On Uniqueness and Dimensional Rigidity of Bar-and-Joint Frameworks

A. Y. Alfakih

alfakih@uwindsor.ca

Mathematics and Statistics
University of Windsor
What is a Framework?

Let $V = \{1, 2, \ldots, n\}$.
What is a Framework?

- Let $V = \{1, 2, \ldots, n\}$.
- An r-configuration is a mapping $p : V \rightarrow \mathbb{R}^r$, where p^1, p^2, \ldots, p^n are not contained in a proper hyper-plane.
What is a Framework?

- Let $V = \{1, 2, \ldots, n\}$.
- An r-configuration is a mapping $p : V \rightarrow \mathbb{R}^r$, where p^1, p^2, \ldots, p^n are not contained in a proper hyper-plane.
- A Bar-and-Joint Framework $G(p)$ in \mathbb{R}^r is an r-configuration + a graph $G = (V, E)$ such that every two points corresponding to adjacent vertices of G are constrained to stay the same distance apart.
Congruent versus Equivalent Frameworks

- $G(p)$ in \mathbb{R}^r and $G(q)$ in \mathbb{R}^s are said to be equivalent if $\|p^i - p^j\| = \|q^i - q^j\|$ for all $(i, j) \in E$.
Congruent versus Equivalent Frameworks

- $G(p)$ in \mathbb{R}^r and $G(q)$ in \mathbb{R}^s are said to be equivalent if $\|p^i - p^j\| = \|q^i - q^j\|$ for all $(i, j) \in E$.

![Diagram of congruent and equivalent frameworks](image-url)
Congruent versus Equivalent Frameworks

- $G(p)$ in \mathbb{R}^r and $G(q)$ in \mathbb{R}^s are said to be equivalent if $\|p^i - p^j\| = \|q^i - q^j\|$ for all $(i, j) \in E$.

- $G(p)$ and $G(q)$ in \mathbb{R}^r are said to be congruent if $\|p^i - p^j\| = \|q^i - q^j\|$ for all $i, j = 1, \ldots, n$.
Rigidity and Global Rigidity

- $G(p)$ in \mathbb{R}^r is said to be rigid if for some $\epsilon > 0$, there does not exist $G(q)$ in \mathbb{R}^r which is equivalent to $G(p)$ such that $\|p^i - q^i\| < \epsilon$ for all $i = 1, \ldots, n$.

On Uniqueness and Dimensional Rigidity – p.4/25
Rigidity and Global Rigidity

- $G(p)$ in \mathbb{R}^r is said to be rigid if for some $\epsilon > 0$, there does not exist $G(q)$ in \mathbb{R}^r which is equivalent to $G(p)$ such that $\|p^i - q^i\| < \epsilon$ for all $i = 1, \ldots, n$.

- $G(p)$ in \mathbb{R}^r is said to be globally rigid if there does not exist $G(q)$ in \mathbb{R}^r which is equivalent to $G(p)$.
Rigidity and Global Rigidity

- $G(p)$ in \mathbb{R}^r is said to be **rigid** if for some $\epsilon > 0$, there does not exist $G(q)$ in \mathbb{R}^r which is equivalent to $G(p)$ such that $\|p^i - q^i\| < \epsilon$ for all $i = 1, \ldots, n$.

- $G(p)$ in \mathbb{R}^r is said to be **globally rigid** if there does not exist $G(q)$ in \mathbb{R}^r which is equivalent to $G(p)$.
Rigidity and Global Rigidity

- $G(p)$ in \mathbb{R}^r is said to be rigid if for some $\epsilon > 0$, there does not exist $G(q)$ in \mathbb{R}^r which is equivalent to $G(p)$ such that $\|p^i - q^i\| < \epsilon$ for all $i = 1, \ldots, n$.

- $G(p)$ in \mathbb{R}^r is said to be globally rigid if there does not exist $G(q)$ in \mathbb{R}^r which is equivalent to $G(p)$.

Rigid but not globally rigid
Dimensional Rigidity and Uniqueness

- $G(p)$ in \mathbb{R}^r is said to be dimensionally rigid if there does not exist $G(q)$ in \mathbb{R}^s for some $s \geq r + 1$ which is equivalent to $G(p)$.
Dimensional Rigidity and Uniqueness

- $G(p)$ in \mathbb{R}^r is said to be dimensionally rigid if there does not exist $G(q)$ in \mathbb{R}^s for some $s \geq r + 1$ which is equivalent to $G(p)$.

