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ON THE UNIVERSAL RIGIDITY OF GENERIC BAR
FRAMEWORKS

A. Y. ALFAKIH

Abstract. In this paper, we present a sufficient condition for the uni-
versal rigidity of a generic bar framework G(p) in terms of the Gale
matrix Z corresponding to G(p). We also establish a relationship be-
tween the stress matrix S and the Gale matrix Z for bar frameworks.
This allows us to translate back and forth between S and Z in recently
obtained results concerning universal rigidity, global rigidity and dimen-
sional rigidity of generic bar frameworks.

1. Introduction

An r-configuration p is a finite set of points p1, . . . , pn in Rr whose affine
hull is Rr. A bar framework (or simply a framework), denoted by G(p), in
Rr is a simple graph G = (V,E) on the vertices 1, . . . , n together with an r-
configuration p, where each vertex i of G is located at point pi. With a slight
abuse of notation, sometimes we will refer to the vertices and edges of graph
G as the vertices and edges of the framework G(p). To avoid trivialities, we
assume that graph G is connected and not complete.

An example of two frameworks in R2 is given in Figure 1. The vertices
of the framework are represented by little circles, while the edges (bars) are
represented by straight lines.

Two frameworks G(p) in Rr and G(q) in Rs are said to be equivalent1 if
||qi − qj ||2 = ||pi − pj ||2 for all (i, j) ∈ E, where ||.|| denotes the Euclidean
norm. On the other hand, two frameworks G(p) and G(q) in Rr are said to
be congruent if ||qi−qj ||2 = ||pi−pj ||2 for all i, j = 1, . . . , n; i.e., frameworks
G(p) and G(q) in Rr are congruent if the r-configurations p and q can be
obtained from each other by a rigid motion such as a rotation or translation
in Rr. In this paper, we do not distinguish between congruent configura-
tions. This is particularly convenient since we use Gram matrices, or more
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accurately projected Gram matrices, to represent r-configurations. Thus all
congruent frameworks are represented by the same projected Gram matrix
hence it is quite natural to identify congruent frameworks. As a result, we
assume without loss of generality that the centroid of the points p1, . . . , pn

coincides with the origin.
A framework G(p) is said to be generic if all the coordinates of p1, . . . , pn

are algebraically independent over the integers. That is, G(p) is generic
if there does not exist a nonzero polynomial f(x1, . . . , xrn) with integer
coefficients such that f(p1

1, . . . , p
1
r , . . . , p

n
1 , . . . , p

n
r ) = 0.

1.1. Global Rigidity of Frameworks. A framework G(p) in Rr is said
to be rigid if for some ε > 0, there does not exist a framework G(q) in Rr

which is equivalent to G(p) such that ||pi−qi|| < ε for all i = 1, . . . , n. Recall
that in this paper we don’t distinguish between congruent frameworks. A
framework G(p) in Rr is said to be globally rigid if there does not exist a
frameworkG(q) in the same space Rr which is equivalent toG(p). Obviously,
rigidity is a necessary, albeit not sufficient, condition for global rigidity of a
framework.

The problem of global rigidity of frameworks has received a great deal of
attention recently [9, 10, 12, 13, 14, 15, 16]. Hendrickson [13] proved that if
a generic framework G(p) in Rr with at least r+ 1 vertices is globally rigid,
then the graph G = (V,E) is r+1 vertex-connected and G(p) is redundantly
rigid. A graph G is said to be k vertex-connected if G remains connected
after deleting fewer than k of its vertices. A framework G(p) is redundantly
rigid if it remains rigid after deleting any one edge of G. Hendrickson also
conjectured that r + 1 vertex-connectivity of G and redundant rigidity of
G(p) are sufficient for global rigidity of a generic framework G(p). This
conjecture, which is obviously true for r = 1, was shown by Connelly [8]
to be false for r ≥ 3. Jackson and Jordán [15] proved that Hendrickson’s
conjecture is true for r = 2.

Theorem 1.1 (Hendrickson [13], Jackson and Jordán [15]). Given a generic
framework G(p) in R2, then G(p) is globally rigid in R2 if and only if G is
either a complete graph on at most three vertices or G is 3-vertex-connected
and G(p) is redundantly rigid.

Connelly [9] gave a sufficient condition, in terms of the stress matrix, for
a generic framework G(p) in Rr, for any r, to be globally rigid; and he con-
jectured that this condition is also necessary. Gortler et al. [12] proved that
Connelly’s conjecture is indeed true. Thus, the following theorem charac-
terizes generic global rigidity in any dimension.

