[i]=0}else
{ct[i]=1}
}

for(i in 1:(c+1))

{qb[i]=sum(pb[1:i])}

qb[(c+2):100]=1 #q[i] stands for p1+p2+p3+...p(i
-1)

for(i in 1:(c+2))

{if(i==1)
{co[i]=1}else

{ co[i]=-rho*(1-qb[i-1])}

}

co[(c+3):100]=0
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Pi=matrix(c(0:0),r,r);

for (i in 1:(r))
{for (j in 1:(r))
{
if(i==r)
{Pi[i,j]=1}else
if(j<i)
{Pi[i,j]=0}else if (j-i<(c+2))
{Pi[i,j]=co[j-i+1]}else
{Pi[i,j]=0}

}
}

pi=solve(Pi,ct)

etb=matrix((1/mu):(1/mu),31)

for(i in 0:30)
{if(i==0)
{etb[i+1]=1/(mu*(1-pb[1]))}else
{etb[i+1]=(1/mu+sum(pb[2:(i+1)]*etb[i:1]))/(1-pb[1])

}

}

Etbk[k,l]=1/mu+2*t+sum(pi[1:31]*etb[1:31])

} #lambda

} #mu

i=1:20
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j=1:20
x<-0.45+i*0.05
y<-0.2+j*0.04
z<-Etbk[i,j] #z stands for E(T_B|mu,lambda)

f <- list(
family = "Courier New, monospace",
size = 14
)
g <- list(
family = "Courier New, monospace",
size = 18

)

require(latex2exp)

p<-plot_ly(x = x, y = y, z = z, type = "surface")%>%
layout(
title = "Comparison of Expected Time Of Plan B With mu And

lambda",titlefont=g,
scene = list(
xaxis = list(title = "Bus Arrival Rate",titlefont=f),
yaxis = list(title = "Passengers Arrival Rate",titlefont=f),
zaxis = list(title = "Expected Time Spend",titlefont=f)
))
p

#Program V: Graph of Expected time spent using strategy A
with different groups of p_i

library(’expm’)
library(’lattice’)
library(’ggplot2’)
l=0.5; m=.5 ;t=3; c=7;r=30;# l stands for passengers arrival

rate; m stands for bus arrival rate; t stands for the
time a bus takes from A to B

#c stands for maximum capacity of bus +1;b stands for the
queue length at the beginning;r stands for the rank of
the matrix

69



b=10; # l stands for passengers arrival rate; m stands for
bus arrvial rate;

#c stands for maximum capacity of bus +1;b stands for the
queue length at the begining

pa=c(0:0,100)
qa1=c(0:0,100)
pa1=c(0,0,0,0,0,0.8,0.2) # Group 1 p_i
pa1[(c+1):100]=c(0:0)

n=x[1]
ep1=sum((0:(c-1))*pa1[1:c]) #ep stands for expected numbers

of passengers being served each time

eta1=matrix((1/m):(1/m),31)

for(i in 0:30)
{if(i==0)
{eta1[i+1]=1/(m*(1-pa1[1]))}else
{eta1[i+1]=(1/m+sum(pa1[2:(i+1)]*eta1[i:1]))/(1-pa1[1])

}

}

#
---------------------------------------------------------------

pa=c(0:0,100)
qa2=c(0:0,100)
pa2=c(0,0,0,0,0,0,1.0) # Group 2 p_i
pa2[(c+1):100]=c(0:0)

n=x[1]
ep2=sum((0:(c-1))*pa2[1:c]) #ep stands for expected numbers

of passengers being served each time

eta2=matrix((1/m):(1/m),31)
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for(i in 0:30)
{if(i==0)
{eta2[i+1]=1/(m*(1-pa2[1]))}else
{eta2[i+1]=(1/m+sum(pa2[2:(i+1)]*eta2[i:1]))/(1-pa2[1])

}

}

#
-------------------------------------------------------------------

pa=c(0:0,100)
qa3=c(0:0,100)
pa3=c(0,0,0,0,1/3,1/3,1/3) # Group 3 p_i
pa3[(c+1):100]=c(0:0)

n=x[1]
ep3=sum((0:(c-1))*pa3[1:c]) #ep stands for expected numbers

of passengers being served each time

eta3=matrix((1/m):(1/m),31)

for(i in 0:30)
{if(i==0)
{eta3[i+1]=1/(m*(1-pa3[1]))}else
{eta3[i+1]=(1/m+sum(pa3[2:(i+1)]*eta3[i:1]))/(1-pa3[1])

}

}

X=matrix(0:0,31)
for (i in 1:31)
{X[i]=i-1;}
Y=matrix(0:0,31)
for(i in 1:31)
{Y[i]=eta1[i]}
Z=matrix(0:0,31)

71



for(i in 1:31)
{Z[i]=eta2[i]}
U=matrix(0:0,31)
for(i in 1:31)
{U[i]=eta3[i]}

plot(Y˜X,xlab="Passengers in station A at the beginning",
ylab="Expected time to get on a bus using strategy A",
type="o",lwd=1,lty=2,col=2,pch=2)

lines(Z˜X,lwd=1,type="o",lty=1,col=3,pch=1)
lines(U˜X,lwd=1,type="o",lty=3,col=4,pch=0)
legend("bottomright",legend = c(expression("Group1"),
expression(paste("Group2")),
expression(paste("Group3"))),col=c(2,3,4),lty=c(2,1,3),pch=c

(2,1,0),lwd=1,cex=0.6)