- $G(p)$ in \mathbb{R}^r is said to be unique if there does not exist $G(q)$ in \mathbb{R}^s for any s, $1 \leq s \leq n - 1$, which is equivalent to $G(p)$.
Dimensional Rigidity and Uniqueness

- $G(p)$ in \mathbb{R}^r is said to be dimensionally rigid if there does not exist $G(q)$ in \mathbb{R}^s for some $s \geq r + 1$ which is equivalent to $G(p)$.

- $G(p)$ in \mathbb{R}^r is said to be unique if there does not exist $G(q)$ in \mathbb{R}^s for any s, $1 \leq s \leq n - 1$, which is equivalent to $G(p)$.

flexible but dimensionally rigid
Dimensional Rigidity and Uniqueness

- $G(p)$ in \mathbb{R}^r is said to be dimensionally rigid if there does not exist $G(q)$ in \mathbb{R}^s for some $s \geq r + 1$ which is equivalent to $G(p)$.

- $G(p)$ in \mathbb{R}^r is said to be unique if there does not exist $G(q)$ in \mathbb{R}^s for any s, $1 \leq s \leq n - 1$, which is equivalent to $G(p)$.

flexible but dimensionally rigid
Dimensional Rigidity and Uniqueness

- \(G(p) \) in \(\mathbb{R}^r \) is said to be dimensionally rigid if there does not exist \(G(q) \) in \(\mathbb{R}^s \) for some \(s \geq r + 1 \) which is equivalent to \(G(p) \).

- \(G(p) \) in \(\mathbb{R}^r \) is said to be unique if there does not exist \(G(q) \) in \(\mathbb{R}^s \) for any \(s, 1 \leq s \leq n - 1 \), which is equivalent to \(G(p) \).
Dimensional Rigidity and Uniqueness

- $G(p)$ in \mathbb{R}^r is said to be dimensionally rigid if there does not exist $G(q)$ in \mathbb{R}^s for some $s \geq r + 1$ which is equivalent to $G(p)$.

- $G(p)$ in \mathbb{R}^r is said to be unique if there does not exist $G(q)$ in \mathbb{R}^s for any s, $1 \leq s \leq n - 1$, which is equivalent to $G(p)$.

rigid but dimensionally flexible
Among the many applications of frameworks are: molecular conformation problems, multidimensional scaling, wireless sensor networks, satellite ranging. etc
Among the many applications of frameworks are: molecular conformation problems, multidimensional scaling, wireless sensor networks, satellite ranging. etc.

In this talk we will present some new results on:
Among the many applications of frameworks are: molecular conformation problems, multidimensional scaling, wireless sensor networks, satellite ranging. etc.

In this talk we will present some new results on: global rigidity of frameworks.
Among the many applications of frameworks are: molecular conformation problems, multidimensional scaling, wireless sensor networks, satellite ranging. etc

In this talk we will present some new results on: global rigidity of frameworks. dimensional rigidity of frameworks.
Among the many applications of frameworks are: molecular conformation problems, multidimensional scaling, wireless sensor networks, satellite ranging. etc.

In this talk we will present some new results on:
- global rigidity of frameworks.
- dimensional rigidity of frameworks.
- uniqueness of frameworks.
Generic Framework

- A framework $G(p)$ in \mathbb{R}^r with n vertices is said to be **generic** if all the coordinates of p^1, \ldots, p^n are algebraically independent over the integers.
A framework $G(p)$ in \mathbb{R}^r with n vertices is said to be generic if all the coordinates of p^1, \ldots, p^n are algebraically independent over the integers. That is, there does not exist a non-zero polynomial $f(x_1, \ldots, x_{nr})$ with integer coefficients such that $f(p^1_1, \ldots, p^n_1, \ldots, p^1_r, \ldots, p^n_r) = 0$.

Generic Framework
Global rigidity

- Theorem (Hendrickson ’92): Let $G(p)$ be a generic framework in \mathbb{R}^r with at least $r + 1$ vertices. If $G(p)$ is globally rigid, then graph $G = (V, E)$ is $r + 1$ vertex connected and $G(p)$ is redundantly rigid.
Global rigidity

- Theorem (Hendrickson ’92): Let $G(p)$ be a generic framework in \mathbb{R}^r with at least $r + 1$ vertices. If $G(p)$ is globally rigid, then graph $G = (V, E)$ is $r + 1$ vertex connected and $G(p)$ is redundantly rigid.