Theorem 1.2 (Connelly [9], Gortler et al. [12]). Given a generic framework
G(p) with n vertices in Rr, let S be the stress matrix associated with an
equilibrium stress ω for G(p). Then G(p) is globally rigid in Rr if and only
if rank S = n− 1− r.
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1.2. Universal Rigidity of Frameworks. A framework G(p) in Rr is said
to be universally rigid if there does not exist a framework G(q) in Rs, which
is equivalent to G(p), for any s, 1 ≤ s ≤ n− 1. It immediately follows that
universal rigidity implies global rigidity but the converse is not true. The
framework (b) in Figure 1 is globally rigid in R2 but it is not universally
rigid.

The problem of framework universal rigidity has received less attention
than that of global rigidity. As it turns out, the notion of universal rigidity
is closely related to that of dimensional rigidity first introduced in [4]. A
framework G(p) in Rr is said to be dimensionally rigid if there does not exist
a framework G(q) in Rs, which is equivalent to G(p), for any s ≥ r + 1. If
G(p) is not dimensionally rigid, we say it is dimensionally flexible. Alfakih [4]
proved that a given framework G(p), not necessarily generic, is universally
rigid2 if it is both rigid and dimensionally rigid.

Theorem 1.3 (Alfakih [4]). Let G(p) be a given framework with n vertices
in Rr for some r ≤ n− 2. If G(p) is both rigid and dimensionally rigid then
G(p) is universally rigid.

Alfakih also presented in [4] the following sufficient condition for dimen-
sional rigidity of frameworks.

Theorem 1.4 (Alfakih [4]). Let G(p) be a given framework with n vertices
in Rr for some r ≤ n − 2, and let Z be the Gale matrix corresponding to
G(p). Further, let r = n− 1− r and let ziT denote the ith row of Z. If the
following condition holds

(1) there exists an r × r symmetric positive definite matrix Ψ such that
ziT Ψzj = 0,∀(i, j) 6∈ E,

then G(p) is dimensionally rigid.

Two remarks are in order here. First, if G = (V,E) is the complete
graph then Condition (1) trivially holds. Second, checking the validity of
Condition (1) is a semi-definite programming problem which can be solved
efficiently (see [4] for more details). Also note that the necessary and suffi-
cient condition for generic global rigidity in Theorem 1.2 is given in terms
of stress matrix S while the sufficient condition for dimensional rigidity in
Theorem 1.4 is given in terms of Gale matrix Z.

In this paper we show that Theorem 1.3 simplifies if the given framework
is generic. In particular, we show that if a generic framework G(p) is dimen-
sionally rigid then it is universally rigid. Hence, we show that Condition
(1) is sufficient, and we conjecture that it is also necessary, for the universal
rigidity of generic frameworks.

We also establish a relationship between the stress matrix S associated
with an equilibrium stress ω for a framework G(p) and the Gale matrix Z

2The term “unique” was used instead of the term “universally rigidity” in [4] and in
an earlier version of this paper.
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Figure 1: An example of two frameworks in R2. The framework in (a) is
universally rigid (hence it is globally rigid); while the framework in (b) is
globally rigid but not universally rigid.

corresponding to G(p). This allows us to express the sufficient and necessary
condition for generic global rigidity, and the above sufficient condition for
generic universal rigidity in terms of either S or Z.

2. Gale Matrices and Stress Matrices

Let G(p) be a given framework with n vertices in Rr and let e denote the
vector of all 1’s in Rn. Consider the (r + 1)× n matrix[

P T

eT

]
=
[
p1 p2 · · · pn

1 1 · · · 1

]
.

Recall that the affine hull of p1, . . . , pn has dimension r, i.e., the points
p1, . . . , pn are not contained in a proper hyper-plane in Rr. Then r ≤ n− 1,

and the matrix
[
P T

eT

]
has full row rank. Let r = n− 1− r and for r ≥ 1,

let Λ be the n × r matrix whose columns form a basis for the null space

of
[
P T

eT

]
. Λ is called a Gale matrix corresponding to G(p); and the ith

row of Λ, considered as a vector in Rr, is called a Gale transform of pi [11].
Gale transform plays an important role in the theory of polytopes. We take
advantage of the fact that Λ is not unique to define a special sparse Gale
matrix Z which is also more convenient for our purposes.

Let us write Λ in block form as

Λ =
[

Λ1

Λ2

]
,

where Λ1 is r× r and Λ2 is (r+ 1)× r. Since Λ has full column rank, we can
assume without loss of generality that Λ1 is non-singular. Then Z is defined
as

(2.1) Z := ΛΛ1
−1 =

[
Ir

Λ2Λ1
−1

]
.
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Let ziT denote the ith row of Z then it readily follows that z1, z2, . . . , zr,
the Gale transforms of p1, p2, . . . , pr respectively, are simply the standard
unit vectors in Rr.

