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Abstract

A bar framework G(p) in r-dimensional Euclidean space is a graph G =
(V, E) on the vertices 1, 2, . . . , n, where each vertex i is located at point pi

in R
r. Given a framework G(p) in R

r, a problem of great interest is that of
determining whether or not there exists another framework G(q), not obtained
from G(p) by a rigid motion, such that ||qi−qj ||2 = ||pi−pj ||2 for all (i, j) ∈ E.
This problem is known as either the global rigidity problem or the universal
rigidity problem depending on whether such a framework G(q) is restricted
to be in the same r-dimensional space or not. The stress matrix S of a bar
framework G(p) plays a key role in these and other related problems.

In this paper, we show that semidefinite programming (SDP) can be effec-
tively used to address the universal rigidity problem. In particular, we use the
notion of non-degeneracy of SDP to obtain a sufficient condition for universal
rigidity, and to re-derive the known sufficient condition for generic universal
rigidity. We present new results concerning positive semidefinite stress ma-
trices and we use a semidefinite version of Farkas lemma to characterize bar
frameworks that admit a nonzero positive semidefinite stress matrix S.
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1 Introduction

A configuration p in r-dimensional Euclidean space is a finite collection of points
p1, . . . , pn in R

r that affinely span R
r. A bar framework in R

r (or a framework 1

for short), denoted by G(p), is a configuration p in R
r together with a simple graph

G = (V,E) on the vertices 1, 2, . . . , n, where each vertex i of G is located at pi.
Figure 1 depicts two frameworks in the plane. The vertices of G are represented by
little circles, while the edges of G are represented as line-segments (or bars). With
a slight abuse of notation, we will, sometimes, refer to the vertices and edges of G
as the vertices and the edges of the framework G(p).

Two frameworks G(p) and G(q) in R
r are said to be congruent if ||qi − qj||=

||pi − pj || for all i, j = 1, . . . , n, where ||.|| denotes the Euclidean norm. That is, G(p)
and G(q) are congruent if configuration q can be obtained from configuration p by
applying a rigid motion such as a translation or a rotation in R

r. On the other hand,
two frameworks G(p) in R

r and G(q) in R
s are said to be equivalent if ||qi − qj||=

||pi − pj || for all (i, j) ∈ E. The term “bar” is used to denote such frameworks since
in any two equivalent frameworks, every two adjacent vertices of G(p) stay the same
distance apart. Thus one can think of each edge of G(p) as a stiff bar.

A framework G(p) in R
r is said to be globally rigid if there does not exist a

framework G(q) in the same r-dimensional Euclidean space that is equivalent, but
not congruent, to G(p). Furthermore, if there does not exist a framework G(q) in
any Euclidean space that is equivalent, but not congruent, to G(p), then G(p) is
said to be universally rigid 2. Obviously, universal rigidity implies global rigidity,
however, the converse need not be true. Framework (b) in Figure 1 is globally rigid
but not universally rigid, since it has no equivalent, non-congruent, framework in
R

2, and since it has an infinite number of equivalent, non-congruent, frameworks in
R

3 and R
4.

The global and universal rigidity problems of frameworks can also be posed in
the context of the graph realization problem (GRP). Given an edge-weighted graph
G = (V,E, ω) where ωij represents a positive weight on the edge (i, j). A realization
of G in R

r is a mapping of the vertices 1, 2, . . . , n of G into points p1, p2, . . . , pn

in R
r such that ||pi − pj ||2 = ωij for each (i, j) ∈ E. The GRP is the problem of

determining whether or not G has a realization in R
r. Thus, the problems of global

rigidity and universal rigidity can be stated as the problems of determining whether
or not, a given realization of G in R

r is unique, up to a rigid motion, in R
r or in all

Euclidean spaces.

1Only bar frameworks are considered here. Tensegrity frameworks fall outside the scope of this

paper.
2There are many other notions of rigidity such as rigidity, infinitesimal rigidity, dimensional

rigidity etc. However, these notions will not be discussed in this paper.
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Figure 1: Two bar frameworks in R
2. Framework (a) is universally rigid while

framework (b) is globally rigid but not universally rigid.

