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Abstract

In this paper we examine the conditions under which discrete-time homoge-
nous Markov transition matrices have probability roots. A method based
on geometric interpretation of 2 x 2 Markov matrices is used to find regions
within the unit square corresponding to probability matrices with zero, single

or multiple probability roots.
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Chapter 1

Literature Review

First, we revisit the definition of a discrete-time Markov chain. According to
Ross [10], a discrete-time Markov chain is a stochastic process { X,,,n = 0, 1, 2, ...
defined over discrete state space which satisfies the property: “given the
past states Xy, X1, ..., X,,_1 and the present state X,,, the conditional distri-
bution of X, is independent of the past states and depends only on the
present state.” This property is referred to as the Markov property and it
is also known as “memoryless” property of a Markov process. The value of
P(X,+1 = j|X, = i) is denoted as p;; which corresponds to the transition
probability of going from state ¢ to state j. Therefore, a Markov chain with

n states can be represented as a n X n matrix P

P11 P12 P13 --- Pin
p— p.21 p.zz p?3 ce p?n
_pnl Pn2 Pn3 .- pnn_

where p;; > 0 for all states 7, j and Z?Zl pi; = 1 for every row 7 = 0,1, ..., n.
Such a matrix is referred to as a Markov transition matrix, or a probability

matrix, or a stochastic matrix. These terms will be used interchangeably



throughout this paper.

Next, we consider the case where a discrete-time Markov chain is observed
on time intervals twice the duration of the original Markov chain stepsize.
This implies that there are Markov transition matrices whose square roots
are also transition matrices. Guerry [2012] defines a probability square root

A of a transition matrix P as a probability matrix which provides a Markov

1

5 that is also “compatible with P”. According to

chain with time unit
Guerry, whether or not a given matrix P can be represented as A% for some
probability matrix A is referred to as the embedding problem for discrete time
Markov chains. Embeddability is the focal point of this paper. Both algebraic
and geometric methods were employed previously to define conditions for
embeddability of Markov chains.

Brill and Hlynka [2002] were the first to look at a geometric interpreta-
tion for 2 x 2 Markov transition matrices. They obtained a geometric method
for finding powers and roots of transition matrices, and discussed the con-
vergence of powers of a transition matrix to a common limiting probability
matrix. Brill and Hlynka also included a geometric method of multiplying
2 x 2 transition matrices.

He and Gunn [2003] used the characteristic polynomial of a matrix to
explicitly find all real root matrices of 2 x 2 and 3 x 3 stochastic matrices,
and were the first to do this. Additionally, they included some numerical
methods for computing square root matrices.

Higham and Lin [2011] used the theory of matrix functions for their anal-
ysis. They provided some necessary conditions for existence of p'* stochastic
root of a stochastic matrix. Higham and Lin’s paper included a geomet-
ric representation of the sets of all possible eigenvalues of 3 x 3 and 4 x 4

stochastic matrices along with powers of these sets.



Guerry [2013] provided necessary and sufficient conditions for embed-
dability of discrete-time two-state Markov chains. Her approach was analytic
where she examined properties of row-normalized matrices. Guerry discussed
the conditions for uniqueness of square roots, the concept of approximate
probability roots and a method for identifying a context-sensitive root in the
case of nonuniqueness. In her paper from 2012, Guerry inspected the embed-
dability problem in discrete-time state-wise monotone Markov chains where
the point of interest was not only the existence of a square root but, further,
the conditions which accommodate the properties of the original probability
matrix to be reflected in its square root. Finally, in a more recent paper from
2017, Guerry extended her work to non-diagonalizable three-state transition
matrices and all configurations of the signs of eigenvalues of these matrices.
She stated the embedding conditions in terms of the projections and the
spectral decompositions of the transition matrices.

Hence, the geometric approach first used by Brill and Hlynka indeed has
no extensions in the literature which gives this paper the material to build

on without being repetitive of work done by other authors.



Chapter 2

Motivation and Formulation of the

Problem

Markov chain models have been commonly used in finance, management,
social research, healthcare, environmental forecasting, etc. as they are a
great mathematical modelling tool in the cases where the Markov property
(i.e. "memoryless” property) assumption is appropriate. We present a few
applications from the literature.

Guerry [2013] refers to a manpower planning model. The model includes
“Internal transitions (e.g. promotions), outgoing flows (i.e. wastage) as
well as incoming flows (i.e. recruitments).” Here, the transition probabili-
ties might be such that the expected number of members in each personnel
category can be computed annually. Oftentimes, there is an interest in the
number of members after half a year period which in mathematical terms
corresponds to a stochastic square root of the original stochastic matrix.

He and Gunn [2003] mention a stochastic model which describes the state
of weather conditions at an airport. The model is constructed in a way

that hourly measurements can be obtained. Given that the shorter time



periods such as half an hour or fifteen minutes are frequently of interest,
we seek to obtain two probability matrices which when raised to the second
and fourth powers respectively will result in the original probability matrix,
hence, raising an issue of embeddability.

Biritwun and Odoom [1995] use a Markov chain to model health of infants.
The diagnostic records were comprised of data collected monthly. Ultimately,
probabilities of state transitions for the fifteen day period were of interest
which corresponds to a square root of the original Markov transition matrix.

Malik and Thomas [2012] use Markov chain based modelling to analyze
credit risk of portfolios of consumer loans. The transition probabilities are
based on behavioural scores on a monthly basis. Although the authors do not
mention the possibility of embedding, it naturally arises in a setting where
different time periods are of interest.