Let G(p) be a framework in Rr where G = (V,E) has n vertices and m
edges. Associate with each edge (i, j) of G a scalar ωij . The vector ω = (ωij)
in Rm such that

(2.2)
∑

j:(i,j)∈E

ωij(pi − pj) = 0 for all i = 1, . . . , n,

is called an equilibrium stress for G(p). Given an equilibrium stress ω, let
S = (sij) be the n× n symmetric matrix defined by:

sij =


−ωij if (i, j) ∈ E,

0 if (i, j) 6∈ E,∑
k:(i,k)∈E

ωik if i = j.

S is called the stress matrix associated with ω. The following lemma shows
that the Gale matrix Z corresponding to G(p) and the stress matrix S
associated with an equilibrium stress ω of G(p) are closely related.

Lemma 2.1. Given a framework G(p) with n vertices in Rr, let Z be the
Gale matrix corresponding to G(p) and recall that r = n − 1 − r. Further,
let S be the stress matrix associated with an equilibrium stress ω for G(p).
Then

(2.3) S = ZΨZT for some r × r symmetric matrix Ψ.

Furthermore, let ziT be the ith row of Z. If Ψ′ is any r × r symmetric
matrix such that ziT Ψ′zj = 0 for all (i, j) 6∈ E, then ZΨ′ZT is a stress
matrix associated with an equilibrium stress ω for G(p).

Proof. Let S be the stress matrix associated with an equilibrium stress ω
for G(p). Then eTS = 0 and P TS = 0. Hence the columns of S belong to

the null space of
[
P T

eT

]
. Thus S = ZA for some r×n matrix A. But since

S is symmetric and Z has full column rank, it follows that the columns of

AT also belong to the null space of
[
P T

eT

]
. Therefore S = ZΨZT for some

r × r symmetric matrix Ψ.
On the other hand, let Ψ′ be any r × r symmetric matrix such that

ziT Ψ′zj = 0 for all (i, j) 6∈ E and let S′ = (s′ij) = ZΨ′ZT . Then s′ij = 0 for
all (i, j) 6∈ E and eTS′ = 0 and P TS′ = 0. Therefore, for i 6= j, ωij = −s′ij
is an equilibrium stress for G(p) and the result follows. �

Lemma 2.1 was used in [5] to establish relations between the rigidity
matrix and the “dual” rigidity matrix introduced in [5]. Also, the following
result obtained by Connelly follows immediately from the Lemma 2.1.
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Corollary 2.2 (Connelly [7]). Let S be the stress matrix associated with an
equilibrium stress ω for framework G(p) with n vertices in Rr, then

(2.4) rank S ≤ r = n− 1− r

3. Main Results

Next we show that Theorem 1.3 simplifies when the given framework is
generic.

Theorem 3.1. Let G(p) be a given generic framework in Rr with n vertices
for some r ≤ n− 2. If G(p) is dimensionally rigid, then G(p) is universally
rigid.

Section 4 of the paper is dedicated to a proof of this theorem. The fol-
lowing is an immediate corollary of Theorems 1.4 and 3.1.

Theorem 3.2. Let G(p) be a generic framework with n vertices in Rr for
some r ≤ n− 2, and let Z be the Gale matrix corresponding to G(p). Then
Condition (1) is sufficient for the universal rigidity of G(p).

In light of Lemma 2.1, we can express the sufficient and necessary condi-
tion for generic global rigidity and the sufficient condition for generic uni-
versal rigidity in terms of either the stress matrix S or the Gale matrix Z.
Thus Theorems 1.2 and 3.2 can be equivalently stated as follows:

Theorem 3.3. Given a generic framework G(p) with n vertices in Rr, let
Z be the Gale matrix corresponding to G(p). Recall that r = n− 1− r and
let ziT be the ith row of Z. Then G(p) is globally rigid if and only if

(2) there exists an r × r symmetric non-singular matrix Ψ such that
ziT Ψzj = 0,∀(i, j) 6∈ E.

Theorem 3.4. Let G(p) be a given generic framework with n vertices in
Rr for some r ≤ n− 2. If there exists a stress matrix S associated with an
equilibrium stress ω for G(p) such that S is positive semi-definite with rank
r = n− 1− r, then G(p) is universally rigid.

Since universal rigidity implies global rigidity, it is interesting to note
that whereas Ψ in the sufficient and necessary condition for generic global
rigidity (Condition (2)) is required to be non-singular, Ψ in the sufficient
condition for generic universal rigidity (Condition (1)) is required to satisfy
the stronger notion of positive definiteness.

