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Abstract

In most queueing systems of type GI{G{1, the stability condition requires

that the server utilization be strictly less than 1. The standard exception is a

D{D{1 system in which stability still holds for server utilization equal to 1. This

paper presents other cases when server utilization can equal 1, and discusses their

characteristics.
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CHAPTER 1

Introduction

1.1. Scope and Motivation of Research

In 1908, a mathematician by name Agner Krarup Erlang was the first to pro-

pose a method for solving a queueing theory problem for telephone call exchanges

by using the Poisson process [1]. Currently, queueing theory has widespread ap-

plications to numerous systems that provide service.

Queues are ubiquitous and are commonly seen in places such as fast-food

restaurants, retail shops, hospitals, airports, motor vehicle traffic congestion, elec-

toral polls, etc. Primarily, queues are designed to manage and control customers

with the goal of improving productivity, by decreasing waiting times and increasing

the number of customers being served [2]. Queueing theory has many applications

in everyday life. An article by Lawrence Wein, a professor at the School of Business

at Stanford mentioned the use of queueing theory to study the effect of bioterrorism

in USA, as well as suggesting ways of reducing the waiting times of patients re-

ceiving medication, which would subsequently reduce the number of deaths in case

of any such attacks [3]. With increasing application of queues to model situations,

managers are looking for efficient ways of meeting the expectations of customers by

reducing the waiting times in queues. Others have suggested strategies for keep-

ing customers happy while they wait in queues. Richard Larson, the head of the

Center for Engineering Systems Fundamentals at the Massachusetts Institute of

Technology has said that queueing experience can improve by eliminating waiting

times [4].

In this major paper, we studied queues with server utilization of one by using

Lindley’s recursion formula. Several examples of queueing systems with server

utilization of one will be considered, in particular, the M{M{1, M{D{1, D{M{1,

and D{D{1. Furthermore, we illustrated queueing systems graphically in order

to deepen our understanding of such queues. More importantly, we addressed the
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issue of scheduling customers such that no one waits in the queue by considering

special cases of a modified D{D{1 system.
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CHAPTER 2

Markovian Queueing Systems

2.1. M/M/1 Queueing Systems

The following information is standard in queueing texts, such as [5]. The

M{M{1 queueing system is a classic example of a queueing system. Server utiliza-

tion is simply the percentage of time during which the server is busy processing

jobs. In the M{M{1 queueing system, M denotes Markov (memoryless, i.e. ex-

ponential distribution). Typically, the first letter represents the inter-arrivals (λ,

rate per unit time), the second letter represents the service (µ, rate per unit time),

and the third represents the number of servers. An M{M{1 system is a birth and

death process, which assumes the states of the system are 0, 1, 2..., as shown in

Figure 2.1 below:

0 1 2 3 4 . . .

λ

µ

λ

µ

λ

µ

λ

µ

Figure 2.1. General Birth and Death Process

The birth and death process of the M{M{1 queueing system has a rate matrix,

Q of form:

Q “

»

—

—

—

—

—

—

–

´λ λ 0 0 . . .

µ ´pλ` µq λ 0 . . .

0 µ ´pλ` µq λ . . .
...

...
...

...
. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1)
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From the rate matrix, Q, one can determine the limiting probabilities by the

fact that the sum of all limiting probabilities is one, i.e ~O “ ~πQ. The limiting

probabilities satisfy:

π1 “

´

λ
µ

¯

π0

π2 “

´

λ
µ

¯2

π0

π3 “

´

λ
µ

¯3

π0
...

πn “

´

λ
µ

¯n

π0, for n ě 0.
...

(2)

Also,

1 “
ř8

n“0 πn “
ř8

n“0

´

λ
µ

¯n

π0 (3)

From (2) and (3), we obtain π0 “
!

ř8

n“0

´

λ
µ

¯n)´1

“ 1 ´ ρ, where ρ “ λ
µ
.