- Graph G is k vertex connected if G remains connected after deleting fewer than k of its vertices.
Global rigidity

- Theorem (Hendrickson ’92): Let $G(p)$ be a generic framework in \mathbb{R}^r with at least $r + 1$ vertices. If $G(p)$ is globally rigid, then graph $G = (V, E)$ is $r + 1$ vertex connected and $G(p)$ is redundantly rigid.

- Graph G is k vertex connected if G remains connected after deleting fewer than k of its vertices.

- A framework $G(p)$ is said to be redundantly rigid if it is rigid, and it remains so even after deleting one edge of G.
Hendrickson also conjectured that $r + 1$ vertex connectivity of G and redundant rigidity of $G(p)$ are also sufficient for global rigidity of generic framework $G(p)$.
Hendrickson also conjectured that $r + 1$ vertex connectivity of G and redundant rigidity of $G(p)$ are also sufficient for global rigidity of generic framework $G(p)$.

This conjecture is obviously true for $r = 1$. But it was shown by Connelly to be false for $r \geq 3$. The counter example is $K_{5,5}$ in \mathbb{R}^3.
Hendrickson also conjectured that $r + 1$ vertex connectivity of G and redundant rigidity of $G(p)$ are also sufficient for global rigidity of generic framework $G(p)$.

This conjecture is obviously true for $r = 1$. But it was shown by Connelly to be false for $r \geq 3$. The counter example is $K_{5,5}$ in \mathbb{R}^3.

Jackson and Jordán proved that Hendrickson’s conjecture is true for $r = 2$.
Global rigidity

- Theorem (Jackson and Jordán ’05): Given a generic framework $G(p)$ in \mathbb{R}^2, then $G(p)$ is globally rigid in \mathbb{R}^2 if and only if G is either a complete graph on at most 3 vertices or G is 3-vertex connected and redundantly rigid.
Global rigidity

- Theorem (Jackson and Jordán ’05): Given a generic framework $G(p)$ in \mathbb{R}^2, then $G(p)$ is globally rigid in \mathbb{R}^2 if and only if G is either a complete graph on at most 3 vertices or G is 3-vertex connected and redundantly rigid.

- Theorem (Connelly ’05): Given a generic framework $G(p)$ with n vertices in \mathbb{R}^r, let S be the stress matrix associated with an equilibrium stress ω for $G(p)$ such that $\text{rank } S = n - 1 - r$. Then $G(p)$ is globally rigid in \mathbb{R}^r.
Stress Matrix \mathcal{S}

- For each $i, j = 1, \ldots, n, i \neq j$ let ω_{ij} be a scalar such that $\omega_{ij} = \omega_{ji}$ and $\omega_{ij} = 0$ if $(i, j) \notin E$. Then $\omega = (\ldots, \omega_{ij}, \ldots)$ is called a stress for $G(p)$.
For each \(i, j = 1, \ldots, n, i \neq j\) let \(\omega_{ij}\) be a scalar such that \(\omega_{ij} = \omega_{ji}\) and \(\omega_{ij} = 0\) if \((i, j) \notin E\). Then \(\omega = (\ldots, \omega_{ij}, \ldots)\) is called a stress for \(G(p)\).

\(\omega\) is an equilibrium stress for \(G(p)\) if:
\[
\sum_j \omega_{ij} (p_i - p_j) = 0 \text{ for all } i = 1, \ldots, n.
\]
Stress Matrix S

- For each $i, j = 1, \ldots, n$, $i \neq j$ let ω_{ij} be a scalar such that $\omega_{ij} = \omega_{ji}$ and $\omega_{ij} = 0$ if $(i, j) \notin E$. Then $\omega = (\ldots, \omega_{ij}, \ldots)$ is called a stress for $G(p)$.

- ω is an equilibrium stress for $G(p)$ if:
 $$\sum_j \omega_{ij} (p^i - p^j) = 0 \text{ for all } i = 1, \ldots, n.$$

- The stress matrix $S = (s_{ij})$ is defined as:
 $$s_{ij} = -\omega_{ij} \text{ for } i \neq j,$$
 $$s_{ii} = \sum_j \omega_{ij} \text{ for } i = 1, \ldots, n.$$
Given p^1, \ldots, p^n let $P^T = [p^1 p^2 \ldots p^n]$. Let $e = (1, 1, \ldots, 1)^T$. Let $\bar{r} = n - 1 - r$.

\textbf{Gale Matrix Z}
Given p^1, \ldots, p^n let $P^T = [p^1 \, p^2 \, \ldots \, p^n]$. Let $e = (1, 1, \ldots, 1)^T$. Let $\bar{r} = n - 1 - r$.

