
PARTITION THEORY (notes by M. Hlynka, University of Windsor)

Definition: A partition of a positive integer n is an expression of

n as a sum of positive integers. Partitions are considered the same

if the summands differ only by order. Let p(n) be the number of

partitions of n. By convention, take p(0) = 1.

Example:

5 = 5

= 4 + 1 = 3 + 2

= 3 + 1 + 1 = 2 + 2 + 1

= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1

Thus p(5) = 7.

Exercise 1: Show that p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5 by

listing all partitions for each n.

Exercise 2: Find p(8).

Notation: Let

p(n) = the number of partitions of n,

pm(n) = the number of partitions of n into at most m summands,

πm(n) = the number of partitions of n into summands of size at

most m,

po(n) = the number of partitions of n into odd summands

pe(n) = the number of partitions of n into even summands

q(n) = the number of partitions of n into distinct summands

qe(n) = the number of partitions of n into an even number of distinct
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summands

qo(n) = the number of partitions of n into an odd number of distinct

summands.

Property 1: πm(n) = πm−1(n) + πm(n − m) for n ≥ m > 1.

Proof. For each partition counted in pm−1(n), we can add 1 to get

a partition of n into parts of size less than m. Any other partition

of n counted in pm(n) must have m as one of its summands. Other

summands are ≤ m. So we can find the remaining partitions counted

in pm(n) by taking all partitions counted in pm(n) and adding the

summand m to them. The result follows.

Note: (a) πn(n) = p(n) since all partitions of n have summands at

most n.

(b) π1(n) = 1 since n = 1 + · · · + 1.

Thus we can use the Property P1 to recursively find p(n).

bf Example: Find p(7).

p(7) = π7(7) = π6(7) + π7(7 − 7) = π6(7) + 1 = π5(7) + π6(7 − 6) + 1

= π5(7) + π6(1) + 1 = π5(7) + 1 + 1 = π4(7) + π5(2) + 2

= π4(7) + 4 = π3(7) + π4(3) + 4 = π3(7) + 3 + 4

= π2(7) + π3(4) + 7 = π1(7) + π2(5) + π2(4) + π3(1) + 7

= 1 + π1(5) + π2(3) + π1(4) + π2(2) + 1 + 7

= 1 + 1 + 2 + 1 + 2 + 1 + 7 = 15

Exercise 3 Find p(8) using the recursive property.

Graphical Representation

A partition can be written with a graphical representation, known
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as a Ferrers graph, named after the British mathematician Norman

Macleod Ferrers. See

http://www.gap-system.org/∼history/Biographies/Ferrers.html

For example 3 + 2 can be written as

* *

* * *

As another example, the graphical representation

*

* * *

* * * *

represents the partition 4+3+1.

Conjugate Graph

The conjugate graph is obtained from a graph by writing the rows

as columns.

The conjugate graphs for the two previous graphs are

*

* * *

* * * *

* * and * * *

The two corresponding partitions are 2 + 2 + 1 and 3 + 2 + 2 + 1.

Self Conjugate Partitions

A partition is said to be self conjugate if its graph and the conjugate

of the its graph are the same.

Example The partition 4+3+3+1 is self conjugate because the

graph is
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* *

* * * * * *

* * * * * *

* * * * with conjugate * * * *

Property 2: The number of partitions of n into self conjugate parts

equals the number of partitions of n into distinct odd parts.

Proof. Every self conjugate partition maps to partition into distinct

odd parts by reading off the nested L shaped sections. Conversely,

any odd part can be folded into an L shape and by nesting these,

we get a self conjugate partition.

Example: The self conjugate partition 4+3+3+1 (of 10) has graph

*

* * *

* * *

* * * *

The partition 7+3+1 (of 11) into distinct odd parts can be converted

to L shapes and nested to give

x

x

x y z

x y y

x x x x x

The corresponding self conjugate part is 5+3+3+1+1.

Example

There are 3 partitions of 12 into distinct odd parts and 3 partitions
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of 12 into self conjugate parts. The correspondence is

11 + 1 ↔ 6 + 2 + 1 + 1 + 1 + 1

9 + 3 ↔ 5 + 3 + 2 + 1 + 1

7 + 5 ↔ 4 + 4 + 2 + 2

Exercise 4 Find all partitions of 13 into distinct odd parts and find

the corresponding self adjoint partition for each.