It follows that for all n ě 0,

πn “
λn

µn

´

1´ λ
µ

¯

“ ρnp1´ ρq, for n ě 0 (4)

This series (3) converges as long as λ
µ
ă 1 or λ ă µ. Generally, the service

utilization for M{M{1 and M{G{1 is defined as ρ “ λ
µ

or ρ “ λEpSq, where EpSq

is the expected service time. Clearly, equation (4) above is a geometric distribution

of the form PrpX “ xq “ p1´ pqxp, with p “ 1´ λ
µ
, and expected length of queue

and expected wait are as follows:

EpLq “
1´p1´λ

µ
q

1´λ
µ

“
λ
µ

1´λ
µ

“
ρ

1´ρ
and EpW q “ 1

µ´λ
(5)

We quote from [5] (Gross et al.), “When ρ “ 1, unless arrivals and service are

deterministic and perfectly scheduled, no steady state exists, since randomness will

prevent the queue from ever emptying out and allowing the servers to catch up,

thus causing the queue to grow without bound.” We demonstrated in this paper

that more precision is needed when considering the ρ “ 1 case.
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The following properties and results (see [6]) are useful for queues with server

utilization of one:

Property 2.1. For an M{M{1 queueing system with ρ “ λ
µ
“ 1, then E10 “

8, i.e. the expected number of steps to move from state 1 to state 0 is infinity,

where states represent the number of customers in the system [6].

Proof. This can be viewed as a one-sided random walk, it follows that;

P pmove up 1 state | state ą 0q “ λ
λ`µ

“ P pmove down 1 state | state is ą 0q

Let X “ the number of steps to move from 1 to 0 for the first time.

When ρ “ 1, λ
λ`µ

“ 1
2
, so

EpXq “ 1
2
p1q ` 1

2
pEpXq ` EpXqq

ùñ 0 “ 1
2
, unless EpXq “ 8.

6 EpXq “ 8

�

Property 2.2. For an M{M{1 queueing system with ρ “ λ
µ
“ 1, then P00 “ 1.

In other words, the probability of return to zero (no customer) is one if the system

begins in position zero [6].

Proof. This is a one-sided random walk;

Note that the system will always move from 0 to 1 eventually if λ ą 0.

Note that λ
λ`µ

“ P pmove down 1 state | state is ą 0q “ 1
2

Let p “ probability of eventual return to zero “ P00

p “ 1
2
` 1

2
p2,

ùñ p2 ´ 2p` 1 “ 0

ùñ pp´ 1qpp´ 1q “ 0

6 p “ 1

�

An M{M{1 queueing system could be simulated to obtain the figure below,

such that the inter-arrival times and service times are exponentially distributed.

For ρ “ 1, the M{M{1 queueing system will have a limiting probability 0 for every

5



state. In this queueing system, we make the assumption that customers are served

on a first-come, first-served basis, as usually seen in practice. It is important to

note that the M{M{1 queueing system with λ
µ
ă 1 has limiting probabilities which

are geometrically distributed, as shown in equations (2), (3) and (4). From the

sample path in Figure 2.2, we could determine the maximum number of customers

or time length of the queue for any busy period. The expected waiting time can

be found by applying Little’s law, EpLq “ λEpW q.
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to
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Figure 2.2. M{M{1 simulation

2.2. D/D/1 Queueing Systems

Another queueing system with server utilization of one worth investigating

is the D{D{1 queueing model. Unlike the M{M{1 system where inter-arrival

times and service times are exponentially distributed, in the case of D{D{1 both

the inter-arrival times and service times are deterministic (fixed). As an ex-

ample of how this simulation behaves, we consider replicates of ones for both

inter-arrival times and service times of 50 digits each. Here inter-arrival times,

T “ t1, 1, 1, ..., 1u and service times are S “ t1, 1, 1, ..., 1u. Clearly, in this exam-

ple the waiting time of each customer is zero. Careful examination of Figure 2.3
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reveals an instantaneous spike at zero. Such a system would occur in an assembly

line in which the inter-arrival time matches the service time exactly.
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Figure 2.3. D{D{1 simulation: replicates of inter-arrival and ser-

vice times

We next introduce a new class of queueing systems, which are not of the tradi-

tional D{D{1 type with ρ “ 1, having identical constant inter-arrival and service

times. We refer to the new class as “modified” D{D{1 systems.

A new novel example of a modified D{D{1 queueing system worth considering

consists of sequence of numbers for both inter-arrival times and service times.

In this case the inter-arrival times, T “ t0, 1, 2, 3, ..., 49u and service times, S “

t1, 2, 3, ..., 50u. This queueing system has a server utilization of one, and also the

waiting times between successive customers is zero. Moreover, the inter-arrival

times between successive customers increase as time increases, and this explains the

increasing gaps in Figure 2.4. We could repeat the values in T and S indefinitely

to get a system as tÑ 8.