Let Λ be the $n \times \bar{r}$ matrix whose columns for a basis for nullspace $\begin{bmatrix} P^T \\ e^T \end{bmatrix}$.

Gale Matrix Z
Gale Matrix Z

- Given p^1, \ldots, p^n let $P^T = [p^1 \, p^2 \, \ldots \, p^n]$. Let $e = (1, 1, \ldots, 1)^T$. Let $\bar{r} = n - 1 - r$.

- Let Λ be the $n \times \bar{r}$ matrix whose columns form a basis for nullspace $\begin{bmatrix} P^T \\ e^T \end{bmatrix}$.

- Let $\Lambda = \begin{bmatrix} \Lambda_1 \\ \Lambda_2 \end{bmatrix}$ and $Z = \Lambda \Lambda_1^{-1} = \begin{bmatrix} I_{\bar{r}} \\ \Lambda_2 \Lambda_1^{-1} \end{bmatrix}$. Z is called the Gale matrix for $G(p)$.
Lemma (Alfakih ’07): Given $G(p)$ in \mathbb{R}^r, let Z be the Gale matrix for $G(p)$ and let $\bar{r} = n - 1 - r$. Further, let S be the stress matrix for $G(p)$. Then

$$S = Z\Psi Z^T$$ for some $\bar{r} \times \bar{r}$ symmetric matrix Ψ.

Furthermore, if Ψ' is any $\bar{r} \times \bar{r}$ symmetric matrix such that $z_i^T \Psi' z_j = 0$ for all $(i, j) \not\in E$, where z_i is the ith row of Z. Then $Z\Psi' Z^T$ is a stress matrix for $G(p)$.
Euclidean distance matrices (EDMs)

An $n \times n$ matrix $D = (d_{ij})$ is said to be an EDM iff $\exists \ p^1, p^2, \ldots, p^n \in \mathbb{R}^r$ such that

$$d_{ij} = \|p^i - p^j\|^2 \ \forall \ i, j = 1, \ldots, n.$$
Euclidean distance matrices (EDMs)

- An \(n \times n \) matrix \(D = (d_{ij}) \) is said to be an EDM iff \(\exists \ p^1, p^2, \ldots, p^n \in \mathbb{R}^r \) such that

\[
d_{ij} = \|p^i - p^j\|^2 \quad \forall \ i, j = 1, \ldots, n.
\]

- The dimension of the affine span of \(p^1, p^2, \ldots, p^n \) is called the embedding dim of \(D \).
Example

\[
D = \begin{bmatrix}
0 & 4 & 5 & 1 \\
4 & 0 & 1 & 5 \\
5 & 1 & 0 & 4 \\
1 & 5 & 4 & 0
\end{bmatrix}
\]
is an EDM.
Example

\[D = \begin{bmatrix} 0 & 4 & 5 & 1 \\ 4 & 0 & 1 & 5 \\ 5 & 1 & 0 & 4 \\ 1 & 5 & 4 & 0 \end{bmatrix} \] is an EDM.

The points that generate \(D \) are:

\(p^1 \)

\(p^2 \)

\(p^3 \)

\(p^4 \)
Example

$D = \begin{bmatrix}
0 & 4 & 5 & 1 \\
4 & 0 & 1 & 5 \\
5 & 1 & 0 & 4 \\
1 & 5 & 4 & 0
\end{bmatrix}$ is an EDM.

The points that generate D are:

- p^1
- p^2
- p^3
- p^4

Embedding dim of D is 2.
EDM Characterization

(Schoenberg ’35, Young and Householder ’38) An $n \times n$ symmetric D with $\text{diag}(D) = 0$ is EDM iff $X := -\frac{1}{2}V^TDV \succeq 0$, and embedding dim of $D = \text{rank } X$, where V is $n \times (n - 1)$ satisfying $V^Te = 0$, $V^TV = I_{n-1}$.
(Schoenberg ’35, Young and Householder ’38) An $n \times n$ symmetric D with $\text{diag}(D) = 0$ is EDM iff $X := -\frac{1}{2}V^T D V \succeq 0$, and embedding dim of $D = \text{rank} X$, where V is $n \times (n - 1)$ satisfying $V^T e = 0, \quad V^T V = I_{n-1}$.

The points p^1, \ldots, p^n that generate D are given by the rows of P where $V X V^T = P P^T$.