Given the above, we can conclude that the discrete-time Markov chain
embedding problem is of high interest since it has many applications in var-
ious fields. This, therefore, is a substantial motivator for this paper.

Finally, we conclude this chapter with a formulation of the problem. We
are interested in employing the geometric method first derived by Brill and
Hlynka [2002] to establish conditions under which 2 x 2 Markov matrices

have multiple, single or zero probability roots.



Chapter 3

Geometric Approach

3.1 Powers and roots of Markov matrices

We begin by summarizing results from Brill and Hlynka [2002]. Let P = [p;]
be an irreducible aperiodic Markov transition matrix. Let @ be its limiting

probability vector which satisfies
m=mnP where ) .m,=1,0<m <1.

Define a 2 x 2 transition matrix as following

r 1—=x
P =

y 1-y
where 0 < z,y < 1.
We can represent P as a point [z, y] in the unit square. Next, set 7 = (a, 1—a).

Then, from 7 = 7P we get

a=ax+ (1 —a)y

l—a=a(l—2)+(1—a)(1—1y)



The set of equations has a straight line y = —7%-(z — 1) as the solution
which represents the collection of all transition matrices with the given limit-
ing vector (i.e. all positive integer powers of P) and it can be represented as
[a,a] inside the unit square. Recall that if  is a limiting probability vector

of a matrix P, then m = m P, which implies the following
TP"=gaP" = ... =gP=ngforalln>1.

Hence, all positive integer powers of P indeed have the same limiting prob-
ability vector.

According to Brill and Hlynka [2002], for any given matrix P i.e. a point
[z,y] within a unit square, we can instantly find its limiting vector which is
the intersection of the line through [z, y| and [1, 0] with the line through |a, a]
and the origin (i.e. y = z). Conversely, given a limiting vector (a,1 — a) i.e.
a point [a, a] within a unite square, we can instantly find the collection of all
matrices with such limiting vector which is the line through [1,0] and [a, a.

Below three lines are plotted corresponding to collections of matrices with

Ly L,

three different limiting vectors 7, = (3, 3), m, = (3,3) and w5 = (2,1
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Figure 3.1

Next, given a probability matrix P, we can compute P". We denote P"
as a point [x,,y,| within the unit square for all n > 1. The result of the
following theorem was included in Brill and Hlynka’s paper [2002] without
proof. Hence, we provide the proof here.

r 11—z
Theorem 3.1.1. Given a probability matrixz P = , the [1,1] entry

y 1—y
of P™ is

tn= iy + (- 2)(@ —y)")

Proof. We can employ the diagonalization method to find P". First, we find

eigenvalues of P. From the characteristic equation below



r— A 1—=x
det(P — \I) = det
Y 1l—y—A

=@-N1-y=2) -y -2
=2 - A —y+ Ay — A+ A
=z(1—=X)—y(l—=X)—=XA1-2X)
=(@—y—-AN1 =X
=0

we get A\ = 1 and Ay = x — y. Therefore, for some invertible matrix U, we

get
1 0
P=U"! U
0 z—vy
which implies that
" 0
pr=U-1 U
0 (z—y)

It follows that for some constants g and k we have

Note that since 2o = 1 and x; = x, we obtain a set of two equations with

two unknowns

g+ k=1
q+k(r—y) =2

which yields ¢ = 1_g_y and k = 1:fy. Therefore, we get

tn= =y + (1= 2)(@ —y)")



Note that y, can be found by interchanging y and (1 — x) in the above
equation. Alternatively, since the point [x,,y,] is on the line through [z, y]

and [1, 0], we can obtain y, by plugging z,, into the equation y, = -5 (z,—1).

1
l—z+y

For every n > 0, x,, = (y+ (1 —x)(z —y)") can be used to locate

P inside the unit square. For example, take

0.7 0.3
P=

0.2 08

so that [x,y] = [0.7,0.2]. Then, to obtain P?  we calculate

vy = 1oy (¥ + (1= 2)(x — y)?) and yo = 532 (w2 — 1) which results in
[0.55,0.3] or
0.55 0.45
p?=
0.3 0.7
Repeating the process one more time we obtain [x4, y4] = [0.4375,0.375] or

0.4375 0.5625
0.375  0.625

The obtained matrices are labeled on the graph below

10
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Figure 3.2

All three points lie on the same line and share the same limiting vector
which is indicated as the point of intersection of the two lines in the graph.
Note that we can rewrite x,, in terms of x and a, substituting
y = 7% (z — 1). Therefore, we get
T, = (r—a)"(1—a)'™ +a.
Brill and Hlynka denote this function as f,(z). Add the curve
folx) =(r—a)* (1 —a) ' +a

which is a parabola, to the graph and see the step by step geometric approach
to finding P? and P*.

11
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Notice that the vertex of the parabola is exactly the intersection of the
line through [1, 0] and [z, y] with the line y = x which represents the limiting
vector inside the unit square.

We can use a similar method to find a square root of P. According to
Brill and Hlynka, to find P2 we use the same geometric method but go in

the opposite direction. Notice that we obtain two square roots and not one.

10
10

06
0.6

o p? o p?

° 0.0 0‘2 0‘4 0‘6 0‘9 10 ° 0.0 0‘2 0‘4 0‘6 O‘B 1.0
X X

(a) sloped line to diagonal (b) diagonal to curve
P
> 7 > A
~ P2 / o P2 N/
P P

° 0.0 0‘2 0‘4 O‘S U‘B 10 ° 0.0 0‘2 0‘4 D‘E O‘S 10
X X

(¢) curve to sloped line, first root (d) curve to sloped line, second root

Figure 3.4
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Further, observe that if P? was further down the sloped line, we would
be able to obtain only a single probability square root. On the other hand, if
P? was located up the sloped line, we would not have any probability square

roots.