The GRP and the global and universal rigidity of frameworks have important
applications in molecular conformations [11], multidimensional scaling [16, 10] and
wireless sensor networks [22, 13]. In particular, the wireless sensor network local-
ization problem is a special case of the GRP where r = 2 or 3, and where G has a
clique of size at r + 1.

The GRP is well known to be NP-hard [20]. Semidefinite programming (SDP)
was successfully used in [5] to solve a relaxation of the GRP by asking whether a given
edge-weighted graph G has a realization in some Euclidean space, not necessarily in
a given r-dimensional space. SDP also was successfully used in [7, 12, 22, 18, 23]
to solve the wireless senor network localization problem, and in [21] to solve some
problems in tensegrity theory. A tensegrity framework is a generalization of a bar
framework where the edges of graph G are labeled as bars, cables or struts. If an
edge (i, j) is labeled as a cable (strut), then ||pi − pj || is constrained to be ≤ (≥ ) a
certain given value.

The stress matrix S of a framework G(p) is closely related to the Gale matrix
of G(p). It plays a key role in the characterization of generic global rigidity and in
establishing the universal rigidity of a given generic framework G(p) 3.

In this paper, we show that SDP can be effectively used to address the universal
rigidity problem. In particular, we use the notion of SDP non-degeneracy to obtain
a sufficient condition for universal rigidity, and to re-derive the known sufficient
condition for generic universal rigidity. We present new results concerning positive
semidefinite stress matrices and we use a semidefinite version of the Farkas lemma
to characterize frameworks that admit a nonzero positive semidefinite stress matrix
S.

We denote by Sn the subspace of symmetric matrices of order n. The positive
semi-definiteness (definiteness) of a symmetric matrix A is denoted by A � 0 (A �
0). e denotes the vector of all ones in R

n, and In denotes the identity matrix of
order n. Eij denotes the n×n symmetric matrix with 1’s in the (i, j)th and (j, i)th
entries and zeros elsewhere.

3Stress matrices even play a more important role in tensegrity theory.

3



2 Preliminaries

2.1 The Stress Matrix S and the Gale Matrix Z

An equilibrium stress of a framework G(p) is a real valued function ω on E, the set
of edges of G, such that

∑

j:(i,j)∈E

ωij(p
i − pj) = 0 for all i = 1, . . . , n. (1)

One may think of ωij(p
i − pj) as the force exerted by the edge (bar) (i, j) on node i.

This force is called a tension in the bar (i, j) if ωij < 0, and it is called a compression
in the bar (i, j) if ωij > 0. Thus equation (1) is equivalent to the statement that the
net force acting on each node i is equal to zero.

Let ω be an equilibrium stress of G(p). Then the n × n symmetric matrix
S = (sij) where

sij =















−ωij if (i, j) ∈ E,
0 if (i, j) 6∈ E,

∑

k:(i,k)∈E

ωik if i = j,

is called the stress matrix associated with ω, or a stress matrix of G(p).
Let G(p) be a framework with n vertices in R

r. Then it immediately follows that
the following (r + 1) × n matrix

A :=

[

p1 p2 . . . pn

1 1 . . . 1

]

(2)

has full row rank since p1, . . . , pn affinely span R
r. Note that r ≤ n − 1. Let r̄ be

the dimension of the nullspace of A; i.e., r̄ = n− 1− r. For r̄ ≥ 1, let Λ be the n× r̄
matrix whose columns form a basis for the nullspace of A. Λ is called a Gale matrix
corresponding to G(p). We will exploit the fact that Λ is not unique to define a
special sparse Gale matrix Z which is more convenient for our purposes.

Let us write Λ in block form as

Λ =

[

Λ1

Λ2

]

,

where Λ1 is r̄× r̄ and Λ2 is (r +1)× r̄. Since Λ has full column rank, we can assume
without loss of generality that Λ1 is nonsingular. Then Z is defined by

Z := ΛΛ1
−1 =

[

Ir̄

Λ2Λ1
−1

]

. (3)
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Figure 2: The non-generic framework in R
2 of Example 2.1.