#Program VI: Graph of Limiting probability with different
lambda values

library(’expm’)
library(’lattice’)
l=0.8; m=.5 ;t=3; c=7;r=30;# l stands for passengers arrival

rate; m stands for bus arrival rate; t stands for the
time a bus takes from A to B

#c stands for maximum capacity of bus +1;b stands for the
queue length at the beginning;r stands for the rank of
the matrix

pb=c(0:0,100)
qb=c(0:0,100)
co=c(0:0,100)
pb=c(0.1,0.3,0.4,0.05,0.05,0.05,0.05) # p1[i] stands for P(L

=i-1),IF CHANGE P1, NEED TO CHANGE c
pb[(c+1):100]=c(0:0)
rho=m/l

ct=c(0:0,r) #ct stands for b as in Ax=b

for(i in 1:r)
{if (i!=r)
{ ct[i]=0}else
{ct[i]=1}
}
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ep=sum((0:(c-1))*pb[1:c]) #ep stands for expected numbers of
passengers being served each time at B

for(i in 1:(c+1))

{qb[i]=sum(pb[1:i])}

qb[(c+2):100]=1 #q[i] stands for p1+p2+p3+...p(i
-1)

for(i in 1:(c+2))

{if(i==1)
{co[i]=1}else

{ co[i]=-rho*(1-qb[i-1])}

}

co[(c+3):100]=0

Pi=matrix(c(0:0),r,r);

for (i in 1:(r))
{for (j in 1:(r))
{
if(i==r)
{Pi[i,j]=1}else
if(j<i)
{Pi[i,j]=0}else if (j-i<(c+2))
{Pi[i,j]=co[j-i+1]}else
{Pi[i,j]=0}

}
}

pi=solve(Pi,ct)
pi #pi stands for limiting probability

#Second curve
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l=0.6
pb=c(0:0,100)
qb=c(0:0,100)
co=c(0:0,100)
pb=c(0.1,0.3,0.4,0.05,0.05,0.05,0.05) # p1[i] stands for P(L

=i-1),IF CHANGE P1, NEED TO CHANGE c
pb[(c+1):100]=c(0:0)
rho=m/l

ct=c(0:0,r) #ct stands for b as in Ax=b

for(i in 1:r)
{if (i!=r)
{ ct[i]=0}else
{ct[i]=1}
}

ep=sum((0:(c-1))*pb[1:c]) #ep stands for expected numbers of
passengers being served each time at B

for(i in 1:(c+1))

{qb[i]=sum(pb[1:i])}

qb[(c+2):100]=1 #q[i] stands for p1+p2+p3+...p(i
-1)

for(i in 1:(c+2))

{if(i==1)
{co[i]=1}else

{ co[i]=-rho*(1-qb[i-1])}

}

co[(c+3):100]=0

Pj=matrix(c(0:0),r,r);

for (i in 1:(r))
{for (j in 1:(r))
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{
if(i==r)
{Pj[i,j]=1}else
if(j<i)
{Pj[i,j]=0}else if (j-i<(c+2))
{Pj[i,j]=co[j-i+1]}else
{Pj[i,j]=0}

}
}

pj=solve(Pj,ct)
pj

##Third Curve
l=0.4
pb=c(0:0,100)
qb=c(0:0,100)
co=c(0:0,100)
pb=c(0.1,0.3,0.4,0.05,0.05,0.05,0.05) # p1[i] stands for P(L

=i-1),IF CHANGE P1, NEED TO CHANGE c
pb[(c+1):100]=c(0:0)
rho=m/l

ct=c(0:0,r) #ct stands for b as in Ax=b

for(i in 1:r)
{if (i!=r)
{ ct[i]=0}else
{ct[i]=1}
}

ep=sum((0:(c-1))*pb[1:c]) #ep stands for expected numbers of
passengers being served each time at B

for(i in 1:(c+1))

{qb[i]=sum(pb[1:i])}

qb[(c+2):100]=1 #q[i] stands for p1+p2+p3+...p(i
-1)
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for(i in 1:(c+2))

{if(i==1)
{co[i]=1}else

{ co[i]=-rho*(1-qb[i-1])}

}

co[(c+3):100]=0

pk=matrix(0:0,31)
Pk=matrix(0:0,r,r);

for (i in 1:(r))
{for (j in 1:(r))
{
if(i==r)
{Pk[i,j]=1}else
if(j<i)
{Pk[i,j]=0}else if (j-i<(c+2))
{Pk[i,j]=co[j-i+1]}else
{Pk[i,j]=0}

}
}

pk=solve(Pk,ct)
pk

X=matrix(0:0,21)
for (i in 1:21)
{X[i]=i-1;}

plot(pk[1:21]˜X,xlab="states",ylab="limiting probability",
type="o",lty=2,col=2,pch=2,lwd=1.5)

lines(pj[1:21]˜X,lty=1,type="o",col=3,pch=1,lwd=1.5)
lines(pi[1:21]˜X,lty=4,type="o",col=4,pch=0,lwd=1.5)
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title(expression(paste("Limiting probability of M/MˆY/1
system base on different ",lambda)),cex.main=1.0)

legend("topright",legend = c(expression(paste(lambda, " = ",
0.4)),

expression(paste(lambda, " = ", 0.6)),
expression(paste(lambda, " = ", 0.8))),col=c(2,3,4),lty=c

(2,1,4),pch=c(2,1,0),lwd=1.5,cex=0.8)
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