0.8

0.6
I

0.4
I

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

(a) Single stochastic square root (the second

square root is outside the unit square.)

1.0

0.0 0.2 0.4 0.6 0.8 1.0

(b) No stochastic square roots.

Figure 3.5
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We conclude this section by presenting an alternative geometric method
for finding probability square roots for Markov transition matrices. Recall

the function
fo(z) = (z —a)"(1 —a)'™ +a.

where 0 < a < 1. Then, for n = % we have

fi(@) = £z — a)(1 - a)]} +a.

The curve fi (x) can also be used to locate probability square roots within
the unit square. First, observe the function f 1 (x) for different values of a,

O<a<l.

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.6

Next, given [x,y] within the unit square, we use the curve f%(x) to find

15



probability square roots [a:%,y%] and [z,,91] (assuming both lie within the
2 2

unit square).
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(c) curve to diagonal (d) diagonal to sloped line
Figure 3.7

Note that the same conclusion about the existence of probability square

16



roots can be drawn: if P was further down the sloped line, we would be
able to obtain only a single probability square root. Alternatively, if P was
located up the sloped line, there would not be any probability square roots.
This leads to the question: what are the conditions for a stochastic matrix

to have zero, one and two probability square roots?

3.2 Stochastic roots: Regions within the unit square

Now our goal is to find regions within the unit square which will represent the
collections of stochastic matrices with zero, one and two stochastic square
roots respectively. As was briefly mentioned in the preceding section, we are
aware that the location of P within the unit square determines the number
of stochastic square roots that it has. Specifically, we are concerned with
how far up or down the sloped line point [z, y] is located.

First, graph parabolas for different values of a to observe their behaviour.

Recall that fo(z) = (z — a)*(1 —a)™! + a.

1.0

0.8

0.6
I

0.4
I

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.8: Parabolas for a = 0,6 =0.2,a = 0.4,a = 0.6,a = 0.8
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From the graph above we see that parabolas with a < % and parabolas

with a > % behave differently in terms of where they intersect the boundaries

of the unit square: for a < %, they intersect x = 0 and for a > %, they
intersect y = 1. Therefore, in this section cases for a < % and a > % will be
considered separately.

We start with the case a < % In this case, each parabola intersects y = 0
at a point [0, 1*-] where [a, a] represents the limiting vector for the collection

of matrices on the sloped line.

1.0

0.8

0.6

0.4

0.2
1

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.9: Sloped lines (collections of probability matrices) with their cor-

responding parabolas

Next, we observe that if P projects onto the diagonal below the parabola’s
vertex, then P has zero square roots. This occurs for every matrix P (point
[, y] within the unit square) on the top right hand side of the diagonal within
the unit square. Next, if P projects onto the diagonal above the point where

the parabola intersects x = 0, then P has exactly one probability square

18



root. And lastly, if P projects onto the diagonal between the vertex and the
point where parabola intersects x = 0, then P has two probability square
roots. Hence, the height from the point of intersection to the vertex of the
parabola determines the segment on the sloped line which corresponds to the

collection of probability matrices with two probability square roots.

1.0

0.8

0.6
1

0.4

0.2
1

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.10: Height from the point of intersection of a parabola with y = 0

to the vertex.

In other words, we are looking at the segment of the sloped line which
projects onto the diagonal within that height. Projections below and above
result in a segments representing the collections of matrices with zero and

one probability square roots respectively.
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Figure 3.11: Process of finding the segment on the sloped line which cor-

responds to a collection of probability matrices with two probability square

roots

We can repeat this procedure for multiple parabolas with a from 0 to %
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Figure 3.12

The bold segments in the graph indicate the region within the unit square
representing the collection of probability matrices with two probability square
roots. As was indicated previously, the region on the left hand side of the di-
agonal represents the collection of probability matrices with zero probability
square roots. Next, the region below the bold segments represents the collec-
tion of probability matrices with a unique probability square root. Finally,
the triangular region on the right hand side requires further investigation for
the case where % <a<l.

Note that the sloped line y = :*-(1 — z) intersects the vertical line
r = % in 3.11(d) so that (z,y) satisfies y = x(1—x) on the boundary of zero
roots. Hence, the boundary curve is an upside-down parabola which passes

through points [0, 0], [1,0] and [0.5,0.25] and has the following equation
y=—2>+1x.
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Now, consider the case where % < a < 1. In this case parabolas intersect

the line y = 1.
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Figure 3.13

Since to obtain a square root we are projecting from the curve onto the
diagonal, it is easy to notice that the tails of the parabolas will project onto
the diagonal outside the unit square resulting in one non-stochastic square
root. Further, as mentioned before, any matrix represented as a point on the

upper left hand side of the diagonal has no square roots.
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(a) Single stochastic square root (the second

square root is outside the unit square.)
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Figure 3.14
Hence, we are interested in finding the segment on the sloped line which

projects onto the tails of the parabola within the boundaries of the unit

square resulting in two probability square roots.
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We repeat this procedure for multiple parabolas with a from % to 1.
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Figure 3.16

The bold segments in the graph illustrate the region within the unit square
which represents the collection of probability matrices with two probability
square roots. The boundary curve for % < a < 1 is identical to the one for
a < % but reflected against y = 1 — x. It is a parabola passing through the
points [1,0], [1,1] and [0.75,0.5] i.e.