Z is called the Gale matrix of G(p). Furthermore, let ziT denote the ith row of
Z. Then the r̄-vector zi is called the Gale transform of pi [14].

The following theorem shows that the Gale matrix Z of framework G(p) is closely
related to the stress matrix S associated with an equilibrium stress ω of G(p).

Lemma 2.1 (Alfakih [4]) Given a framework G(p) with n vertices in R
r, let Z

be the Gale matrix of G(p) and recall that r̄ = n − 1 − r. Further, let S be a stress
matrix of G(p). Then there exists an r̄ × r̄ symmetric matrix Ψ such that

S = ZΨZT . (4)

On the other hand, let Ψ′ be any r̄ × r̄ symmetric matrix such that ziT Ψ′zj = 0 for

all (i, j) 6∈ E, where ziT denotes the ith row of Z. Then S′ = ZΨ′ZT is a stress
matrix of G(p).

Example 2.1 Consider the framework G(p) in Figure 2, where p1 = [0 2]T , p2 =
[2 − 1]T , p3 = [−2 − 1]T , p4 = [0 1]T and p5 = [0 − 1]T . Its Gale matrix is:

Z =













1 0
0 1
0 1

−3/2 0
1/2 −2













.

It is easy to show that G(p) has an equilibrium stress ω = (ω12 = −1, ω13 =
−1, ω14 = 6, ω24 = 3/2, ω25 = −1/2, ω34 = 3/2, ω35 = −1/2), and a stress matrix

S =













4 1 1 −6 0
1 0 0 −3/2 1/2
1 0 0 −3/2 1/2

−6 −3/2 −3/2 9 0
0 1/2 1/2 0 −1













= ZΨZT ,

where Ψ =

[

4 1
1 0

]

.
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2.2 Generic Frameworks

The problems of framework global rigidity and universal rigidity become easier if we
consider frameworks with a “typical” or generic configuration. A configuration p (or
a framework G(p)) in R

r is said to be generic if all the coordinates of p1, . . . , pn are
algebraically independent over the integers. That is, G(p) is generic if there does not
exist a non-zero polynomial f with integer coefficients such that f(p1, . . . , pn) = 0.

The notion of generic frameworks can be weakened to that of frameworks in
general position. A framework G(p) in R

r is said to be in general position if no
subset of the points p1, . . . , pn of cardinality r+1 is affinely dependent. For example,
a set of points in the plane are in general position if no 3 of them lie on a straight
line.

The following lemma will be needed in Section 6. For a proof see [3].

Lemma 2.2 Let G(p) be a framework in general position with n vertices in R
r and

let z1, . . . , zn be the Gale transform of p1, . . . , pn respectively. Recall that r̄ = n−1−r.
Then any subset of z1, . . . , zn of cardinality r̄ is linearly independent.

The following are two recently obtained results concerning generic framework
global and universal rigidity.

Theorem 2.1 (Connelly [9] Gortler et al [15]) Let G(p) be a generic frame-
work of n vertices in R

r. Then G(p) is globally rigid if and only if:

∃ a stress matrix S of G(p) such that rank S = r̄ = n − 1 − r. (5)

Theorem 2.2 (Alfakih [4], Connelly [8]) Let G(p) be a generic framework of n
vertices in R

r. Then G(p) is universally rigid if

∃ a stress matrix S of G(p) such that S � 0 and rank S = r̄ = n − 1 − r. (6)

Note that in light of Lemma 2.1, Conditions (5) and (6) are equivalent, respec-
tively, to the two following conditions, where z1, z2, . . . , zn are the Gale transforms
of p1, p2, . . . , pn.