Another new fancy example of a modified D{D{1 system is obtained by set-

ting the inter-arrival times, T “ t0, 1, 2, 3, ..., 49u and then reversing the order of

the service times, S “ t50, 49, 48, ..., 1u. Just as in the two previous examples,

both inter-arrival times and service in this system are deterministic. As shown

7



0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D/D/1 Simulation

Arrival times

N
um

be
r 

of
 c

us
to

m
er

s

Figure 2.4. D{D{1 simulation: sequences of inter-arrival and ser-
vice times

in Figure 2.5, the rate at which customers arrive increases while the service rate

decreases. The right half of the graph shows an decreased rate of arrivals and an

increase rate of service. This is an example of how “bad” the system, can be, in

an extreme case.
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Figure 2.5. D{D{1 simulation: reversed sequences of times
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Figure 2.6. D{D{1 simulation: double reversed sequences of times

The above process can be repeated. For example, by repeating the sequences

twice, we produce Figure 2.6 above.

Still another new example results from interchanging the values for inter-arrival

times and services, and then repeating the procedure as shown in Figure 2.7. In

this case, T “ t51, 50, 49, ..., 1u and S “ t1, 2, 3, ..., 50u.
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Figure 2.7. Modified D{D{1 simulation: reversed sequences of times
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As shown in Figure 2.7 above, when the first customer enters the queue, it takes

50 time units for the next customer to arrive in queue. So the server utilization

is not equal to 1 initially. Further to that, the next customer takes 49 time units

to arrive in the queue, and the waiting times decrease as time increases. Also,

we realized that the inter-arrival times did not match service times perfectly, and

this explains the congestion between 1000 to 1500 time units. The tail end shows

a sudden drop since all arrivals are used up, and only services remain. Server

utilization is not 1 since the server is empty for much of the left hand side.
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Figure 2.8. Modified D{D{1 simulation: double reversed se-

quences of times

In like manner, Figure 2.8 behaves the same way as Figure 2.7 except that the

process is repeated twice. The waiting times between successive customers decrease

over time, but after 1000 time units the arrival rates increases. Around 1500 time

units, the waiting times decrease. However, since there are many customers in the

system, most of them are served after 2000 time units. The remaining half of the

diagram, around 2200 time units is the same as Figure 2.7. If we repeated the

pattern indefinitely, the server utilization would equal 1.

10



2.3. M/D/1 Queueing Systems

For the M{D{1 queueing system, the inter-arrival times are exponentially dis-

tributed and service times are deterministic. In other words, the inter-arrival times

are determined by a Poisson process while the service times are non-random. The

M{D{1 queueing system is not stable for ρ “ 1, and we show with probability

one the system returns to zero and the expected return time is infinity, as in the

M{M{1 case. From Figure 2.9, we could easily observe a pattern in the service,

which is quite predictive.
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Figure 2.9. M{D{1 simulation

For the M{D{1 queueing system, the following two new theorems are proposed:

Theorem 2.3. With ρ “ λ
µ
“ 1, E10 “ 8 for M{D{1 system, where E10 is

the expected number of steps to move from 1 to 0.

Proof. Without loss of generality, assume λ “ 1, µ “ 1. The probability of

no arrival before the first service time is 10e´1

0!
“ e´1.

Otherwise, there are n ą 0 arrivals during the first service time with probability

1ne´1

n!
.

11



If there are n arrivals followed by one service completion, then the number of cus-

tomers remaining is 1` n´ 1 “ n and the number of steps used is n` 1.

So,

E10 “ 1 ˚ Ppno arrivalsq `
ř8

n“1 Ppn arrivalsqpn` 1` En0q

ùñ E10 “ e´1 `
ř8

n“1
1ne´1

n!

`

n` 1` nE10

˘

ùñ E10 “ e´1 `
ř8

n“1
1ne´1

n!
n`

ř8

n“1
1ne´1

n!
` E10

ř8

n“1
1ne´1

n!
n

ùñ E10 “ e´1 ` 1`
`

1´ e´1
˘

` E10

`

1
˘

ùñ E10 “ 2` E10

since,
ř8

n“1
1ne´1

n!
n “

ř8

n“0
1ne´1

n!
n “ EpXq “ 1

where X is Poisson(1)

Thus 0 “ 2 or E10 “ 8.

Hence E10 “ 8.