r=9y*—y+1

Note that the symmetry of the boundary curves occurs due to the fact that
the states in a two-state Markov chain are interchangeable i.e. relabeling

state 1 into state 2 does not have any affect on the analysis.
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Therefore, we have obtained the regions within the unit square corre-
sponding to the collections of probability matrices with zero, one and two
probability square roots respectively. The regions are illustrated in the graph

below.
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0.4
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0.0

Figure 3.17: 0, 1 and 2 indicate the number of probability square roots in

the region

In case of nonuniqueness of probability square roots, we are faced with a
few questions: which probability square root should we select and why one
root could be preferred over another? According to Guerry [2013], nonuique-
ness of /P corresponds to the case where “the observations are consistent
with more than one discrete-time Markov chain with time unit 0.5” [4].
Hence, according to Guerry [2013], we can select a more appropriate prob-
ability square root examining the following criterion: which root results in

monotonic evolutions of the expected outcome? Therefore, the root that
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produces more logical fluctuations of the expected outcome in a half-time
period will be given the preference. In our geometric analysis, the selection
of a more appropriate probability square root is visually intuitive since the
root that occurs in the lower right diagonal and is in closer proximity to P

within the unit square is obviously preferred.
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Figure 3.18: v/ P’ is the preferred probability square root.

To conclude this section, we briefly compare the regions within the unit
square corresponding to the collections of probability matrices with zero,
one and two probability roots when n = 2 and n = 4 (i.e. probability square
roots and probability forth roots). Note that when n = 4, the function f,(n)

has the following form
fi(z) = (z —a)*(1 —a) 3 +a.

We plot fy(z) for different values of a (0 < a < 1) and compare the results

to fo(z):
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Figure 3.19

From the plots above we observe that the curves are similar; however,

fa(z) is wider near the vertex compared to a parabola. Hence, we can antic-
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ipate that the region containing the collection of probability matrices with
two probability forth roots will be more narrow compared to the correspond-
ing region with two probability square roots. Applying the same techniques
for finding boundaries within the unit square, our assumption is confirmed

and we can see the comparison of the boundaries below:

1.0

o
: Q%%%w‘

0.4 0.6
1
AN
AN
N
nNo \

0.2
.
£
;

00 02 04 06 08 10

Figure 3.20: 0, 1 and 2 indicate the number of probability square/forth roots

in the region. The shaded region corresponds to the case when n = 4.

The parametric equations of the bottom boundary and the right-hand

side boundary of the shaded region are
4
_45
Y= ﬁ +1

and
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T = —(t;})5 +1

_ (=154t
I (R

respectively, which are symmetric about the line y = 1 — .

3.3 Comparing geometric and numeric results

So far we have focused on the geometric interpretation of finding probability
square roots. In this section we aim to compare our results obtained with
geometric approach to the results of other authors who used analytic and/or
numeric methods.

We start with Guerry [2013] where she discusses the embedding problem
for discrete-time Markov chains. Guerry defines a 2 x 2 probability matrix

P as

c 1—c¢
P = :
d 1—d
Then, according to Guerry, a probability matrix A is a stochastic square root

of P if and only if

a%l + (1 — au)agl =C

ajrasy + (1 —agy)as =d
where
11 Q12

A=

Q21 Q22

This results in a quadratic equation in aq;

(1—c+d)a?; —2da;, + —c+d=0

30



with the discriminant D = 4(1 — ¢)*(c — d). Then, according to Guerry, we
consider three cases.

First, if ¢ < d, no stochastic square roots exist for P. This is mirrored in
our geometric approach as the case when the matrix P lies in the left upper
diagonal of the unit square and, hence, has no probability square roots.

Next, if ¢ = d, then P has exactly one stochastic square root A = [a;]
where a;; = ag; = ¢ = d. The preceding is equivalent to the case when the
matrix P lies on the diagonal of the unit square and, therefore, has exactly
one probability square root.

Finally, if ¢ > d and 1 — ¢+ d # 0, then the above quadratic equation in

aq; has the following solutions

_ Ve—d(1—c)+d 1 Ve—d(e—1)+d
an = g and @y = Ty
>
Substituting both into as; = —AL we get
1—a11
1—vc—d 1++vc—d

as =d and ay; =d

T—ctd l—ctd
Note that ay; and ag; always belong to [0,1]. Hence, we have at least one
stochastic root A of P. When a/; and a), also belong to [0, 1], two probability
roots exist. This case is equivalent to the instance when P lies in the lower
right diagonal of the unit square and there exists at least one probability
square root. The second probability square root exists in the region of the
unit square bounded by the curves y = —2?> + 2z, x =y* —y+ 1 and y = .
Next, we present He and Gunn [2003] results. They defined the stochastic

root problem as following: given a m x m matrix A such that Ae = e, find

a matrix B that satisfies
A = B", where B # (0 and Be =e¢

for a positive integer n > 1. The explicit solutions to the above problem (all

stochastic root matrices) were found for the 2 x 2 case where
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ailr aig bi1 bio

A= and B =

a21 G99 b21 b22
According to He and Gunn, if a;; + ass < 2, A has exactly one stochastic

square root defined as following:

1— 1— v/ -1
b1 = ta (2 ) 0z ybig =1 —byy;
— a1 — Q22
1— 1-— v/ —1
by — apy + ( ag2)v/a11 + ag by = 1 — by,
2 —an — ax

Further, if a;; + a9 < 2 and min{\/:q:z;, \/:Vtsz} >Tr(A)—12>0, then A

has another stochastic square root

1— —(1— v/ —1
by — 22 ( Gn) a1 + Qog by =1— by
2 —aj — ax
1— —(1— v/ —1
by — ap — ( aga)v/ a1 + as gy = 1 — b,
2 —an — ax

He and Gunn claimed that for the 3 x 3 case all solutions cannot be
found explicitly. Alternatively, they focused on all real root matrices that

are functions of the original stochastic matrix A i.e.

for some complex numbers dy, dy, ... (see Lancaster and Tismenetsky [1985]).
According to He and Gunn, when m = 2, all stochastic roots are functions of
A (unless A = I), whereas, when m = 3, there are infinitely many stochastic
roots that are not functions of A (non-function roots).