∃ r̄ × r̄ nonsingular symmetric matrix Ψ: ziT Ψzj = 0, ∀ (i, j) 6∈ E, (7)

∃ r̄ × r̄ matrix Ψ � 0 such that ziT Ψzj = 0, ∀ (i, j) 6∈ E. (8)

Also, note that the assumption in Theorems 2.1 and 2.2 that the framework is
generic can not be dropped. The framework of Example 2.1 depicted in Figure 2,
which is clearly non-generic, is not globally rigid even though it satisfies Condition
(5). Similarly, the non-generic framework of Example 6.1 is not universally rigid
even though it satisfies Condition (6).
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3 A Characterization of Equivalent Frameworks

The first step in making the universal rigidity problem amenable to semidefinite pro-
gramming is to use a Gram matrix, or more accurately a projected Gram matrix, to
represent a configuration p. This enables us to characterize the set of all frameworks
that are equivalent to a given framework G(p).

Given a configuration p = (p1, . . . , pn) in R
r, the n × r matrix

P :=











p1T

p2T

...

pnT











(9)

is called the configuration matrix of p. The n × n symmetric matrix B := PP T is
called the Gram matrix associated with configuration p.

Note that in addition to being positive semidefinite of rank r, matrix B is in-
variant under orthogonal transformations. Furthermore, wlog we assume that in
any configuration p, the origin coincides with the centroid of the points p1, . . . , pn;
i.e., Be = 0. Then, B becomes also invariant under translations. Consequently, all
congruent frameworks have the same Gram matrix. Hence, representing frameworks
by Gram matrices, instead of configuration matrices, allows us to identify all con-
gruent frameworks. Therefore, in the sequel we don’t distinguish between congruent
frameworks.

The set {C ∈ Sn : C � 0, Ce = 0} forms a face of the cone of n × n symmet-
ric positive semidefinite matrices. This face is isomorphic to the cone of positive
semidefinite matrices of order n−1. For our purposes, it is more convenient to work
in this latter cone. To this end, let V be an n × (n − 1) matrix such that

V T e = 0, V T V = In−1. (10)

Definition 3.1 Given a configuration p = (p1, p2, . . . , pn) in R
r. The projected

Gram matrix X associated with p is the (n − 1) × (n − 1) matrix

X := V T BV, (11)

where B is the Gram matrix associated with p.

Note that X is an (n − 1) × (n − 1) positive semidefinite matrix of rank r.
Given a configuration p, the projected Gram matrix associated with p can be

easily computed using equation (11). On the other hand, given a projected Gram
matrix X, configuration p can be recovered as follows. Compute the Gram matrix

7



B which is given by B = V XV T . Then factorize B as B = PP T . This can be
done since B is positive semidefinite. Furthermore, since rank B = r and Be = 0,
it follows that P is an n × r matrix such that P T e = 0. Thus the points p1, . . . , pn

are simply given by the rows of P . Furthermore, their centroid coincides with
the origin. Recall that we do not distinguish between congruent configurations.
Thus, the configuration matrix P , the Gram matrix B and the projected Gram
matrix X uniquely determine one another. Hence, the terms “framework G(p)” and
“framework G(X)” can be used interchangeably. For more details see [3].

Let G(p̂) be a given framework in R
r. To avoid trivialities, we assume that

G = (V,E) is not the complete graph. Let m̄ denote the number of missing edges
of G. For each (i, j) 6∈ E define the matrix

M ij :=
1

2
V T EijV. (12)

Recall that Eij is the n × n matrix with 1’s in the (i, j)th and (j, i)th entries and
0’s elsewhere. Let X̂ be the projected Gram matrix corresponding to G(p̂) and let

Ω := {y ∈ R
m̄ : X(y) := X̂ +

∑

(i,j)6∈E

yijM
ij � 0}. (13)

and
Ωr := {y ∈ Ω : rank X(y) = r}. (14)

Note that the origin (y = 0) always belongs to Ω and to Ωr since X̂ is positive
semidefinite of rank r. It was shown in [1] that the set of all frameworks G(q) in R

s,
1 ≤ s ≤ n − 1, that are equivalent to G(p̂) is given by

{G(X(y)) : y ∈ Ωs}, (15)

and that the set of all frameworks G(q) in all Euclidean spaces that are equivalent
to G(p̂) is given by

{G(X(y)) : y ∈ Ω}. (16)

For more details on set Ω see [2]. It is clear that framework G(p̂) is globally rigid if
and only if the set Ωr is a singleton. Furthermore, G(p̂) is universally rigid if and
only if the set Ω is a singleton. Note that Ω is a closed convex set. This makes the
universal rigidity problem amenable to SDP. On the other hand, the global rigidity
problem is much harder to tackle since Ωr is, in general, non-convex due to the rank
constraint.