Being able to use the Gale matrix Z as an alternative to the stress matrix
S in the above results offers new insights into these results. For example,
in [4], the fact that the Gale matrix Z contains information on the affine
dependencies among the points p1, . . . , pn, is used to derive some interesting
results concerning dimensional and universal rigidity of frameworks whose
vertices are in general position. Points p1, . . . , pn in Rr are said to be in
general position if no r + 1 of them are affinely dependent. For example,
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points in the plane are in general position if no three of them lie on a straight
line.

We conclude this section with the following conjecture:
Conjecture. Let G(p) be a given generic framework in Rr with n vertices
for some r ≤ n − 2, and let Z be the Gale matrix for G(p). If G(p) is
universally rigid then Condition (1) holds.

Example 3.1 in [4] shows that this conjecture is false if the framework
G(p) is not generic.

4. Proof of Theorem 3.1

Recall that e denotes the vector of all 1’s in Rn. Positive semi-definiteness
of a symmetric matrix A is denoted by A � 0. For a matrix A, diag(A)
denotes the vector consisting of the diagonal entries of A. Finally, the n×n
identity matrix will be denoted by In.

Let us represent an r-configuration p1, . . . , pn of a framework G(p) in Rr

by the n× r matrix

P =

 p1T

...
pnT

 .
Note that P T e = 0 since we assume that the centroid of the points p1, . . . , pn

coincides with the origin. Let B be the Gram matrix of the points p1, . . . , pn,
i.e., B = PP T , and let V be an n× (n− 1) matrix such that

(4.1) V T e = 0 , V TV = In−1 .

For the purposes of this paper, it is convenient to represent an r-configuration
of a framework G(p) in Rr by the (n− 1)× (n− 1) projected Gram matrix
X defined by

(4.2) X := V TBV = V TPP TV.

Clearly X, which is invariant under rigid motions, is positive semidefinite
with rank r. Furthermore, since we do not distinguish between congruent
frameworks, it follows that P and X uniquely determine each other (for
more details see [4]). Thus, we will use G(p) and G(X) interchangeably.

Given a framework G(p1) in Rr where G = (V,E) is not the complete
graph. Let m denote the number of missing edges of G. For each (i, j) 6∈ E
define the matrix

(4.3) M ij := − 1
2
V TEijV,

where Eij is the n × n matrix with ones in the (i, j)th and (j, i)th entries
and zeros elsewhere. Let X1 be the projected Gram matrix corresponding
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to p1, i.e., X1 = V TP1P
T
1 V , and let

(4.4) Ω =
{
y ∈ Rm : X(y) := X1 +

∑
(i,j)6∈E

yijM
ij � 0

}
.

It was shown in [1] that the set of all frameworks G(q) in Rr that are
equivalent to G(p1) is given by

(4.5) {G(X(y)) : y ∈ Ω and rank X(y) = r};
and that the set of all frameworks G(q) in Rs, equivalent to G(p1), for some
s, 1 ≤ s ≤ n− 1, is given by

(4.6) {G(X(y)) : y ∈ Ω}.
For more details on Ω see [3].

Let KV (.) be the linear map defined on the set of symmetric matrices of
order n− 1 by:

(4.7) KV (X) := diag(V XV T )eT + e(diag(V XV T ))T − 2V XV T .

It is not difficult [1, 6] to show that the set {M ij : (i, j) 6∈ E} forms a
basis for the null space of H ◦ KV (.), where H is the adjacency matrix of
graph G and H◦KV (X) denotes the Hadamard product (or the element-wise
product) of matrices H and KV (X).

The following technical lemma establishes a relationship between the Gale
matrix Z and the projected Gram matrix X.

Lemma 4.1 ([2]). Let G(p) be a given framework with n vertices in Rr for
some r ≤ n − 2, and let Z and X be, respectively, the Gale matrix and the
projected Gram matrix corresponding to G(p). Further, let Q = [W U ] be
the orthogonal matrix whose columns are the eigenvectors of X, where the
columns of U form an orthonormal basis for the null space of X. Then

(1) V U = ZA for some non-singular matrix A, i.e., V U is a Gale ma-
trix.

(2) VW = PA′ for some non-singular matrix A′.

The next lemma is crucial for our proof of Theorem 3.1.