Consider the following example provided by He and Gunn:

11 1
3 3 3
A=1]1 11
3 3 3
11 1
3 3 3
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0o 0 O

Ble)=A4+¢|—-2 1 1

2 -1 -1
It is easily confirmed that (B(€))” = A for any n > 1 and B(e)e = e for
all small enough €, where e is a vector of 1’s. Hence, we can define a set

B. = {B(e), || < 0.1} which is an infinite set of non function stochastic nth

roots of a stochastic matrix A for any n > 1.

3.4 Eigenvalues and trace of a stochastic matrix

We begin by proving two theorems which illustrate some properties of eigen-
values of a stochastic matrix. Although in this paper we are mostly dealing
with 2 x 2 stochastic matrices, both theorems are proved for a general case

of an n X n matrix.

Theorem 3.4.1. One of the eigenvalues of a stochastic matriz is always

equal to 1.

Proof. Given a n x n stochastic matrix P = [p;], we have } 7, p;; = 1 for

all i = 1,2,....,n. This is equivalent to Pv = 1lv where v = [1,1,...,1]7 is a

column vector of length n. Hence, 1 is always an eigenvalue of a stochastic

matrix. [
Theorem 3.4.2. For every eigenvalue \ of a stochastic matriz, |A| < 1.

Proof. Given a n x n stochastic matrix P = [p;;], let A be one of the eigen-

values of P and let v be its corresponding eigenvector. Then,
Av = .

Next, select k,1 < k < n, such that |vg| > |v;| for every i = 1,2, ...,n. Then,

extract the k™ row of the equation Av = \v to get
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" =\
2]‘:1 DkjVj = AUk.

Taking absolute value of both sides and using the triangle inequality, we get

| D51 Prgvs| < D0 pglvl < 300 prgloe] < vk

Therefore,

| 221 g | = [Avg| = [Al|vg| < [og]

Hence, we can conclude that [A| < 1. O

Now, recall the equation for diagonalization of matrix P

pP=U" U
0 A

which is valid for any 2 x 2 probability matrix P.
Guerry [2013] provided a brief proof of the following lemma:

Lemma 3.4.1. Fach 2 X 2 probability matriz is diagonalizable.

rz 11—z
Proof. Given a 2 X 2 matrix P = , the characteristic equation is

y 1—y
a quadratic equation in A:

N-—(l+zxz—yrA+z—y=0
with the discriminant D = (14+x —y)? —4(z —y) = (1 —xz+y)* > 0.
When D > 0, P has two distinct eigenvalues Ay = 1 and Ay # 1. Hence,
10

P=U"! U.
0 Ao

When D = 0, we have: x —y = 1. This is possible for a unique case

where
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10

P =
0 1
which is diagonalizable.
Therefore, the proof is complete. O
Now, for P" we have
AT 0
pr =yt U.
0 A}
Taking n = % and A\ =1, we get
+1 0
VP=U"1 U.

0 =V

Therefore, if Ay < 0, P does not have a real-valued probability square root.
Recall that the trace of a matrix is the sum of its entries on the main

diagonal. Hence, for a 2 x 2 probability matrix P we obtain
tr(P)=x+(1—y)=1+(x—y) =M+ X
Theorem 3.4.2 implies that for any 2 x 2 probability matrix P we have
0<tr(P)<2
Further we have
M<0 <= 1-y<0 <<= l+r—-y<1l < tr(P)<1

Hence, we can conclude that if ¢r(P) < 1, then P does not have a real-valued
probability square root.

Simulating traces of 2 x 2 probability matrices over 10 million iterations
gives us the following plot which confirms that 0 < ¢r(P) < 2 and implies
that Eftr(P)] = 1.
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Figure 3.21: Density function of the trace for 2 x 2 probability matrices

Next we prove that E[tr(P)] = 1 for any n x n probability matrix P.

Theorem 3.4.3. Given uniformly distributed random variables X1, Xs, ..., X,

we have
X3 _
E[X1+X2+...+Xn] - %
Proof.
B E[Xl + Xo+ ...+ Xn]
Xi+Xo+...+ X,
X X Xn
= E] ! + 2 o+ ]
Xi+Xo+..+X, Xi+Xo+..+X, Xi+Xo+...+ X,
X1
[Xl +Xo+ ...+ Xn]
Hence,

BlerX]=1

X1+Xo+..+Xn
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It follows from the theorem above, that for any n x n row-normalized

matrix P = [p;;] derived by normalizing a matrix A = [a;;], we have

Eltr(P)] = E[pi1 + p22 + ... + Dyl

a a a
—F 11 + 22 + o+ nn

a11 + a2 + ... +ain Q21 + a2 + ... +azy, Ap1 + ap2 + ... + apn

a1
=nk| ]
a1 t+az+ ...+ ay,

1
= NnN—

n
=1

Below observe distribution functions for traces of (a)5 x 5 and ()10 x 10

Markov matrices
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As mentioned previously tr(P) > 1 is a necessary and sufficient condition
for a 2 x 2 probability matrix P to have square roots. According to Guerry
[2013], this condition is not sufficient for 3 x 3 and 4 x 4 probability matrices.

