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Please explain your answers completely!

(1) Explain how to solve the following system of equations in your head:

6751x + 3249y = 26751

3249x + 6751y = 23249.

(2) ∆ABC is such that AB = 5, BC = 7, and AC = 9. Point D is located between
A and C with BD = 5. Use the Pythagorean Theorem and some algebra to find
AD/DC. (Note that ∆ABC is not a right angle triangle–how can you make right
angle triangles so you can use the Pythagorean Theorem?)

(3) In this question, we explore a technique called telescoping where one takes advantage
of cancellation to evaluate sums or products. Here is an example of telescoping:
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(a) Evaluate the sum
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(4) Find the sum of all real numbers x that satisfy

(2x − 4)3 + (4x − 2)3 = (4x + 2x − 6)3.

(5) Show that the product of four consecutive positive integers can never be a perfect
square.

(6) Four knights are placed on a chess board as shown. Cut
the chess board into four congruent pieces, each contain-
ing a knight. (Colouring doesn’t matter and the knights
may be on different locations on the congruent pieces.)
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