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Abstract A bar framework G(p) in r-dimensional Euclidean space is a graph G on the

vertices 1, 2, . . . , n, where each vertex i is located at point pi in R
r. Given a framework

G(p) in R
r, a problem of great interest is that of determining whether or not there

exists another framework G(q), not obtained from G(p) by a rigid motion, such that

||qi − qj ||2 = ||pi − pj ||2 for each edge (i, j) of G. This problem is known as either the

global rigidity problem or the universal rigidity problem depending on whether such a

framework G(q) is restricted to be in the same r-dimensional space or not. The stress

matrix S of a bar framework G(p) plays a key role in these and other related problems.

In this paper, semidefinite programming (SDP) theory is used to address, in a uni-

fied manner, several problems concerning universal rigidity. New results are presented

as well as new proofs of previously known theorems. In particular, we use the notion

of SDP non-degeneracy to obtain a sufficient condition for universal rigidity, and we

show that this condition yields the previously known sufficient condition for generic

universal rigidity. We present new results concerning positive semidefinite stress matri-

ces and we use a semidefinite version of Farkas lemma to characterize bar frameworks

that admit a nonzero positive semidefinite stress matrix S.
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Fig. 1 Two bar frameworks G(p) and G(q) in R
2. Both frameworks have the same underlying

graph G.

1 Introduction

A configuration p in r-dimensional Euclidean space is a finite collection of points

p1, . . . , pn in R
r that affinely span R

r. A bar framework in R
r (or a framework 1

for short), denoted by G(p), is a configuration p in R
r together with a simple graph G

on the vertices 1, 2, . . . , n, where each vertex i of G is located at pi. Figure 1 depicts two

frameworks in the plane. The vertices of G are represented by little circles, while the

edges of G are represented as line-segments (or bars). To avoid trivialities we assume

throughout this paper that G is connected and G 6= Kn, i.e., G is not the complete

graph.

Two frameworks G(p) and G(q) in R
r are said to be congruent if ||qi−qj ||= ||pi−pj ||

for all i, j = 1, . . . , n, where ||.|| denotes the Euclidean norm. That is, G(p) and G(q) are

congruent if configuration q can be obtained from configuration p by applying a rigid

motion such as a translation or a rotation in R
r. On the other hand, two frameworks

G(p) in R
r and G(q) in R

s are said to be equivalent if ||qi − qj ||= ||pi − pj || for each

edge (i, j) of graph G. The term “bar” is used to denote such frameworks since in any

two equivalent frameworks, every two adjacent vertices of G(p) stay the same distance

apart. Thus one can think of each edge of G(p) as a stiff bar.

A framework G(p) in R
r is said to be globally rigid if there does not exist a frame-

work G(q) in the same r-dimensional Euclidean space that is equivalent, but not con-

gruent, to G(p). Furthermore, if there does not exist a framework G(q) in any Euclidean

space that is equivalent, but not congruent, to G(p), then G(p) is said to be universally

rigid 2. Obviously, universal rigidity implies global rigidity, however, the converse need

not be true. Using Theorems 1 and 2 below, one can show (see the example in Section

5 of [4]) that framework (a) in Figure 1 is universally rigid while framework (b) is

globally (but not universally) rigid.

The global and universal rigidity problems of frameworks can also be posed in the

context of the graph realization problem (GRP). Given an edge-weighted graph G where

each edge (i, j) has a positive weight dij , a realization of G in R
r is a mapping of the

vertices 1, 2, . . . , n of G into points p1, p2, . . . , pn in R
r such that ||pi − pj ||2 = dij for

each edge (i, j) of graph G. The GRP is the problem of determining whether or not

G has a realization in R
r. Thus, the problems of global rigidity and universal rigidity

can be stated as the problems of determining whether or not a given realization of G

in R
r is unique, up to a rigid motion, in R

r or in all Euclidean spaces.

1 Only bar frameworks are considered here. Tensegrity frameworks fall outside the scope of
this paper.

2 There are many other notions of rigidity such as rigidity, infinitesimal rigidity, dimensional
rigidity etc. However, these notions will not be discussed in this paper.
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The GRP and the global and universal rigidity of frameworks have important appli-

cations in molecular conformations [11], multidimensional scaling [17,10] and wireless

sensor networks [23,13]. In particular, the wireless sensor network localization problem

is a special case of the GRP where r = 2 or 3, and where G has a clique of size at least

r + 1.