EDM Characterization
EDM Characterization

- (Schoenberg ’35, Young and Householder ’38) An $n \times n$ symmetric D with $\text{diag}(D) = 0$ is EDM iff $X := -\frac{1}{2}V^TDV \succeq 0$, and embedding dim of $D = \text{rank } X$, where V is $n \times (n - 1)$ satisfying $V^Te = 0$, $V^TV = I_{n-1}$.

- The points p^1, \ldots, p^n that generate D are given by the rows of P where $VXV^T = PP^T$.

- Since we don’t distinguish between congruent frameworks, P, D and X uniquely determine one another.
\(\Omega \), the set of all equivalent frameworks of \(G(p) \)

Given \(G(P_1) \) in \(\mathbb{R}^r \), let \(X_1 = V^T P_1 P_1^T V \) and for each \((i, j) \notin E \), define \(M^{ij} = -\frac{1}{2} V^T E^{ij} V \).
\(\Omega \), the set of all equivalent frameworks of \(G(p) \)

- Given \(G(P_1) \) in \(\mathbb{R}^r \), let \(X_1 = V^T P_1 P_1^T V \) and for each \((i, j) \notin E\), define \(M^{ij} = -\frac{1}{2} V^T E^{ij} V \).

- Let
\[
\Omega := \{ y : \mathcal{X}(y) := X_1 + \sum_{(i,j) \notin E} y_{ij} M^{ij} \succeq 0 \}.
\]
\[\Omega, \text{ the set of all equivalent frameworks of } G(p) \]

- Given \(G(P_1) \) in \(\mathbb{R}^r \), let \(X_1 = V^T P_1 P_1^T V \) and for each \((i, j) \notin E \), define \(M_{ij} = -\frac{1}{2} V^T E_{ij} V \).

- Let
 \[\Omega := \{ y : \mathcal{X}(y) := X_1 + \sum_{(i,j) \notin E} y_{ij} M_{ij} \geq 0 \} \]

- The set of all equivalent frameworks to \(G(P_1) \) in \(\mathbb{R}^r \) is:
 \[\{ \mathcal{X}(y) : y \in \Omega, \text{ and rank } \mathcal{X}(y) = r \} \]
\(\Omega, \text{ the set of all equivalent frameworks of } G(p) \)

- Given \(G(P_1) \) in \(\mathbb{R}^r \), let \(X_1 = V^T P_1 P_1^T V \) and for each \((i, j) \notin E\), define \(M_{ij} = -\frac{1}{2} V^T E_{ij} V \).

- Let
 \[
 \Omega := \{ y : \mathcal{X}(y) := X_1 + \sum_{(i, j) \notin E} y_{ij} M_{ij} \geq 0 \}.
 \]

- The set of all equivalent frameworks to \(G(P_1) \) in \(\mathbb{R}^r \) is : \(\{ \mathcal{X}(y) : y \in \Omega, \text{ and rank } \mathcal{X}(y) = r \} \).

- The set of all equivalent frameworks to \(G(P_1) \) in all spaces is : \(\{ \mathcal{X}(y) : y \in \Omega \} \).
Properties of Ω

- Ω is a convex, closed and in general a non-polyhedral set.
Properties of \(\Omega \)

- \(\Omega \) is a convex, closed and in general a non-polyhedral set.
- \(\Omega \) always contains the origin.
Properties of Ω

- Ω is a convex, closed and in general a non-polyhedral set.
- Ω always contains the origin.
- Ω is bounded whenever graph \mathcal{G} is connected.
Given the framework $G(p)$:
Ω, An Example

- Given the framework $G(p)$:

Set Ω for $G(p)$.
Given the framework $G(p)$:

Set Ω for $G(p)$
\(\Omega, \text{ An Example} \)

- Given the framework \(G(p) \):

Set \(\Omega \) for \(G(p) \)
Given the framework $G(p)$:

Set Ω for $G(p)$
Characterizing Dimensional Rigidity

Theorem (Alfakih ’07): Let \(G(p) \) be a given framework in \(\mathbb{R}^r \) for some \(r \leq n - 2 \). If

\[
\exists \Psi > 0 : z^i^T \Psi z^j = 0 \quad \forall (i, j) \notin E, \quad (*)
\]

holds, then \(G(p) \) is dimensionally rigid. Otherwise, if \((*)\) does not hold, then \(G(p) \) is dimensionally flexible iff \(\exists y \neq 0 \) such that \(Z^T \mathcal{E}(y) Z \) is nonzero PSD and

\[
\text{nullspace } Z^T \mathcal{E}(y) Z \subseteq \text{nullspace } P^T \mathcal{E}(y) Z,
\]

where \(\mathcal{E}(y) = \sum_{(i,j) \notin E} y_{ij} E^{ij} \).
Some Corollaries

- Checking the validity of Condition (*) is a Semi-Definite Programming problem which can be solved efficiently.
Some Corollaries

- Checking the validity of Condition (*) is a Semi-Definite Programming problem which can be solved efficiently.