The following technical lemma establishes the connection between the projected
Gram matrix of a given framework G(p̂) and the Gale matrix of G(p̂).
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Lemma 3.1 (Alfakih [3]) Let G(p̂) be a given framework with n vertices in R
r for

some r ≤ n− 2; and let Z be the Gale matrix of G(p̂). Further, let U and W be the
matrices whose columns form orthonormal bases of the nullspace and the rangespace
of X̂, where X̂ is the projected Gram matrix associated with p̂. Then

1. V U = ZQ for some nonsingular matrix Q, i.e., V U is a Gale matrix.

2. V W = PQ′ for some nonsingular matrix Q′, where P is the configuration
matrix of p̂.

4 Positive Semidefinite Stress Matrices

Using the results of the previous section, we focus in this section on stress matrices
that are positive semidefinite. Consider the following pair of dual SDP problems,
where X̂ is the projected Gram matrix of a given framework G(p̂) in R

r, and M ij

are as defined in (12).

(P): max
y

0T y

subject to X̂ +
∑

(i,j)6∈E

yijM
ij � 0. (17)

(D): min
Y

trace (X̂Y )

subject to trace (Y M ij) = 0 for (i, j) 6∈ E,
Y � 0.

(18)

Two remarks concerning problems (17) and (18) are in order here. First, it
follows from (13) that the set of all frameworks G(X(y)) that are equivalent to G(p̂),
is equal to the the set of feasible solutions of the primal problem (17). Furthermore,
since the objective function of problem (17) is identically equal to zero, the set of all
frameworks that are equivalent to G(p̂), is also equal to the set of optimal solutions
of problem (17).

Second, let W and U be the (n− 1)× r and (n− 1)× r̄ matrices whose columns
form orthonormal bases for the rangespace and the nullspace of X̂ respectively.
Since X̂ � 0, any optimal solution of the dual problem (18) must be of the form
Y = UΨUT for some Ψ � 0. Furthermore, using (12), trace (Y M ij) = 0 implies
that trace (V UΨUT V T Eij) = 0. Thus by Lemma 3.1 we have (ZΨ′ZT )ij = 0 for
all (i, j) 6∈ E, where Ψ′ = QΨQT � 0, for some nonsingular matrix Q. Hence we
have the following theorem.

9



Theorem 4.1 Let S be a positive semidefinite stress matrix of framework G(p̂).
Then Y is an optimal solution of the dual problem (18), where

Y = V T SV and S = V Y V T . (19)

That is, Y is a “projected stress matrix” of G(p̂).

The connection between the stress matrix and the optimal dual solutions of
certain SDP problems in tensegrity theory was first observed in [21].

A main ingredient in Connelly’s proof of the “if” part of Theorem 2.1 is the
following theorem.

Theorem 4.2 (Connelly [9]) Let G(p̂) be a given framework in R
r and let S be a

stress matrix of G(p̂). If G(p̂) is generic, then S is a stress matrix of any framework
G(q) in R

r that is equivalent to G(p̂).

A similar result is presented next, where the assumption of the genericness of the
framework is replaced by the assumption of positive semi-definiteness of the stress
matrix. This result is a simple consequence of SDP complementary slackness.

Theorem 4.3 Let G(p̂) be a given framework, generic or otherwise, in R
r and let

S be a stress matrix of G(p̂). If S � 0, then S is a stress matrix of any framework
G(q) that is equivalent to G(p̂).

Proof. Let X̂ and X be the projected Gram matrices of frameworks G(p̂)
and G(q) respectively. It suffices to show that XY = 0, where Y = V T SV . But
from (17) we have that XY =X̂Y +

∑

(i,j)6∈E yijM
ijY =

∑

(i,j)6∈E yijM
ijY . Thus

it follows from (18) that trace (XY ) = 0. Hence XY = 0 since both X � 0 and
Y � 0.