The GRP is well known to be NP-hard [21]. Semidefinite programming (SDP) was

successfully used in [5] to solve a relaxation of the GRP by asking whether a given

edge-weighted graph G has a realization in some Euclidean space, not necessarily in a

given r-dimensional space. Also, SDP was successfully used in [7,12,23,19,24] to solve

the wireless senor network localization problem, and in [22] to solve some problems

in tensegrity theory. A tensegrity framework (see [9] and the references therein) is a

generalization of a bar framework where the edges of graph G are labeled as bars, cables

or struts. If an edge (i, j) is labeled as a cable (strut), then ||pi − pj || is constrained to

be ≤ (≥ ) a certain given value.

The stress matrix S of a framework G(p) plays a key role in the characterization

of generic global rigidity and generic universal rigidity of G(p). It is closely related to

the Gale matrix of G(p). Gale matrix or Gale transform is a well-known technique in

polytope theory [14].

In this paper, SDP theory is used to address, in a unified manner, several problems

concerning universal rigidity. New results are presented as well as new proofs of pre-

viously known theorems. In particular, we use the notion of SDP non-degeneracy to

obtain a sufficient condition for universal rigidity, and we show that this condition yields

the previously known sufficient condition for generic universal rigidity. We present new

results concerning positive semidefinite stress matrices and we use a semidefinite ver-

sion of the Farkas lemma to characterize frameworks that admit a nonzero positive

semidefinite stress matrix S.

We denote by Sn the subspace of symmetric matrices of order n. The positive

semi-definiteness (definiteness) of a symmetric matrix A is denoted by A � 0 (A � 0).

e denotes the vector of all ones in R
n, and In denotes the identity matrix of order n.

Eij denotes the n×n symmetric matrix with 1’s in the (i, j)th and (j, i)th entries and

zeros elsewhere. For a matrix A, diag(A) denotes the vector consisting of the diagonal

entries of A. Finally, E(G) denotes the set of edges of a simple graph G.

2 Preliminaries

2.1 The Stress Matrix S and the Gale Matrix Z

An equilibrium stress of a framework G(p) is a real-valued function ω on E(G) such

that
X

j:(i,j)∈E(G)

ωij(p
i − pj) = 0 for all i = 1, . . . , n. (1)

One may think of ωij(p
i − pj) as the force exerted by the edge (bar) (i, j) on node i.

This force is called a tension in the bar (i, j) if ωij < 0, and it is called a compression

in the bar (i, j) if ωij > 0. Thus equation (1) is equivalent to the statement that the

net force acting on each node i is equal to zero.
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Let ω be an equilibrium stress of G(p). Then the n×n symmetric matrix S = (sij)

where

sij =

8

>

>

<

>

>

:

−ωij if (i, j) ∈ E(G),

0 if (i, j) 6∈ E(G),
X

k:(i,k)∈E(G)

ωik if i = j,

is called the stress matrix associated with ω, or a stress matrix of G(p).

Given a configuration p = (p1, . . . , pn) in R
r, the n × r matrix

P :=

2

6

6

6

6

6

4

p1T

p2T

...

pnT

3

7

7

7

7

7

5

(2)

is called the configuration matrix of p. Let G(p) be a framework on n vertices in R
r

and let P be the configuration matrix of G(p). Then it immediately follows that the

following (r + 1) × n matrix

A :=

"

PT

eT

#

, (3)

has full row rank since p1, . . . , pn affinely span R
r. Note that r ≤ n − 1. Let r̄ be the

dimension of the nullspace of A; i.e., r̄ = n − 1 − r. For r̄ ≥ 1, let Λ be an n × r̄

matrix whose columns form a basis for the nullspace of A. Λ is called a Gale matrix

corresponding to G(p). Obviously Λ is not unique. However, we define, next, a unique

and sparse Gale matrix Z which will be referred to, in the sequel, as “the” Gale matrix

of G(p). The sparsity of Z is particularly convenient for the purposes of this paper.

Let us write Λ in block form as

Λ =

»

Λ1

Λ2

–

,

where Λ1 is r̄ × r̄ and Λ2 is (r + 1) × r̄. Since Λ has full column rank, we can assume

without loss of generality that Λ1 is nonsingular. Then the Gale matrix Z is defined

by

Z := ΛΛ1
−1 =

»

Ir̄

Λ2Λ1
−1

–

. (4)

Let (zi)T denote the ith row of Z. Then the r̄-vector zi is called the Gale transform

of pi [14].

The following theorem shows that the Gale matrix Z of framework G(p) is closely

related to the stress matrix S associated with an equilibrium stress ω of G(p).