Guerry provided the following example where a matrix P has a stochastic
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root A and tr(P) <1

0.17 0.66 0.17 0.1 0.1 0.8
P=10.17 0.17 0.66| and A= 0.8 0.1 0.1}
0.66 0.17 0.17 0.1 0.8 0.1

According to Guerry, the condition ¢r(P) > 1 remains necessary for a
probability matrix P to have a probability square root A for both 3 x 3 and
4 x 4 probability matrices. Guerry presented this result as a theorem in
her paper [2012] where she considered each matrix size separately. Guerry

proved each case of the theorem by showing that

tr(P) =tr(A x A) = 1+ [nonnegative term| > 1.
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3.5 Stochastic cube roots: Regions within the unit square

In this section we aim to find the regions within the unit square which corre-
spond to the collections of 2 x 2 probability matrices with zero and one cube

root. The curve f,(x) when n = 3 is of the following form
f3(x) = (z —a)*(1 —a)? +a.

As previously, we consider two cases: 0 < a < % and % <a<l1.
We start with the first case. Below is the plot of f3(x) for different values

ofawhen0<a<%.

1.0

0.8

0.6

0.4

0.2
1

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.23

Observe that each cubic curve intersects y-axis at a point
0,—a*(1 —a)"? 4 a] where 0 < a < 3.

The segment on the sloped line which projects onto the diagonal and then

onto the cubic curve below this point of intersection contains matrices with
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single cube roots beyond the boundaries of the unit square (i.e. no probability
cube roots). Alternatively, projections from the sloped line outside the said
segment result in exactly one probability cube root. Below the process of
finding the segment on the sloped line which corresponds to the collection of

probability matrices with zero probability cube roots is shown.

(a) cubic curve (b) point of intersection to diagonal

(c) diagonal to sloped line (d) the obtained segment

Figure 3.24

Repeating this process for multiple cubic curves (multiple values of a),
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we get the following:

1.0

0.8

1177777/

0.4
A AR

0.2

0.0

Figure 3.25

The bold segments on the plot correspond to the region within the unit
square representing the collection of probability matrices with zero probabil-
ity cube roots.

Next, we move onto the second case. Observe below the plot of f3(z) for

different values of a when % <a<l.
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Figure 3.26

Here, we observe that each sloped line intersects y = 1 at a point
2 — 1 1] where  <a < 1.

This point of intersection, when projected onto the curve, then the diagonal
and then onto the sloped line, will determine the length of the segment on
the sloped line which corresponds to the collection of probability matrices
with zero probability cube roots. Observe that any matrix on the segment
has a cube root beyond the boundaries of the unit square therefore resulting

in zero probability cube roots.
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(c) diagonal to sloped line (d) the obtained segment
Figure 3.27

Repeating this process for multiple cubic curves, we get the following:
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Figure 3.28
Hence, we have obtained the regions within the unit square which corre-

spond to the collections of probability matrices with zero and one probability

cube root. The regions are illustrated in the graph below.
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Figure 3.29

The parametric equations of the left-hand side boundary and the top
boundary are

_

4
y:(li—t)g%—t

and
T = (t;§)4 +1
(=) 3
y= (t—1)¢2

respectively, which are symmetric about the line y =1 — x.
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Chapter 4

A note on the algorithms for randomly

generating probability matrices

In the previous chapter we used R to generate traces of probability matrices.
The following algorithm for randomly generating an n X n probability matrix
was used:

Algorithm 1

1. Use uniform distribution with support (0, 1) to populate an n x n ma-

trix.
2. Compute the row sums.
3. Divide each entry of the matrix by the corresponding row sum.
4. Obtain a row-normalized matrix i.e. a probability matrix.

For a 2 x 2 case, consider an alternative algorithm:

Algorithm 2

1. Use uniform distribution with support (0,1) to generate two values
[z, y].
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z 1—=x
2. Populate the matrix as following

y 1—y
Below observe the scatterplots within the unit squares produced in R for

both algorithms for generating 2 x 2 probability matrices.

1.0
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0.4

0.2

0.0

(a) Algorithm 1

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

(b) Algorithm 2

Figure 4.1
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From the scatterplots above, it is clear that the two algorithms are not
equivalent. The second algorithm generates 2 x 2 probability matrices which
are uniformly distributed within the unit square. The scatterplot for the first
algorithm, on the other hand, indicates that the 2 x 2 probability matrices
are generated more densely in the centre of the unit square in the shape of a
Cross.

The nonequivalence of the two algorithms prompts us to ask the following
question: which algorithm is more natural. We can argue that for the 2 x
2 case the second algorithm produces uniform results and, hence, is more
appropriate. Note that for the n x n cases where n > 3 we are limited to the
first algorithm. Hence, we are forced to use the algorithm which does not
uniformly generate matrices within a unit hypercube.

We complete this chapter by presenting a theorem which defines the prob-
ability density function of a single diagonal entry of a 3 x 3 row-normalized

matrix (probability matrix).

Theorem 4.0.1. A random variable U = ﬁ such that X, Y and Z are

independent uniformly distributed random variables on [0, 1] has the following

probability density function

(
1 . 1
=N if0<u<g
— 1 1 3u e 1 1
F(u) §<ﬁ—(1u))+ G fzSu<y
1— e 1
k3T§L’ Zf§§U<1

Proof. Given U = where X, Y, Z~unif(0,1), define

X+Y+Z

V—XH,JFZ and W=X+Y + Z.
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Then,

and the Jacobian is the following

w 0 u
[Jl[=det | 0w v
-w —w l—u-—wv
= w(w(l —u—v) +vw) + vw?