- Corollary (Alfakih ’07): Let $G(p)$ be a given framework in \mathbb{R}^{n-2}. Then Condition (*) is necessary and sufficient for $G(p)$ to be dimensionally rigid.
Some Corollaries

- Checking the validity of Condition (*) is a Semi-Definite Programming problem which can be solved efficiently.

- Corollary (Alfakih ’07): Let $G(p)$ be a given framework in \mathbb{R}^{n-2}. Then Condition (*) is necessary and sufficient for $G(p)$ to be dimensionally rigid.

- A framework $G(p)$ in \mathbb{R}^r is in general position if no $r + 1$ of the points p^i, \ldots, p^n are affinely dependent.
More Corollaries

- Corollary (Alfakih ’07): Let $G(p)$ be a given framework in \mathbb{R}^{n-2}. Assume that $G = (V, E)$ is not complete graph and $G(p)$ is in general position then $G(p)$ is dimensionally flexible.
More Corollaries

- Corollary (Alfakih ’07): Let $G(p)$ be a given framework in \mathbb{R}^{n-2}. Assume that $G = (V, E)$ is not complete graph and $G(p)$ is in general position then $G(p)$ is dimensionally flexible.

- Corollary (Alfakih ’07): Let $G(p)$ be a given framework in \mathbb{R}^{r} for some $r \leq n - 2$. Assume that $G(p)$ is in general position. If $\delta(G) \leq r$ then $G(p)$ is dimensionally flexible.
More Corollaries

- Corollary (Alfakih ’07): Let $G(p)$ be a given framework in \mathbb{R}^{n-2}. Assume that $G = (V, E)$ is not complete graph and $G(p)$ is in general position then $G(p)$ is dimensionally flexible.

- Corollary (Alfakih ’07): Let $G(p)$ be a given framework in \mathbb{R}^r for some $r \leq n - 2$. Assume that $G(p)$ is in general position. If $\delta(G) \leq r$ then $G(p)$ is dimensionally flexible.

- These Corollaries are false if $G(p)$ is not in general position.
Examples

\[\text{Dim rigid } G(p) \text{ where } \delta(G) = r = 2 \]
Examples

- Dim rigid $G(p)$ where $\delta(G) = r = 2$

- Dim rigid $G(p)$ where $r = n - 2 = 2$
Characterizing Uniqueness

- Theorem (Alfakih ’07): Let $G(p)$ be a given framework in \mathbb{R}^r for some $r \leq n - 2$. If $G(p)$ is both rigid and dimensionally rigid, then $G(p)$ is unique.
Characterizing Uniqueness

Theorem (Alfakih ’07): Let $G(p)$ be a given framework in \mathbb{R}^r for some $r \leq n - 2$. If $G(p)$ is both rigid and dimensionally rigid, then $G(p)$ is unique.

Theorem (Alfakih ’07): Let $G(p)$ be a given generic framework in \mathbb{R}^r for some $r \leq n - 2$. If $G(p)$ is dimensionally rigid, then $G(p)$ is unique.
Finally

Let $G(p)$ be a generic framework and let Z be the Gale matrix corresponding to $G(p)$. Then
Finally

Let $G(p)$ be a generic framework and let Z be the Gale matrix corresponding to $G(p)$. Then

(Connelly ’05) If \exists a nonsingular symmetric matrix Ψ such that: $z_i^T \Psi z_j = 0 \ \forall (i, j) \notin E$, then $G(p)$ is globally rigid.
Finally

- Let $G(p)$ be a generic framework and let Z be the Gale matrix corresponding to $G(p)$. Then

- (Connelly ’05) If \exists a nonsingular symmetric matrix Ψ such that: $z^i \Psi z^j = 0 \ \forall (i, j) \notin E$, then $G(p)$ is globally rigid.

- (Alfakih ’07) If \exists a positive definite symmetric matrix Ψ such that: $z^i \Psi z^j = 0 \ \forall (i, j) \notin E$, then $G(p)$ is unique.