Lemma 1 (Alfakih [4]) Given a framework G(p) with n vertices in R
r, let Z be the

Gale matrix of G(p) and recall that r̄ = n − 1 − r. Further, let S be a stress matrix of

G(p). Then there exists an r̄ × r̄ symmetric matrix Ψ such that

S = ZΨZT . (5)

On the other hand, let Ψ ′ be any r̄ × r̄ symmetric matrix such that (zi)T Ψ ′zj = 0 for

all (i, j) 6∈ E(G), where (zi)T denotes the ith row of Z. Then S′ = ZΨ ′ZT is a stress

matrix of G(p).
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Fig. 2 The non-generic framework in R
2 of Example 1.

Example 1 Consider the framework G(p) in Figure 2, where p1 = [0 2]T , p2 =

[2 − 1]T , p3 = [−2 − 1]T , p4 = [0 1]T and p5 = [0 − 1]T . Thus

A =

»

p1 p2 p3 p4 p5

1 1 1 1 1

–

=

2

4

0 2 −2 0 0

2 −1 −1 1 −1

1 1 1 1 1

3

5 .

Hence, the nullspace of A is spanned by the columns of

Λ =

2

6

6

6

6

4

−2 0

−1/2 −1

−1/2 −1

3 0

0 2

3

7

7

7

7

5

=

»

Λ1

Λ2

–

.

Accordingly, the Gale matrix Z of G(p) is:

Z =

2

6

6

6

6

4

1 0

0 1

0 1

−3/2 0

1/2 −2

3

7

7

7

7

5

,

where Z is obtained by multiplying Λ from the right with Λ1
−1.

It is easy to show that G(p) has an equilibrium stress ω = (ω12 = −1, ω13 =

−1, ω14 = 6, ω24 = 3/2, ω25 = −1/2, ω34 = 3/2, ω35 = −1/2), and a stress matrix

S =

2

6

6

6

6

4

4 1 1 −6 0

1 0 0 −3/2 1/2

1 0 0 −3/2 1/2

−6 −3/2 −3/2 9 0

0 1/2 1/2 0 −1

3

7

7

7

7

5

= ZΨZT ,

where Ψ =

»

4 1

1 0

–

.

2.2 Generic Frameworks

The problems of framework global rigidity and universal rigidity become easier if we

consider frameworks with a “typical” or generic configuration. A configuration p (or

a framework G(p)) in R
r is said to be generic if all the coordinates of p1, . . . , pn are
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algebraically independent over the integers. That is, G(p) is generic if there does not

exist a non-zero polynomial f with integer coefficients such that f(p1, . . . , pn) = 0.

The notion of generic frameworks can be weakened to that of frameworks in general

position. A framework G(p) in R
r is said to be in general position if no subset of the

points p1, . . . , pn of cardinality r +1 is affinely dependent. For example, a set of points

in the plane are in general position if no 3 of them lie on a straight line.

The following are two recently obtained results concerning generic framework global

and universal rigidity.

Theorem 1 (Connelly [8] Gortler et al [15]) Let G(p) be a generic framework on

n vertices in R
r, r ≤ n − 2. Then G(p) is globally rigid if and only if

∃ a stress matrix S of G(p) such that rank S = r̄ = n − 1 − r. (6)

Theorem 2 Let G(p) be a generic framework on n vertices in R
r, r ≤ n − 2. Then

G(p) is universally rigid if and only if

∃ a stress matrix S of G(p) such that S � 0 and rank S = r̄ = n − 1 − r. (7)

The “if” part of Theorem 2 was independently proved by Alfakih in [4] and Connelly

in [9], while the “only if” part was conjectured by Alfakih in [4] and proved by Gortler

and Thurston in [16].

Few comments are in order here. First, if r = n − 1, i.e., if G(p) is a framework in

R
n−1. Then G(p) is not globally rigid (see the paragraph after equation (16)). Second,

in light of Lemma 1, Conditions (6) and (7) are equivalent, respectively, to the following

two conditions, where z1, z2, . . . , zn are the Gale transforms of p1, p2, . . . , pn.

∃ r̄ × r̄ nonsingular sym. matrix Ψ : (zi)T Ψzj = 0, ∀ (i, j) 6∈ E(G), (8)

∃ r̄ × r̄ sym. matrix Ψ � 0 : (zi)T Ψzj = 0,∀ (i, j) 6∈ E(G). (9)

Third, the assumption in Theorems 1 and 2 that the framework is generic can

not be dropped. The framework of Example 1 depicted in Figure 2, which is clearly

non-generic, is not globally rigid even though it satisfies Condition (6). Similarly, the

non-generic framework of Example 2 is not universally rigid even though it satisfies

Condition (7).