:w2

Hence, we have

fovw (u,v,w) = wfxyz(x,y, 2)

where

1, if0<uz,y,2<1
fxyz(@,y,2) =
0, otherwise.
Therefore,

fU,V,W(Ua v, w) = w?

and we are interested in finding the marginal p.d.f. of U, fy(u). Note that

since

O<zrz=uww<l1
O<y=vw<l1

O<z=w(l—-u—v)<l1
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we have

Next, we consider three cases:

Case I: 0 < u < 5 implies

0<

—_ Wl W N

1
U
1
v
1
l—u—w
1—u
11 1 1
u<§,§§u<§and§§u<1
1—u<l1
1—u<1
2 2
1 <3
1—u 2
1
— < oQ.
U

o1
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Figure 4.2
Then, the area under the curves w = _1 and w = 11)

1—u 1
:/2/1”2dwdv+/ / wdwdy
0 0

1—u
= 1 1 l=uqq
= — —)
/0 3(1—u—v)? U+/1'2u 303"

11 5011 1—u
= _2(1 = . —2 2
TP A 5 L P
1/1—uy-2 1 1
i __1_ 72__1_ —2
6( 2 ) A A Gk -
o
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Case II: % <u< % implies
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1
l—u—v’

wdwdv + / / w?dwdv + / / wdwdv
1—2u

1— 2u1
= —d ——d ——d
/0 3(1—u—v) U+/12u3u3v /u ?)U?’U

The area under w =

w:3andw:%is:

11 1-2u 11 11 1—u
= (1—-u—v)"2 ——(u—142 ——(v)?
32( u—v) +3 s(u—1+ u)+32() .

_1 1 1 1 +3u—1 1 1 11
6(1—u—142u)?2 6(1—u)? 3u? 6(1—u)?> 6u?
1,1 1 3u—1

SICR——

3\u? (1 —wu)? 3u?

Case III: % < u < 1 implies
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w=1/v
w=1/(1-u-v)

(1-w)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.4

The area within the rectangle is:

1-u Ex 1—u
u 11 1—u
— 2 — —
fu(u) —/0 /0 wdwdv —/0 §u3dv =35

Therefore, the density function of U = ﬁ such that XY, Z are

independent uniformly distributed random variables is the following

TEnEL if0<u<

flw) =4 4(

W=

1 1 3u—1 e 1
_2_(1711,)2)—1_ lf§§u<

3u3 !

N

1—u e 1
EPER 1f§§U<1

]

Below observe the plots of the density function f(u) and the density func-

tion obtained by generating a million single entries of 3 x 3 row-normalized
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matrices (i.e.

Using R we confirm that f(u) integrates to 1 and that E[U]

ail
ajitaiz+ais

) in R.

f(u)

0.0

0.0

u

(a) Plot of f(u)
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I

Density
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(b) Plot of the density function generated in R
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N =1000000 Bandwidth = 0.004048

Figure 4.5
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Conclusions

In this paper we examined the embeddability problem in discrete-time ho-
mogenous Markov chains which corresponds to the case where a discrete-time
Markov chain is observed on time intervals of a fraction (e.g. 3, 5 etc.) of the
duration of the original Markov chain. The geometric method first derived
by Brill and Hlynka was employed to establish the conditions under which
2 x 2 probability matrices have multiple, single or zero probability square or
cube roots. The results were compared to numeric results derived by other
authors. Finally, algorithms for generating n x n Markov transition matrices

were discussed. All geometric derivations for roots of stochastic matrices are

new.
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Appendix A

R code

power2<—function (n){ #HH#curves for finding square roots, method 1
for (a in seq(0,1,n)) {
eq = function(x){((x—a)"2)/(1—a)+a}
curve(eq, from=0, to=1, add=TRUE, xlim=c(0,1), ylim=c(0,1),
xlab="x", ylab="y” , xaxs="1", yaxs="1i" ,main=""  cex.lab=1.5)
x<—seq (0,1,0.05)
lines (x,—a/(1—a)*(x—1),type= "1”, col="red”)

#grid(nx = 20, ny = 20, col = "lightgray”, lty = "dotted”)
lines (x,x,type= "17, col="blue”)
return ()

}

sqroot<—function (n

) ##curves for finding square roots, method 2
for (a in seq(0,1

(

(

{
o)) Ao

x){sqrt(x—a)=xsqrt(l—a)+a}
x){—sqrt(x—a)*sqrt(l—a)+a}

eql = functlon
eq2 = function

curve(eql , add= TRUE, Xlim—c(O 1), ylim=c(0,1),

xaxs="1", yaxs="1" ,main="",xlab="x", ylab="y”)
curve(eq2, add=TRUE, Xlim—c(O 1), ylim:c (0,1),
xaxs="1", yaxs="1" ,main="",xlab="x", ylab="y”)

x<—seq(0,1,0.001)
lines (x,—a/(1—a)*(x—1),type= 71”7, col="red”)
}

lines (x,x,type= 717, col="blue”)

return ()

}

a8



cubic<—function (n){ ##curves for finding cube roots
for (a in seq(0,1,n)) {
eq = function(x){((x—a)"3)/(1—a) " 2+a}
curve(eq, from=0, to=1, add=TRUE, xlab="x”, ylab="y",
xaxs="1", yaxs="1” ;main=""  cex.lab=1.5)
lines (x,—a/(l—a)*(x—1),type= 71”7, col="red”)