Lemma 4.2. Let G(p) be a framework with n vertices in Rr for some r ≤
n − 2, and let U , W be the matrices as defined in Lemma 4.1. Then the
following statements are equivalent:

(1) There exists a nonzero r × r symmetric matrix Φ such that

(pi − pj)T Φ(pi − pj) = 0,∀(i, j) ∈ E.
(2) There exists a nonzero y = (yij) ∈ Rm such that∑

(i,j) 6∈E

yijM
ijU = 0,

where the matrices M ij are defined in (4.3).
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Proof. (pi − pj)T Φ(pi−pj) = (PΦP T )ii+(PΦP T )jj−2(PΦP T )ij . Therefore,
it follows from Lemma 4.1 and the remark before it that Statement 1 holds
if and only if H ◦ KV (WΦ′W T ) = 0 for some nonzero symmetric matrix Φ′

if and only if there exists a nonzero y such that WΦ′W T =
∑

(i,j)6∈E yijM
ij .

But this last statement holds if and only if there exists a nonzero y such
that

∑
(i,j)6∈E yijM

ijU = 0. �

A remark is in order here. In light of Lemma 4.1, Statement 2 of Lemma
4.2 is equivalent to: there exists a nonzero y = (yij) ∈ Rm such that∑

(i,j)6∈E

yijV
TEijZ = 0.

Lemma 4.3 (Connelly [9]). Let G(p) be a generic framework in Rr and let
each vertex of G have degree at least r. Then there does not exist an r × r
symmetric nonzero matrix Φ such that (pi − pj)T Φ(pi−pj) = 0 ∀ (i, j) ∈ E.

Proof of Theorem 3.1. Let G(p1) be a given generic framework with n ver-
tices in Rr for some r ≤ n − 2, and let X1 be the projected Gram matrix
corresponding to G(p1). Let Q = [W U ] be the orthogonal matrix whose
columns are the eigenvectors of X1, where the columns of U form an or-
thonormal basis for the null space of X1.

Assume that G(p1) is dimensionally rigid. Then it follows that each vertex
of G has degree at least r + 1 [4, Theorem 3.2].

Now suppose that G(p1) is not universally rigid. Then there exists a
frameworkG(q) in Rs, which is equivalent toG(p1), for some s, 1 ≤ s ≤ n−1.
Therefore, there exists a nonzero ŷ in Rm such that X(ŷ) = X1 +M(ŷ) � 0
whereM(ŷ) =

∑
(i,j) 6∈E ŷijM

ij . Furthermore, X1 +M(ŷ) � 0 if and only if
QT (X1 +M(ŷ))Q � 0. But,

QT (X1 +M(ŷ))Q =
[

Λ +W T M(ŷ) W W T M(ŷ) U
UT M(ŷ) W UT M(ŷ) U

]
� 0,

where Λ is the r×r diagonal matrix consisting of the positive eigenvalues of
X1. Thus UTM(ŷ)U � 0 and the null space of UTM(ŷ)U ⊆ the null space
of W TM(ŷ)U . Now if UTM(ŷ)U is nonzero then rank X(ŷ) ≥ r + 1. This
contradicts our assumption that G(p1) is dimensionally rigid. Therefore,
both matrices UTM(ŷ)U and W TM(ŷ)U must be zero. This implies that
M(ŷ)U = 0 =

∑
(i,j)6∈E ŷijM

ijU which is also a contradiction by Lemmas
4.2 and 4.3. Thus G(p1) is universally rigid. �

5. Numerical Example

In this section we present a numerical example to illustrate the main
results of the paper. Consider the framework (a) in Figure 1, where P and
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its corresponding Gale matrix Z are

P =
1
5


−9 3

1 8
11 3
6 −7
−9 −7

 , Z =


1 0
0 1
−1 −3/2
4/3 4/3
−4/3 −5/6

 .

It is easy to verify that Ψ =
[

3 −2
−2 2

]
satisfies Condition (1). Thus

this framework is dimensionally rigid and globally rigid, in fact it is also
universally rigid.

Now consider the framework (b) in Figure 1, where P and its correspond-
ing Gale matrix Z are

P =
1
5


−7 9

8 4
3 −6
−7 −6

3 −1

 , Z =


1 0
0 1
3 1/2
−1 1/2
−3 −2

 .
Any 2 × 2 symmetric matrix Ψ that satisfies z1T Ψz3 = z2T Ψz4 = 0 must

be of the form Ψ =
[

α −6α
−6α −12α

]
, where α is a scalar. Thus Condition

(1) does not hold since Ψ can not be positive definite. This framework is
dimensionally flexible and consequently, not universally rigid. However, for
α 6= 0, rank Ψ = 2 = r. Hence the stress matrix S = ZΨZT has rank = 2.
Thus this framework is globally rigid in R2.
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