3 A Characterization of Equivalent Frameworks

The first step in making the universal rigidity problem amenable to semidefinite pro-

gramming is to use a Gram matrix, or more accurately a projected Gram matrix, to

represent a configuration p. This enables us to characterize the set of all frameworks

that are equivalent to a given framework G(p).

Given a configuration p = (p1, . . . , pn) in R
r, the n × n symmetric matrix B :=

PPT , where P is the configuration matrix of p defined in (2), is called the Gram matrix

associated with p.

Note that in addition to being positive semidefinite of rank r, matrix B is invariant

under orthogonal transformations. Furthermore, wlog we assume that in any configu-

ration p, the origin coincides with the centroid of the points p1, . . . , pn; i.e., Be = 0.
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Then, B becomes also invariant under translations. Consequently, all congruent frame-

works have the same Gram matrix. Hence, representing frameworks by Gram matri-

ces, instead of configuration matrices, allows us to identify all congruent frameworks.

Therefore, in the sequel we don’t distinguish between congruent frameworks.

The set {C ∈ Sn : C � 0, Ce = 0} forms a face of the cone of n×n symmetric pos-

itive semidefinite matrices. This face is isomorphic to the cone of positive semidefinite

matrices of order n − 1. For our purposes, it is more convenient to work in this latter

cone. To this end, let V be an n × (n − 1) matrix such that

V T e = 0, V T V = In−1. (10)

Definition 1 Given a configuration p = (p1, p2, . . . , pn) in R
r. The projected Gram

matrix X associated with p is the (n − 1) × (n − 1) matrix

X := V T BV, (11)

where B is the Gram matrix associated with p.

Note that X is an (n − 1) × (n − 1) positive semidefinite matrix of rank r.

Given a configuration p, the projected Gram matrix associated with p can be easily

computed using equation (11). On the other hand, given a projected Gram matrix X,

configuration p can be recovered as follows. Compute the Gram matrix B which is

given by B = V XV T . Then factorize B as B = PPT . This can be done since B

is positive semidefinite. Furthermore, since rank B = r and Be = 0, it follows that

P is an n × r matrix such that PT e = 0. Thus P is the configuration matrix of p,

i.e., the points p1, . . . , pn are given by the rows of P and their centroid coincides with

the origin. Recall that we do not distinguish between congruent configurations. Thus,

the configuration matrix P , the Gram matrix B and the projected Gram matrix X

uniquely determine one another. Hence, the terms “framework G(p)” and “framework

G(X)” can be used interchangeably. For more details see [3].

Let G(p̂) be a given framework in R
r and let m̄ denote the number of missing edges

of G. For each (i, j) 6∈ E(G) define the matrix

M ij := −
1

2
V T EijV. (12)

Recall that Eij is the n × n matrix with 1’s in the (i, j)th and (j, i)th entries and 0’s

elsewhere. Let X̂ be the projected Gram matrix corresponding to G(p̂) and let

Ω := {y ∈ R
m̄ : X(y) := X̂ +

X

(i,j) 6∈E(G)

yijM
ij � 0}. (13)

and

Ωr := {y ∈ Ω : rank X(y) = r}. (14)

Note that the origin (y = 0) always belongs to Ω and to Ωr since X̂ is positive

semidefinite of rank r. It was shown in [1] that the set of all frameworks G(q) in R
s,

1 ≤ s ≤ n − 1, that are equivalent to G(p̂) is given by

{G(X(y)) : y ∈ Ωs}, (15)

and that the set of all frameworks G(q) in all Euclidean spaces that are equivalent to

G(p̂) is given by

{G(X(y)) : y ∈ Ω}. (16)
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For more details on set Ω see [2]. It is clear that framework G(p̂) is globally rigid if

and only if set Ωr is a singleton, and G(p̂) is universally rigid if and only if set Ω

is a singleton. Note that Ω is a closed convex set. This makes the universal rigidity

problem amenable to SDP. On the other hand, the global rigidity problem is much

harder to tackle since Ωr is, in general, non-convex due to the rank constraint. Note

that if r = n − 1, i.e., if G(p̂) is a framework in R
n−1, then X̂ � 0. Thus Ωr is not a

singleton and hence G(p̂) is not globally rigid.