�

Theorem 2.4. With ρ “ λ
µ
“ 1, P10 “ 1 for the M{D{1 system, where P10 is

the probability of moving from 1 to 0 customer eventually.

Proof. Without loss of generality, take λ “ 1, µ “ 1.

P10 “ e´1 `
ř8

n“1
1ne´1

n!
P0`n,0

But Pn0 “ P n
10

so, P10 “ e´1 `
ř8

n“1
1ne´1

n!
P n
10

ùñ P10 “
ř8

n“0
1ne´1

n!
P n
10

ùñ P10 “ e´1eP10

ùñ P10 “ eP10´1

See graph of x “ ex´1, Figure 2.10 below.

so P10 “ 1 is the unique solution.

Hence the result.

�
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Figure 2.10. Graph of x “ ex´1

2.4. D/M/1 Queueing Systems

Similar to the M{D{1 is the D{M{1 queueing system which has fixed or deter-

ministic inter-arrival times and exponentially distributed service times. Note the

pattern in which customers arrive is deterministic as shown in Figure 2.11.
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Figure 2.11. D{M{1 simulation

13



CHAPTER 3

Lindley’s Recursion

3.1. Application of Lindley’s Recursion

In this section, Lindley’s recursion is implemented on a simple queueing system

with a single server, which is made up of arrival times and service times. Lindley’s

recursion is one of the important relations in queueing theory [7], which is given

by the following equation:

Wn`1 “ maxt0, Bn ´ An `Wnu (6)

where:

An is the inter-arrival time between the n-th customer and pn` 1q-st customer;

Bn is the service time of the n-th customer in queue;

Wn is the waiting time of the n-th customer (not including service time);

Wn`1 is the waiting time of the pn` 1q-st customer.

This will allow us to get graphical output of the type already seen, plus other

cases, requiring only a list of inter-arrival times and service times. Although this

graphical output is fundamental to queueing systems, we could not find R code

for this so we developed our own.

By way of implementation, the following example shall be considered, of inter-

arrival times and services times of eight customers.

14



Table 3.1. Inter-arrival and service times of a single-server queue-

ing system

Customers Inter-arrival time Service time

1 0 1

2 4 1

3 5 9

4 2 6

5 5 3

6 5 8

7 9 7

8 9 3

Table 3.1 above contains the first seventeen decimal places of π, with the odd

and even positions representing the inter-arrival times and the service times re-

spectively. It is generally believe that the digits of π are random, so using them

would mean that arrival rates and service rates would have the same value. Thus

ρ should be 1.

As shown in the table, the first customer has no inter-arrival time and thus

the queue has one customer at time zero. Complete the table by including arrival

times, time service begins, waiting times, time service ends, and time customer

spends in systems as summarized in Table 3.2 below.

Table 3.2. Complete table for a single-server queueing system
Customers Inter-arrival time Arrival time Service time Beginning service time Waiting time Time service ends System time

1 0 0 1 0 0 1 1

2 4 4 1 4 0 5 1

3 5 9 9 9 0 18 9

4 2 11 6 18 7 24 13

5 5 16 3 24 8 27 11

6 5 21 8 27 6 35 14

7 9 30 7 35 5 42 12

8 9 39 3 42 3 45 6

ř

“ 39
ř

“ 37
ř

“ 29
ř

“ 67

15



The table is constructed as follows. The inter-arrival times and service times

are known. W1 “ 0 is konwn. From Lindley’s result, we find all waiting times.

The arrival times are found from cumulative sums of inter-arrival times.

Beginning Service Time = Arrival Time + Waiting Time;

Time Service Ends = Beginning Service Time + Service Time;

System Time = Time Service Ends – Arrival Time.

In order to construct a graph, we need to merge the Arrival Times with Time

Service Ends.