#grid(nx = 20, ny = 20, col = "lightgray”, lty = "dotted”)
lines (x,x,type= 717, col="blue”)
return ()

}

powerd<—function (n){ ##curves for finding Jth roots

for (a in seq(0,1,n)) {
eq = function(x){((x—a)"4)/(1—a)"3+a}
curve(eq, from=0, to=1, add=TRUE, xlab="x”, ylab="y",
xaxs="1", yaxs="1” ;main=""  cex.lab=1.5)
lines (x,—a/(l—a)*(x—1),type= 71”7, col="red”)

#grid(nx = 20, ny = 20, col = "lightgray”, lty = "dotted”)
lines (x,x,type= "17, col="blue”)
return ()

boundfull<—function (n){
A square root boundaries

bl <— numeric()
b2 <— numeric ()
cl <— numeric()
c2 <— numeric ()

i=1

for (a in seq(0,0.5,n)) {
bl[i]=a/(1—a)
b2[i]=bl[i]*(1-bl[i])
i=1+41

}

i=1

for (a in seq(0.5,1,n)) {
#cl[i]=(2—a—1/a)" 2/ (1—a)+a
#c2[i]=—a/(1—a)x(cl[i]—1)
cl[i]=((1—a)"3)/a"2+a
c2[i]=2-1/a
i=i+1
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maxl=which .max(b2)
minl=which.min(cl)

l1=length(bl)
12=length(cl)
for (i in 1:11) {
plot (b1 [[i]], b2[[i]], xlim=c(0,1), ylim=c(0,1),
xlab = "x”, ylab = 7y” /xaxs="1", yaxs="1")
par (new=T)

for (i in 1:12) {
plot(cl[[i]], c2[[i]], xlim=c(0,1), ylim=c(0,1),
xlab = "x”, ylab = 7y”, xaxs="1", yaxs="1")
par (new=T)
¥
HHAHE Jth root boundaries

dl <— numeric()
d2 <— numeric ()
el <— numeric()

9

e2 <— numeric
i=1

for (a in seq(0,0.5,n)) {
dli[i]=(a"4)/(1—a)"3+a
#d2[i]=—a/(1—a)x(d1[i]—1)
d2[i]=a—a"5/(1—a) 4
i=i+1
}
i=1
for (a in seq(0.5,1,n)) {
el[i]=(2—a-1/a)"4/(1—a)"3+a
02 [i]=—a/(1-a)*(el[i]-1)
i=i+1
¥
l1=length(dl)
12=length(el)
for (i in 1:11) {
plot(d1[[i]], d2[[i]], xlim=c(0,1), col="red”, ylim=c(0,1),
xlab = "x”, ylab = "y” /xaxs="1", yaxs="1")
par (new=T)

for (i in 1:12) {
plot (el [[i]], e2[[i]], xlim=c(0,1), col="red”, ylim=c(0,1),

xlab = "x”, ylab = 7y”, xaxs="1”7, yaxs="1")
par (new=T)
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}

max2=which .max(d2)
min2=which .min(el)

lines (x,x,type= 71”7, col="red”)

lines (x,—x+1,type= 717, col="yellow”)

lines (x,—x"2+x,type= 71”7, col="red”)

lines (x"2—x+1,x,type= 71”7, col="red”)

#return (¢ (bl [maxl], b2 [mazl], cl[minl], c2[minl],
dl[max2],d2[max2],el [min2],e2[min2]))

return ()

boundcubic<—function (n){

A cube root boundaries

bl <— numeric()
b2 <— numeric ()
cl <— numeric()
c2 <— numeric ()

i=1
for (a in seq(0,0.5,n)) {
b1 [i]=—a"3/(1-a)2+a
b2 [i]=(—a/(1-a)) (b1 [i]~1)
i=i+1
}
i=1
for (a in seq(0.5,1,n)) {
cl[i]=(2—a—1/a)"3/(1—a) 2+a
c2[i]=(—a/(1—a))*(cl[i]—1)

i=i+1
}

max=which .max(b1)
min=which . min(c2)

l1=length(bl)
12=length(cl)
for (i in 1:11) {
plot (b1 [[i]], b2[[i]], xlim=c(0,1), ylim=c(0,1),

xlab = "x”, ylab = 7y” ,xaxs="1", yaxs="1")
par (new=T)
}
for (i in 1:12) {
plot(cl[[i]], c2[[i]], xlim=c(0,1), ylim=c(0,1),
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” 7

xlab = "x”, ylab = 7y”, xaxs="1”7, yaxs="1")
par (new=T)

}

lines (x,x,type= 71”7, col="red”)
lines (x,—x+1,type= 717, col="yellow”)

#matrixz with random wuniformly dstributed entries
myMat<—matrix (runif(n%n), ncol = n)
sums<—rowSums (myMat )
#normalized matriz
for (i in 1:n){

for (j in 1:n){

myMat[1i,j]<-myMat[i,]j]/sums][i]

}

}

sum(diag (myMat)) #trace

### plot traces for multiple matrices
tr<—numeric ()
for (k in 1:1000000){

myMat<—matrix (runif (n*n), ncol=n)

sums<—rowSums (myMat )

for (i in 1:n){

for (j in 1:n){
myMat i, |]<—myMat[i,j]/sums][1i]

tr [k]=sum(diag (myMat))
k=k+1
}

d<—density (tr) #trace density
plot (d, xlim=c(0,n),col="red”, xlab =77, ylab =77,
xaxs="1", yaxs="1", main = 77)
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