Next, we provide new insights into set Ω by presenting an equivalent definition

to (13). An n × n symmetric matrix D = (dij) is said to be a Euclidean distance

matrix (EDM) if there exist points p1, . . . , pn in some Euclidean space such that dij =

||pi − pj ||2 for all i, j = 1, . . . , n. Let KV : Sn−1 → Sn be the linear mapping defined

by

KV (C) = diag(V CV T ) eT + e (diag(V CV T ))T − 2V CV T , (17)

where V is the matrix defined in (10) and e is the vector of all 1’s in R
n. It is well

known (see [5] and the references therein) that an n × n symmetric matrix D with a

zero diagonal is EDM if and only if D = KV (X) for some positive semidefinite matrix

X in Sn−1. Moreover, KV (M ij) = Eij for all (i, j) 6∈ E(G). Thus for all (k, l) ∈ E(G)

and (i, j) 6∈ E(G) it follows that (KV (M ij))kl = 0.

Let D̂ = (d̂ij) be the EDM corresponding to X̂ . i.e., Let D̂ = KV (X̂). Then set Ω

can be equivalently defined by

Ω = {X ∈ Sn−1 : X � 0, (KV (X))kl = d̂kl for all (k, l) ∈ E(G).} (18)

Note that the edges of G are used in the definition of set Ω in (18) while the missing

edges of G are used in (13). We conclude this section with the following technical lemma

that establishes the connection between the projected Gram matrix X̂ and the Gale

matrix Z of a given framework G(p̂).

Lemma 2 (Alfakih [3]) Let G(p̂) be a given framework with n vertices in R
r for

some r ≤ n − 2; and let Z be the Gale matrix of G(p̂). Further, let U and W be the

matrices whose columns form orthonormal bases of the nullspace and the rangespace of

X̂, where X̂ is the projected Gram matrix associated with p̂. Then

1. V U = ZQ for some nonsingular matrix Q, i.e., V U is a Gale matrix.

2. V W = PQ′ for some nonsingular matrix Q′, where P is the configuration matrix

of p̂.

4 Positive Semidefinite Stress Matrices

Using the results of the previous section, we focus in this section on stress matrices that

are positive semidefinite. Consider the following pair of dual SDP problems, where X̂

is the projected Gram matrix of a given framework G(p̂) in R
r, and M ij is as defined

in (12).

(P): max
y

0T y

subject to X̂ +
X

(i,j) 6∈E(G)

yijM
ij � 0. (19)
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(D): min
Y

trace (X̂Y )

subject to trace (Y M ij) = 0 for (i, j) 6∈ E(G),

Y � 0.

(20)

Two remarks concerning problems (19) and (20) are in order here. First, it follows

from (13) that the set of all frameworks G(X(y)) that are equivalent to G(p̂), is equal

to the the set of feasible solutions of the primal problem (19). Furthermore, since the

objective function of problem (19) is identically equal to zero, the set of all frameworks

that are equivalent to G(p̂), is also equal to the set of optimal solutions of problem

(19).

Second, let W and U be the (n − 1) × r and (n − 1) × r̄ matrices whose columns

form orthonormal bases for the rangespace and the nullspace of X̂ respectively. Since

X̂ � 0, any optimal solution of the dual problem (20) can be written in the form

Y = UΨUT for some Ψ � 0. Furthermore, using (12), trace (Y M ij) = 0 implies

that trace (V UΨUT V T Eij) = 0. Thus by Lemma 2 we have (ZΨ ′ZT )ij = 0 for all

(i, j) 6∈ E(G), where Ψ ′ = QΨQT � 0, for some nonsingular matrix Q. Hence we have

the following theorem.

Theorem 3 Let S be a positive semidefinite stress matrix of framework G(p̂). Then

Y is an optimal solution of the dual problem (20), where

Y = V T SV and S = V Y V T . (21)

That is, Y is a “projected stress matrix” of G(p̂).

The connection between the stress matrix and the optimal dual solutions of certain

SDP problems in tensegrity theory was first observed in [22].

A main ingredient in Connelly’s proof of the “if” part of Theorem 1 is the following

theorem.

Theorem 4 (Connelly [8]) Let G(p̂) be a given framework in R
r and let S be a stress

matrix of G(p̂). If G(p̂) is generic, then S is a stress matrix of any framework G(q) in

R
r that is equivalent to G(p̂).

A similar result is presented next, where the assumption of the genericity of the

framework is replaced by the assumption of the positive semi-definiteness of the stress

matrix. This result is a simple consequence of SDP complementary slackness.

Theorem 5 Let G(p̂) be a given framework, generic or otherwise, in R
r and let S be

a stress matrix of G(p̂). If S � 0, then S is a stress matrix of any framework G(q) that

is equivalent to G(p̂).