Exercise 5 Find all self conjugate partitions of 14. Find the corre-

sponding partition of each into distinct odd parts.

Property 3:

The number of partitions of n into at most m parts is the number of

partitions into parts whose largest part is at most m. i.e. pm(n) =

πm(n).

Proof: Exercise 6: Give a proof based on Ferrar’s Diagram.

Exercise 7:

The number of partitions of n into exactly k parts is the number of

partitions into parts such that .

Generating Functions for Partitions

The generating function

f1(x) = (1 + x + x1+1 + x1+1+1 + . . . ) = (1 + x + x2 + x3 + . . . )

gives the number of partitions of i into parts all of size 1 as the

coefficient of xi.

The generating function

f2(x) = (1 + x + x2 + x3 + . . . )(1 + x2 + x4 + x6 + . . . ) = 1 + x1 +

2x2 + 2x3 + 3x4 + . . . gives the number of partitions of i into parts

of size 1 or 2 as the coefficient of xi.
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The generating function

f3(x) = (1 + x + x2 + . . . )(1 + x2 + x4 + . . . )(1 + x3 + x6 + . . . ) . . .

= 1 + x1 + 2x2 + 3x3 + 5x4 + · · · =
∑

p(i)xi

gives the number of partitions of i as the coefficient of xi.

Exercise 8:

(a) What is the generating function for partitions into odd parts?

(b) What is the generating function for partitions into distinct parts?

(c) What is the generating function for partitions into odd parts

which can be repeated at most three times?

Note Issues of convergence will be ignored. The x terms afre

simply place holders. However, we can manipulate the series as if

they

Property 4:

The number of partitions of n into odd parts equals the number of

partitions of n into distinct parts. i.e. po(n) = q(n).

PROOF.

The generating function for partitions into odd parts is

g1(x) = (1 + x + x2 + . . . )(1 + x3 + x6 + . . . )(1 + x5 + x10 + . . . ) . . .
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The generating function for partitions into distinct parts is

g2(x) = (1 + x)(1 + x2)(1 + x3)(1 + x4) · · · =
n

∏

i=1

(1 + xi)

=
1 − x2

1 − x

1 − x4

1 − x2

1 − x6

1 − x3
. . .

=

∏∞

i=1
(1 − x2i)

∏∞

i=1
(1 − x2i)

∏∞

i=1
(1 − x2i−1)

=
1

∏

n

i=1
(1 − x2i−1)

= (1 + x + x2 + . . . )(1 + x3 + x6 + . . . )(1 + x5 + x10 + . . . ) . . .

The result follows. �

Exercise 9:

Use the method in the above property to show that every positive

integer can be expressed uniquely as a sum of powers of 2, with each

power appearing at most once (i.e. there is a unique representation

in base 2).

Exercise 10:

Use the method in the property to show that the number of parti-

tions into parts that appear at most twice is equal to the number of

partitions into parts not divisible by 3.

SOLUTION: Let f(x) be the generating function for parts that ap-

pear at most twice. Then f(x) = (1 + x + x2)(1 + x2 + x4) · · · . Let

g(x) be the generating function for parts that are not divisible by
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3. Then

g(x) = (1 + x + x2 + . . . )(1 + x2 + x4 + . . . )(1 + x4 + x8 + . . . )

(1 + x5 + x10 + . . . ) · · ·

Thus

g(x) = (1 + x + x2 + . . . )(1 + x2 + x4 + . . . )(1 + x4 + x8 + . . . ) · · ·

=

(

1

1 − x

) (

1

1 − x2

) (

1

1 − x4

) (

1

1 − x5

)

· · ·

=
1

∏

i6≡0 mod 3
(1 − xi)

=

∏

(1 − x3i)
∏

(1 − x3i)
∏

(1 − x3i+1)
∏

(1 − x3i+2)

=

∏

(1 − x3i)
∏

(1 − xi)
=

(

1 − x3

1 − x

) (

1 − x6

1 − x2

) (

1 − x9

1 − x3

)

· · ·

= (1 + x + x2)(1 + x2 + x4)(1 + x3 + x6) · · · = f(x)
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