2

Next we characterize frameworks that admit a non-zero positive semidefinite
stress matrix.

5 Frameworks with Positive Semidefinite Stress Matri-

ces

In this section, we use the following known semidefinite version of Farkas lemma to
characterize frameworks that admit a non-zero positive semidefinite stress matrix.
A proof is added for completeness.

10



Lemma 5.1 Let A0, A1, A2, . . . , Ak be given symmetric matrices of order n. Then
exactly one of the following two statements hold.

1. ∃ y ∈ R
k such that A0 +

∑k
i=1 yiA

i � 0,

2. ∃ Y � 0, Y 6= 0, trace (Y A0) ≤ 0 and trace (Y Ai) = 0 for i = 1, . . . , k.

Proof. First we prove that Statements 1 and 2 can not hold at the same time.
Assume that there exist y ∈ R

k and Y � 0, Y 6= 0 such that A0 +
∑k

i=1 yiA
i � 0,

trace (Y A0) ≤ 0, and trace (Y Ai) = 0 for i = 1, . . . , k. Then 0 < trace (Y (A0 +
∑k

i=1 yiA
i)) = trace (Y A0) ≤ 0, a contradiction.

Now assume that Statement 1 does not hold and let L = {C ∈ Sn : C =
A0 +

∑k
i=1 yiA

i for some y ∈ R
k}. Then L ∩ {C : C � 0} = ∅. By the separation

theorem [19], there exists a Y ∈ Sn, Y 6= 0 such that trace (Y C) ≥ 0 for all C � 0,
which implies that Y � 0; and trace (Y C) ≤ 0 for all C ∈ L, which implies that
trace (Y Ai) = 0 for i = 1, . . . , k and trace (Y A0) ≤ 0. Therefore, Statement 2
holds.

2

Before we present our characterization, in the following theorem, of frameworks
that admit a non-zero positive semidefinite stress matrix, note that a framework of n
vertices in R

n−1 is a framework where its vertices are located at affinely independent
points.

Theorem 5.1 Let G(p̂) be a given framework with n vertices in R
r. Then G(p̂)

admits a non-zero positive semidefinite stress matrix S if and only if there does not
exist a framework G(q) in R

n−1 that is equivalent to G(p̂).

Proof. Let X̂ be the projected Gram matrix of framework G(p̂) and let U
be the matrix whose columns form an orthonormal basis for nullspace of X̂ . Then
there does not exist a framework G(q) in R

n−1 that is equivalent to G(p̂) if and
only if there does not exist a y ∈ R

m̄ such that X(y) = X̂ +
∑

(i,j)6∈E yijM
ij � 0,

if and only if there exists a Y � 0, Y 6= 0, trace (Y X̂) ≤ 0 and trace (Y M ij) = 0
for all (i, j) 6∈ E. The first equivalence follows from (15) since rank X(y) = n − 1 if
and only if X(y) � 0. The second equivalence follows from Lemma 5.1. Now since
X̂ � 0, it follows that trace (Y X̂) ≤ 0 is equivalent to trace (Y X̂) = 0. It also
follows that Y = UΨUT for some positive semidefinite matrix Ψ.

Therefore, there does not exist a framework G(q) in R
n−1 that is equivalent to

G(p̂) if and only if there exists a non-zero positive semidefinite matrix Ψ such that
trace (UΨUT M ij) = 0 for all (i, j) 6∈ E. But, it follows from the definition of M ij

in (12) and from Lemma 3.1 that −2 (trace (UΨUT M ij)) = trace (UΨUT V T EijV )
= trace (ZΨ′ZTEij) where Ψ′ = QΨQT for some nonsingular matrix Q. The result

11



follows from Lemma 2.1 since the matrix ZΨ′ZT whose ijth entries vanish for all
(i, j) 6∈ E is a stress matrix of G(p̂) and since Ψ′ is nonzero positive semidefinite if
and only if Ψ is nonzero positive semidefinite.