Proof. Let X̂ and X be the projected Gram matrices of frameworks G(p̂) and

G(q) respectively. It suffices to show that XY = 0, where Y = V T SV . But from

(19) we have that XY =X̂Y +
P

(i,j) 6∈E(G) yijM ijY =
P

(i,j) 6∈E(G) yijM ijY . Thus

it follows from (20) that trace (XY ) =
P

(i,j) 6∈E(G) yij trace (M ijY ) = 0. Therefore

XY = 0. This follows from the well-known fact (see, e.g., [6]) that for any two positive

semidefinite matrices A and B, trace (AB) = 0 if and only if AB = 0.

2

Next we characterize frameworks that admit a non-zero positive semidefinite stress

matrix.
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5 Frameworks with Positive Semidefinite Stress Matrices

In this section, we use the following well-known semidefinite version of Farkas lemma

to characterize frameworks that admit a non-zero positive semidefinite stress matrix.

A proof is added for completeness.

Lemma 3 Let A0, A1, A2, . . . , Ak be given symmetric matrices of order n. Then ex-

actly one of the following two statements holds.

1. ∃ y ∈ R
k such that A0 +

Pk
i=1 yiA

i � 0,

2. ∃ Y � 0, Y 6= 0, trace (Y A0) ≤ 0 and trace (Y Ai) = 0 for i = 1, . . . , k.

Proof. First we prove that Statements 1 and 2 cannot hold at the same time.

Assume that there exist y ∈ R
k and Y � 0, Y 6= 0 such that A0+

Pk
i=1 yiA

i � 0, trace

(Y A0) ≤ 0, and trace (Y Ai) = 0 for i = 1, . . . , k. Then 0 < trace (Y (A0 +
Pk

i=1 yiA
i))

= trace (Y A0) ≤ 0, a contradiction.

Now assume that Statement 1 does not hold and let L = {C ∈ Sn : C = A0 +
Pk

i=1 yiA
i for some y ∈ R

k}. Then L ∩ {C : C � 0} = ∅. By the separation theorem

[20, Theorem 11.2, page 96], there exist Y ∈ Sn, Y 6= 0 and scalar α such that trace

(Y C) = α for all C ∈ L; and trace (Y C) > α for all C � 0. Now µ∗= inf { trace

(Y C) : C � 0} is finite iff Y � 0, in which case µ∗ = 0. Thus Y � 0 and α ≤ 0.

Similarly, trace (Y C) is finite for all C ∈ L iff trace (Y Ai) = 0 for i = 1, . . . , k. Hence

trace (Y C) = α for all C ∈ L implies that trace (Y Ai) = 0 for i = 1, . . . , k and trace

(Y A0) = α ≤ 0. Therefore Statement 2 holds.

2

Before we present our characterization, in the following theorem, of frameworks that

admit a non-zero positive semidefinite stress matrix, we remark that a framework on n

vertices in R
n−1 is a framework where its vertices are located at affinely independent

points.

Theorem 6 Let G(p̂), G 6= Kn, be a given framework on n vertices in R
r. Then G(p̂)

admits a non-zero positive semidefinite stress matrix S if and only if there does not

exist a framework G(q) in R
n−1 that is equivalent to G(p̂).

Proof. Let X̂ be the projected Gram matrix of framework G(p̂) and let U be the

matrix whose columns form an orthonormal basis of the nullspace of X̂. Then there

does not exist a framework G(q) in R
n−1 that is equivalent to G(p̂) if and only if there

does not exist a y ∈ R
m̄ such that X(y) = X̂ +

P

(i,j) 6∈E(G) yijM ij � 0, if and only if

there exists a Y � 0, Y 6= 0, such that trace (Y X̂) ≤ 0 and trace (Y M ij) = 0 for all

(i, j) 6∈ E(G). The first equivalence follows from (15) since rank X(y) = n − 1 if and

only if X(y) � 0. The second equivalence follows from Lemma 3. Now since X̂ � 0,

it follows that trace (Y X̂) ≤ 0 is equivalent to trace (Y X̂) = 0. It also follows that

Y = UΨUT for some positive semidefinite matrix Ψ .

Therefore, there does not exist a framework G(q) in R
n−1 that is equivalent to G(p̂)

if and only if there exists a non-zero positive semidefinite matrix Ψ such that trace

(UΨUT M ij) = 0 for all (i, j) 6∈ E(G). But, it follows from the definition of M ij in (12)

and from Lemma 2 that −2 (trace (UΨUT M ij)) = trace (UΨUT V T EijV ) = trace

(ZΨ ′ZT Eij) where Ψ ′ = QΨQT for some nonsingular matrix Q. The result follows

from Lemma 1 since the matrix ZΨ ′ZT whose ijth entries vanish for all (i, j) 6∈ E(G)

is a stress matrix of G(p̂) and since Ψ ′ is nonzero positive semidefinite if and only if Ψ

is nonzero positive semidefinite.