Table 3.3. Arrival and completion times of a single-server queueing system

Merging arrival & Completion times Label

0 +1

1 –1

4 +1

5 –1

9 +1

11 +1

16 +1

18 –1

21 +1

24 –1

27 –1

30 +1

35 -1

39 +1

42 –1

45 –1

We merge the arrival times and service completion times of customers, and

then label these arrival times and service completion times with +1 and –1 re-

spectively. This is summarized in Table 3.3, the cumulative values of the label

16



column represent the number of customers in the queueing system. Its graphical

representation appears in Figure 3.1 below. The program should be written such

that an arrival occurs before service. Code in R for this appears in Appendix A.
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Figure 3.1. Service utilization: 17 digits of π

Similarly, the procedure could be repeated for 300, 500 and 1000 decimal places

of π, which is represented graphically in Figures 3.2, 3.3 and 3.4. Not much can

be deduced from these plots, and so the next chapter will focus primarily on some

important cases of modified deterministic processes.
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Figure 3.2. Service utilisation: 300 digits of π
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Figure 3.3. Service utilization: 500 digits of π
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Figure 3.4. Service utilization: 1000 digits of π
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CHAPTER 4

Modified Deterministic Processes: Special Cases

4.1. Grouped Inter-arrival and Service Times

In this chapter several examples of deterministic processes are studied, in par-

ticular grouped and sampled inter-arrival and service times. Since these cases are

deterministic, one goal is to schedule the process such that the waiting times will

be zero. In fact, when queues are properly scheduled it may address some of the

challenges that may arise in queues, which may include zipping, jockeying, balk-

ing, reneging, etc. Throughout this chapter, we assume ρ “ 1

Example 4.1. Consider the inter-arrival and service times of customers arriv-

ing in groups of (1, 2, 3).

In this example, the inter-arrival times are fixed but the service times are

allowed to vary in the sense that we can reorder (1, 2, 3). Based on this example,

the expected queue length, EpLq can be determined by an examination of the first

graph in Figure 4.1 by comparing the proportion of time that the system is at

levels 1 and 2. Using EpLq “ EpLqq ` EpLsq with EpLsq “ 1, we can find EpLqq.

From (7), the expected length wait can be determined by using Little’s Law in

the following equation:

EpLqq “ λEpWqq
(7)

(a) Case 1: Inter-arrival times= 1, 2, 3 and Service times= 1, 2, 3 and 1, 3,

2:

This can be summarized in the table and diagram below. As explained

in the previous chapter, the first has no inter-arrival time as expected:
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Table 4.1. Inter-arrival and service times of a single-server queue-

ing system

Customers Inter-arrival time Service time (1, 2, 3) Service time (1, 3, 2)

1 0 1 1

2 2 2 3

3 3 3 2

4 1 1 1

5 2 2 3

6 3 3 2

7 1 1 1

8 2 2 3

...
...

...
...

Lindley’s recursion relation is applied to the above inter-arrival and

service times, which produce the following diagrams in Figure 4.1. With

these diagrams one can compute the queue length for each scenario by

applying equations p7q and p8q. Clearly, the service times (1, 3, 2) has a

shorter queue length as compared to the service times (1, 2, 3).
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Figure 4.1. Case 1
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The procedure as described in case 1, can be repeated by changing the

order of service times, and this is clearly shown in Figure 4.2.

(b) Case 2: Inter-arrival times= 1, 2, 3 and Service times= 2, 1, 3 and 2, 3,

1:
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Figure 4.2. Case 2

(c) Case 3: Inter-arrival times= 1, 2, 3 and Service times= 3, 1, 2 and 3, 2,

1:
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Figure 4.3. Case 3

Figure 4.3 illustrates the two remaining orderings of the service times.

Note that in Case 2, with service times 2, 3, 1, Figure 4.2 shows that the queue

length is always 1 and no customer ever waits. This is the ideal situation and

proper scheduling should always result in an ideal situation. Medical doctors, take

note!

In this chapter, we showed that examples of cases other than standard D{D{1

systems can have ρ “ 1 and still be stable. However, our system lost “indepen-

dence” and “identically distributed” properties.
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CHAPTER 5

Further Deterministic Processes

5.1. Inter-arrival and Sampled Service Times

Apart from the grouped inter-arrival and services times discussed in section 4,

we can also consider cases, which are identically distributed but are not indepen-

dent.

By way of illustration, the following queues with inter-arrival and sampled

service times can be considered.

(a) Case 1: Inter-arrival times= 1, 2, 3 and sampled service times= 1, 2, 3:
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Figure 5.1. Case 1

The printout below shows the first 20 positions of inter-arrival vector

and service vector:

> Inter-arrival Times

[1] 0 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1
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> Service Times

[1] 1 2 3 2 3 1 1 2 3 2 3 1 1 2 3 2 1 3 1 2

Repeating Case 1 two more times produce the following:

(b) Case 2: Inter-arrival times= 1, 2, 3 and Service times= 1, 2, 3:
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Figure 5.2. Case 2

(c) Case 3: Inter-arrival times= 1, 2, 3 and Service times= 1, 2, 3:
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Figure 5.3. Case 3

Property 5.1. For a sequence of inter-arrival times (1, 2, 3) and a sampled

sequence of service times (without replacement) of (1, 2, 3) the identical queue

length should reappear at time t0 ` 6, t0 ` 12, t0 ` 18, ... for some t0.