2

6 A Sufficient Condition for Universal Rigidity

We apply the notion of SDP non-degeneracy to the pair of dual problems (17) and
(18) to obtain a sufficient condition for universal rigidity of frameworks. We also
show that Condition (6) in Theorem 2.2 follows from this sufficient condition when
the given framework is generic.

Let S be a given positive semidefinite stress matrix of rank s of framework G(p̂).
Let W ′ and U ′ be the (n−1)×s and (n−1)×(n−1−s) matrices whose columns form
orthonormal bases for the rangespace and the nullspace of Y = V T SV respectively.
Following [6], let

L = span {M ij : (i, j) 6∈ E},

and let

TY = {C ∈ Sn−1 : C = [W ′ U ′]

[

Φ1 Φ2

ΦT
2 0

]

[

W ′T

U ′T

]

},

where Φ1 is a symmetric matrix of order s and Φ2 is s × (n − 1 − s). TY is the
tangent space, at Y , to the set of (n − 1) × (n − 1) symmetric matrices of rank s.

Definition 6.1 (Alizadeh et al [6]) Ŷ is said to be non-degenerate if

TY + L⊥ = Sn−1, (20)

otherwise, Y is called degenerate.

Equation (20) is equivalent to

T ⊥
Y ∩ L = {0}, (21)

where T ⊥
Y is the orthogonal complement of TY , namely

T ⊥
Y = {C ∈ Sn−1 : C = U ′ΦU ′T }.

The following theorem is well known.
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Theorem 6.1 (Alizadeh et al [6]) Consider a pair of dual SDP problems, where
A0, A1, . . . , Ak are given matrices in Sn−1, and b is a given vector in R

k.

(P): max
y

bT y

subject to A0 −
k

∑

i=1

yiA
i � 0.

(D): min
Y

trace (A0Y )

subject to trace (Y Ai) = bi for i = 1, . . . , k,
Y � 0.

If the dual problem has a non-degenerate optimal solution, then the primal optimal
solution is unique.

Applying this theorem to the pair of dual problems (17) and (18) we get the
following theorem.

Theorem 6.2 Given a framework G(p̂) in R
r, let S be a positive semidefinite stress

matrix of G(p̂) and let U ′ be the matrix whose columns form an orthonormal basis
of Y = V T SV . If the trivial solution, Φ = 0 and yij = 0 for all (i, j) 6∈ E, is the
only solution of the system of equations:

U ′ΦU ′T +
∑

(i,j)6∈E

yijM
ij = 0. (22)

Then G(p̂) is universally rigid.

Proof. Assume that the only solution of (22) is the trivial solution. Then
T ⊥

Y ∩L = {0}. Hence, Y is a non-degenerate optimal solution of (dual) problem (18).
Thus, the set of optimal solution of (primal) problem (17) is a singleton. Therefore,
G(p̂) is universally rigid.

2

Two remarks concerning (22) are in order here. First, Φ = 0 if and only if yij = 0
for all (i, j) 6∈ E since the set {M ij : (i, j) 6∈ E} is linearly independent, and since U ′

is full column rank. Second, the condition that the only solution of (22) is the trivial
solution can be equivalently stated as the condition that a set of certain matrices is
linearly independent.

Next we focus our attention on generic frameworks. The following lemma is
needed in the proof of Theorem 6.3 below.

13



Lemma 6.1 (Alfakih [4]) Let G(p) be a generic framework in R
r and let each

vertex of G have a degree at least r. Further, let Z be the Gale matrix of G(p).
Then there does not exist a non-zero y = (yij) ∈ R

m̄ such that

∑

(i,j)6∈E

yijV
T EijZ = 0.

Theorem 6.3 Theorem 2.2 follows as a corollary of Theorem 6.2 .

Proof. Assume that framework G(p) in R
r is generic and that S = ZΨZT

is a stress matrix of G(p) where matrix Ψ is r̄ × r̄ positive definite (recall that
r̄ = n−1−r). We will show that, in this case, the only solution of (22) is the trivial
solution. Hence it would follow from Theorem 6.2 that G(p) is universally rigid.