2
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6 A Sufficient Condition for Universal Rigidity

We apply the notion of SDP non-degeneracy to the pair of dual problems (19) and

(20) to obtain a sufficient condition for universal rigidity of frameworks. We also show

that Condition (7) in Theorem 2 follows from this sufficient condition when the given

framework is generic.

Let S, rank S = s, be a given positive semidefinite stress matrix of framework G(p̂).

Let W ′ and U ′ be the (n−1)×s and (n−1)× (n−1−s) matrices whose columns form

orthonormal bases for the rangespace and the nullspace of Y = V T SV respectively.

Following [6], let

L = span {M ij : (i, j) 6∈ E(G)},

and let

TY = {C ∈ Sn−1 : C = [W ′ U ′]

»

Φ1 Φ2

ΦT
2 0

–

"

W ′T

U ′T

#

},

where Φ1 is a symmetric matrix of order s and Φ2 is s× (n− 1− s). TY is the tangent

space, at Y , to the set of (n − 1) × (n − 1) symmetric matrices of rank s.

Definition 2 (Alizadeh et al [6]) Let Y be a feasible solution of problem (20). Y is

said to be non-degenerate if

TY + L⊥ = Sn−1. (22)

Otherwise, Y is called degenerate.

Equation (22) is equivalent to

T ⊥
Y ∩ L = {0}, (23)

where T ⊥
Y is the orthogonal complement of TY , namely

T ⊥
Y = {C ∈ Sn−1 : C = U ′ΦU ′T }.

The following theorem is well known.

Theorem 7 (Alizadeh et al [6]) Consider a pair of dual SDP problems, where A0,

A1, . . . , Ak are given linearly independent matrices in Sn−1, and b is a given vector in

R
k.

(P): max
y

bT y

subject to A0 −
k

X

i=1

yiA
i � 0.

(D): min
Y

trace (A0Y )

subject to trace (Y Ai) = bi for i = 1, . . . , k,

Y � 0.

If the dual problem has a non-degenerate optimal solution, then the primal optimal

solution is unique.

Applying this theorem to the pair of dual problems (19) and (20) we get the fol-

lowing theorem.
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Theorem 8 Given a framework G(p̂) on n vertices in R
r, r ≤ n−2, let S be a positive

semidefinite stress matrix of G(p̂) and let U ′ be the matrix whose columns form an

orthonormal basis of the nullspace of Y = V T SV . If the trivial solution, Φ = 0 and

yij = 0 for all (i, j) 6∈ E(G), is the only solution of the equation:

U ′ΦU ′T +
X

(i,j) 6∈E(G)

yijM
ij = 0. (24)

Then G(p̂) is universally rigid.

Proof. Assume that the only solution of (24) is the trivial solution. Then T ⊥
Y ∩

L = {0}. Hence, Y is a non-degenerate optimal solution of (dual) problem (20). Thus,

the set of optimal solution of (primal) problem (19) is a singleton. Therefore, G(p̂) is

universally rigid.

2

It is worth noting here that in equation (24), Φ = 0 if and only if yij = 0 for all

(i, j) 6∈ E(G) since the set {M ij : (i, j) 6∈ E(G)} is linearly independent, and since U ′

has full column rank. Also, equation (24) is equivalent to a homogeneous system of

n(n − 1)/2 equations in m̄ + (n − s)(n − s − 1)/2 unknowns, where s is the rank of

the stress matrix S and m̄ is the number of missing edges of G. Hence, the problem of

determining whether or not equation (24) has a non-trivial solution reduces to that of

computing the rank of the matrix of coefficients of this system.

Next we focus our attention on generic frameworks. The following lemmas are

needed in the proof of Theorem 9 below.

Lemma 4 Let G(p) be a framework in general position on n vertices in R
r, r ≤ n−2,

and let z1, . . . , zn be the Gale transform of p1, . . . , pn respectively. Recall that r̄ =

n − 1 − r. Then any subset of z1, . . . , zn of cardinality r̄ is linearly independent.

Lemma 5 (Alfakih [4]) Let G(p) be a generic framework on n vertices in R
r, r ≤

n − 2, and let each vertex of G have a degree at least r. Further, let Z be the Gale

matrix of G(p). Then there does not exist a non-zero y = (yij) ∈ R
m̄ such that

X

(i,j) 6∈E(G)

yijV T EijZ = 0.

Theorem 9 Theorem 2 follows as a corollary of Theorem 8 .