Remark 5.2. Since we sample without replacement, after 1`2`3 “ 6 services,

we should be in an original position. Look at queue length versus time in the

following:
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Table 5.1. Queue length versus time

Customer # Time Queue length

1 0 1

2 1 2

3 3 3

4 6 2

5 7 1

6 9 2

7 12 1

8 13 2

9 15 1

10 18 2

11 19 1

12 21 2

13 24 1

14 25 2

15 27 3

16 30 2

17 31 1

18 33 2

19 36 1

20 37 2

21 39 1

22 42 2

23 43 1

24 45 2

...
...

...

As shown in Table 5.1, after every six steps the queue length is 2, which means

t0 “ 6.

27



Note 5.3. In this chapter, we presented queues with identically distributed

service times, which were not independent. This type of system has not been

considered elsewhere in the queueing literature.
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CHAPTER 6

Results and Findings

In this project, queues with server utilizations of one were discussed. Generally,

queueing systems of the form GI{G{1 are stable if server utilization is strictly

less than 1. However, there is an exception with D{D{1 in which stability is

maintained for server utilization equal to one. In this paper, M{M{1, D{D{1,

M{D{1, and D{M{1 systems were discussed. Other queueing disciplines such as

periodic grouped inter-arrival times and sampled service times were examined.

In order to study the queueing behaviours, use was made of the Lindley’s recur-

sion relation for single-server queueing models. Although the Lindley’s recursion

is fundamental, the R code was not available on the internet. Consequently, we

developed R codes for executing any single-server queue.

Most of the initial trial examples were done using the digits of π by assigning

the odd places as the inter-arrival times and even places as the service times.

The motivation for using π is simply because we believe that in the long run will

have server utilization of one. Specifically, the mean inter-arrival times and mean

service times are both 4.5 since the digits of π are uniform between 0 to 9, and

the average is 4.5.

By way of adding to the literature, two new theorems (2.3 and 2.4) for M{D{1

queueing systems were discussed. Moreover, results from the grouped sampled of

inter-arrival and service times indicate that it is possible to schedule customers

such that no one need wait in queue.
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CHAPTER 7

Future Work

Our future works will focus primarily on using the level-crossing approach to

determine the distribution for a single-server queueing system by simulating the

virtual waits. For every state-space level and sample path, the law of conservation

states that the total upcrossing rate is equal to the total downcrossing rate, in the

long run [8]. Figure 7.1 below took considerable effort but took advantage of the

earlier graphs for the number of customers.
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Figure 7.1. Sample path of the workload Level

Also, we will try to prove the following for D{M{1 with server utilisation of one:

the expected number of steps to move from state 1 to 0 is 8, and the probability

to move from state 1 to 0 is 1.
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Appendix A

Codes and Programs

This section shows the R programming codes and commands used in the study:

### THE FIRST 17 DECIMAL PLACES (DIGITS OF PI) ###

### ODD NUMBERS OF INTERARRIVALS ###

t=c(3,4,5,2,5,5,9,9,2)

t1=t[-1]

t1

### CUMULATIVE INTERARRIVAL TIMES ###

### INTERARRIVAL TIMES ###

t2=c(0,t1)

t2

ct=cumsum(t2)

ct

### EVEN NUMBERS OF SERVICE TIMES ###

s=c(1,1,9,6,3,8,7,3)