First, we show that every vertex of G has a degree at least r + 1. For assume, to
the contrary, that the degree of one node of G, say node 1, is ≤ r, and wlog assume
that nodes 2, 3, . . . , r̄+1 are not adjacent to node 1. Thus it follows from Lemma 2.2
that z2, z3, . . . , zr̄+1 form a basis in R

r̄. Hence there exist λ2, λ3, . . . , λr̄+1, not all of

which are zeros, such that z1 = λ2z
2 +λ3z

3 + · · ·+λr̄+1z
r̄+1. Therefore, z1T

Ψzi = 0
for i = 2, . . . , r̄ +1 implies that z1Ψz1 = 0 and therefore, Ψ is singular contradicting
our assumption that Ψ � 0.

Now, the stress matrix S = ZΨZT with Ψ � 0 also implies that the columns
of the matrix [P e] form a basis for the nullspace of S since in this case, rank
S = n − 1 − r. Consequently, it follows from Lemma 3.1 that the columns of V T P
form a basis for the nullspace of Y = V T SV . Thus, in this case (22) reduces to

V T (PΦ′P T +
∑

(i,j)6∈E

y′ijE
ij)V = 0. (23)

But (23) is equivalent to

PΦ′P T +
∑

(i,j)6∈E

y′ijE
ij = aeT + eaT , (24)

for some n-vector a.
Thus it suffices to show that the only solution of (24) is the trivial solution.
Assume, to the contrary, that (24) has a solution Φ′ 6= 0, y′ = (y′ij) 6= 0.

Then by multiplying (24) from the left by V T and from the right by Z we get
∑

(i,j)6∈E y′ijV
T EijZ = 0. But this contradicts, from Lemma 6.1, our assumption

that G(p) is generic. Thus the result follows.
2

Finally, we end with the following numerical example that illustrates some of the
results of this paper.
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Figure 3: The non-generic framework G(p) in R
2 of Example 6.1. Here, the missing

edges of G are (4, 1) and (4, 3).

Example 6.1 Consider the non-generic framework G(p) in R
2 depicted in Figure

3. G(p) has two missing edges (4, 1) and (4, 3), and r̄ = n − 1 − r = 1 in this case.
It is easy to show that the Gale matrix Z and a stress matrix S of G(p) are

Z = [1 − 2 1 0]T and S = ZZT .

Note that S is positive semidefinite with rank 1 = r̄. Thus G(p) satisfies Condition
(6) of Theorem 2.2. However, G(p) is obviously not universally rigid (in fact it is
not even globally rigid). This shows that the assumption in Theorem 2.2 that the
framework is generic can not be dropped.

On the other hand, since stress matrix S is non-zero positive semidefinite, it fol-
lows from Theorem 5.1 that there does not exist a framework in R

3 that is equivalent
to G(p). Indeed, this is obviously the case. In fact, G(p) has an infinite number
of equivalent frameworks in R

2, and it has two equivalent frameworks in R
1: One

where node 4 coincides with node 1, and one where node 4 coincides with node 3.

7 Summary and Concluding Remarks

In this paper, we used semidefinite programming techniques to tackle the universal
rigidity problem. This problem was made amenable to SDP by the use of projected
Gram matrices to represent point configurations in Euclidean space, and by the
characterization of the set of all frameworks that are equivalent to a given framework
in R

r, in terms of a convex closed set formed by the intersection of the positive
semidefinite cone with an affine subspace.

We characterized frameworks that admit non-zero positive semidefinite stress
matrices, and we obtained some new results concerning such matrices. We used the
notion of semidefinite programming non-degeneracy to obtain a sufficient condition
for universal rigidity, and we showed that this condition yields the known sufficient
condition for generic universal rigidity.

The fact that the set of all frameworks in R
r that are equivalent to a given

framework in R
r is non-convex, due to the rank constraint, makes the global rigidity
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problem much harder to tackle. This also provides a challenge to extend the tech-
niques used in the paper to global rigidity and to indefinite stress matrices. Perhaps
a first step in that direction would be to use Moreau Theorem [17] to express an in-
definite stress matrix as the difference between two orthogonal positive semidefinite
matrices.
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