Proof. Assume that framework G(p) in R
r is generic and that S = ZΨZT is a

stress matrix of G(p) where matrix Ψ is r̄× r̄ positive definite (recall that r̄ = n−1−r).

We will show that, in this case, the only solution of (24) is the trivial solution. Hence

it would follow from Theorem 8 that G(p) is universally rigid.

First, we show that every vertex of G has a degree at least r+1. For assume, to the

contrary, that the degree of one node of G, say node 1, is ≤ r, and wlog assume that

nodes 2, 3, . . . , r̄ + 1 are not adjacent to node 1. Thus it follows from Lemma 4 that

z2, z3, . . . , zr̄+1 form a basis in R
r̄. Hence there exist λ2, λ3, . . . , λr̄+1, not all of which

are zeros, such that z1 = λ2z2 + λ3z3 + · · · + λr̄+1zr̄+1. Therefore, (z1)T Ψzi = 0 for

i = 2, . . . , r̄ + 1 implies that (z1)T Ψz1 = 0 and therefore, Ψ is singular contradicting

our assumption that Ψ � 0.

Now, the stress matrix S = ZΨZT with Ψ � 0 also implies that the columns of the

matrix [P e] form a basis for the nullspace of S since in this case, rank S = n− 1− r.
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c c c

c

1 3

4

2

Fig. 3 The non-generic framework G(p) in R
2 of Example 2. Here, the missing edges of G are

(4, 1) and (4, 3).

Consequently, it follows from Lemma 2 that the columns of V T P form a basis for the

nullspace of Y = V T SV . Thus, in this case equation (24) reduces to

V T (PΦ′PT +
X

(i,j) 6∈E(G)

y′ijEij)V = 0. (25)

But equation (25) is equivalent to

PΦ′PT +
X

(i,j) 6∈E(G)

y′ijE
ij = aeT + eaT , (26)

for some n-vector a.

Thus it suffices to show that the only solution of equation (26) is the trivial solution.

Assume, to the contrary, that (26) has a solution Φ′ 6= 0, y′ = (y′ij) 6= 0. Then by

multiplying (26) from the left by V T and from the right by Z we get
P

(i,j) 6∈E(G) y′ijV T EijZ =

0. But this contradicts, from Lemma 5, our assumption that G(p) is generic. Thus the

result follows.

2

Finally, we end this section with the following numerical example that illustrates

some of the results of this paper.

Example 2 Consider the non-generic framework G(p) in R
2 depicted in Figure 3.

G(p) has two missing edges (4, 1) and (4, 3), and r̄ = n − 1 − r = 1 in this case. It is

easy to show that the Gale matrix Z and a stress matrix S of G(p) are

Z = [1 − 2 1 0]T and S = ZZT .

Note that S is positive semidefinite with rank 1 = r̄. Thus G(p) satisfies Condition

(7) of Theorem 2. However, G(p) is obviously not universally rigid (in fact it is not

even globally rigid). This shows that the assumption in Theorem 2 that the framework

is generic cannot be dropped.

On the other hand, since stress matrix S is non-zero positive semidefinite, it follows

from Theorem 6 that there does not exist a framework in R
3 that is equivalent to G(p).

Indeed, this is obviously the case. In fact, G(p) has an infinite number of equivalent

frameworks in R
2, and it has two equivalent frameworks in R

1: One where node 4

coincides with node 1, and one where node 4 coincides with node 3.
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7 Summary and Concluding Remarks

In this paper we presented a unified approach based on semidefinite programming the-

ory for addressing several problems concerning universal rigidity. The salient feature

of this approach is the use of projected Gram matrices for representing point configu-

rations in Euclidean space. As a result, the set of all frameworks that are equivalent

to a given framework in R
r was characterized in terms of a convex closed set formed

by the intersection of the positive semidefinite cone with an affine subspace.

We characterized frameworks that admit non-zero positive semidefinite stress ma-

trices, and we obtained some new results concerning such matrices. We used the notion

of semidefinite programming non-degeneracy to obtain a sufficient condition for uni-

versal rigidity, and we showed that this condition yields the known sufficient condition

for generic universal rigidity.

The fact that Ωr, the set of all frameworks in R
r that are equivalent to a given

framework in R
r, is non-convex, due to the rank constraint, makes the global rigidity

problem much harder to tackle. This also provides a challenge to extend the techniques

used in the paper to global rigidity and to indefinite stress matrices. Perhaps a first

step in that direction would be to use Moreau Theorem [18] to express an indefinite

stress matrix S as the difference between two positive semidefinite matrices S1 and S2

such that trace (S1S2) = 0.

Acknowledgements The author would like to thank two anonymous referees for their com-
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