### INTERARRIVAL TIMES OF (N+1)TH AND (N)TH ###

ia=1:8

ia[1]=0

for (i in 1:8){ia[i+1]=ct[i+1]-ct[i]}

ia

### WAITING TIMES (LINDLEY EQUATION) ###

w=1:8

w[1]=0

for (i in 1:8){w[i+1]=max(0,s[i]-ia[i+1]+w[i])}

w

### SERVICE COMPLETION TIMES ###
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sc=s[1:8]+ct[1:8]+w[1:8]

sc

sc[1]=1

sc

ct

### TIME CUSTOMER SPENDS IN SYSTEM ###

tsc=c()

for (i in 1:8){tcs[i]=sc[i]-ct[i]}

tcs

### MERGING SERVICE COMPLETION AND CUMULATIVE INTERARRIVAL TIMES ###

me=c(sc,ct)

me

sort(me)

ct

rep(1,8)

mct=t(matrix(c(ct, rep(1,9)),9,2))

mct

msc=t(matrix(c(sc,rep(-1,8)),8,2))

msc

merge=t(matrix(c(mct[1,],msc[1,],mct[2,],msc[2,]),17,2))

merge

merge2=t(merge)

r=merge2[order(merge2[,1],-merge2[,2]),] ## 1 to -1 is decreasing

r

plot(r[,1],cumsum(r[,2]))

plot(r[,1],cumsum(r[,2]),"s", main="Service Utilization", xlab="Arrival times",

ylab="Number of customers",xlim = c(0,42))

### LEVEL CROSSING ###

t2_new=t2[-9]

t2_new

ct_new=cumsum(t2_new) #actual arrival times

w_new=c(0); for (i in 2:8){w_new[i]=max(w_new[i-1]+s[i-1]-t2_new[i],0)}

#Wait times (Lindley)

vir=w_new+s #virtual service times

vir

for (i in 8:2){ if (w[i]==0) {vir=append(vir,0,i-1); w_new=append(w_new,0,i-1);
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s=append(s,0,i-1); t2_new=append(t2_new,0,i-1);

ct_new=append(ct_new,ct_new[i-1]+s[i-1],i-1)}}

n=length(ct_new)

m1=matrix(c(w_new,vir),n,2)

y=as.vector(t(m1)) #y values to be plotted

m2=matrix(c(ct_new,ct_new),n,2)

x=as.vector(t(m2)) #x values to be plotted

plot(x,y,"l",xlab="Time",ylab="Workload")

abline(0,0)

#### MODIFIED D/D/1 SYSTEM ####

### INTER-ARRIVAL TIMES:(1, 2, 3) AND SAMPLED SERVICE TIMES:(1, 2, 3) ###

aa1=rep(c(1,2,3),length.out=60)

aa1

t33b=c(0,aa1)

t34b=t33b[-1]

t34b

### CUMULATIVE INTERARRIVAL TIMES ###

### INTERARRIVAL TIMES ###

t35b=c(0,t34b)

t35b

ct33b=cumsum(t35b)

ct33b

### SERVICE TIMES ###

bb1=c()

for (i in 1:20) {bb1=c(bb1,sample(c(1,2,3),3,replace = FALSE, prob = NULL))}

bb1

s33b=bb1

s33b

### INTERARRIVAL TIMES OF (N+1)TH AND (N)TH ###

ia33b=1:60

ia33b[1]=0

for (i in 1:60){ia33b[i+1]=ct33b[i+1]-ct33b[i]}

ia33b
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### WAITING TIMES (LINDLEY EQUATION) ###

w33b=1:60

w33b[1]=0

for (i in 1:60){w33b[i+1]=max(0,s33b[i]-ia33b[i+1]+w33b[i])}

w33b

### SERVICE COMPLETION TIMES ###

sc33b=s33b[1:60]+ct33b[1:60]+w33b[1:60]

sc33b

sc33b

ct33b

### TIME CUSTOMER SPENDS IN SYSTEM ###

tcs33b=c()

for (i in 1:60){tcs33b[i]=sc33b[i]-ct33b[i]}

tcs33b

### MERGING SERVICE COMPLETION AND CUMULATIVE INTERARRIVAL TIMES ###

me33b=c(sc33b,ct33b)

me33b

sort(me33b)

ct33b

mct33b=t(matrix(c(ct33b, rep(1,61)),61,2))

mct33b

msc33b=t(matrix(c(sc33b,rep(-1,60)),60,2))

msc33b

merge33b=t(matrix(c(mct33b[1,],msc33b[1,],mct33b[2,],msc33b[2,]),121,2))

merge33b

merge34b=t(merge33b)

r33b=merge34b[order(merge34b[,1],-merge34b[,2]),]

r33b

plot(r33b[,1],cumsum(r33b[,2]))

plot(r33b[,1],cumsum(r33b[,2]),"s",main="120 numbers: inter-arrival times (1, 2, 3) and

grouped sampled service times (1, 2, 3)", xlab="Arrival times", ylab="Number of customers")
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