
Mathematical Programming manuscript No.
(will be inserted by the editor)

On Stress Matrices of (d + 1)-lateration Frameworks in
General Position

A. Y. Alfakih · Nicole Taheri · Yinyu Ye

Received: date / Accepted: date

Abstract Let (G,P) be a bar framework of n vertices in general position in
Rd, for d ≤ n − 1, where G is a (d + 1)-lateration graph. In this paper, we
present a constructive proof that (G,P) admits a positive semidefinite stress
matrix with rank (n−d−1). We also prove a similar result for a sensor network,
where the graph consists of m(≥ d+ 1) anchors.

Mathematics Subject Classification (2000) 52C25 · 05C62 · 15A57 ·
90C22

Keywords Universal Rigidity · Stress Matrices · General Position ·
Semidefinite Programming

1 Introduction

Let V (G) and E(G) be, respectively, the vertex set and the edge set of a simple
edge-weighted graph G, where each edge (i, j) has a positive weight dij . The
graph realization problem (GRP) is the problem of determining whether there
exists a realization of G in Euclidean space Rd, for a given dimension d. A

Alfakih’s research is supported by the Natural Sciences and Engineering Research Council of
Canada. Taheri’s research is supported in part by DOE Grant DE-SC0002009. Ye’s research
supported in part by NSF Grant GOALI 0800151 and DOE Grant DE-SC0002009. This
paper is a shortened version of [7].

A. Y. Alfakih
Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario N9B
3P4, Canada. E-mail: : alfakih@uwindsor.ca

Nicole Taheri
Institute for Computational and Mathematical Engineering, Stanford University, Stanford,
CA 94305. E-mail: ntaheri@stanford.edu

Yinyu Ye
Department of Management Science and Engineering, Stanford University, Stanford, CA
94305. E-mail: yinyu-ye@stanford.edu

2

(matrix) realization P = [p1, . . . , pn] ofG in Rd is a mapping P : V (G)→ Rd×n

such that, if vertices i and j of G are adjacent, then the Euclidean distance
between points pi ∈ Rd and pj ∈ Rd is equal to the prescribed weight dij on
the edge (i, j). We always assume that the points p1, . . . , pn affinely span Rd.
In order words, P is a realization of G if and only if p1, . . . , pn affinely span
Rd and

‖pi − pj‖ = dij for each edge (i, j) ∈ E(G).

Throughout this paper, ‖x‖ denotes the 2-norm of a vector x. Also, we use 0
to denote the matrix of all zeros of the appropriate dimension. See, e.g., [17,
18,2,3,19,14,11,21,22,4,16,23].

The GRP and its variants arise from applications in various areas, such
as molecular conformation, dimensionality reduction, Euclidean ball packing,
and more recently, wireless sensor network localization [5,9,8,21,10,22,20].

Let P be a given realization of graph G with n vertices in Rd. A realization
P together with a graph G is often referred to as a bar framework (or frame-
work), and is denoted by (G,P). If P is the only realization of G in Rd, up to
a rigid motion (e. g., translation or rotation), then we say that the framework
(G,P) is globally rigid. However, if P is the only realization of G, up to a rigid
motion, in all dimensions, then we say that the framework (G,P) is universally
rigid.

For a given framework (G,P) in Rd, define the (d+ 1)× n matrix A such
that

A =

[
P
eT

]
, (1)

where e is the vector of all 1’s in Rn. Matrices P and A are also respectively
called the position matrix and the extended position matrix of the framework
(G,P). The notion of a stress matrix plays a critical role in the characteriza-
tion of the universal, as well as the global, rigidity of frameworks. An n × n
symmetric matrix S is called a stress matrix of framework (G,P) if and only
if

AS = 0, (2)

and
Sij = 0, ∀(i, j) 6∈ E(G), (3)

where A is the extended position matrix of (G,P). Note that the highest
possible rank of a stress matrix S is (n−d−1), and the zero matrix is a trivial
stress matrix.

The following theorem characterizes the universal rigidity of generic frame-
works in terms of stress matrices. A framework (G,P) is said to be generic,
or in generic position, if the coordinates of p1, . . . , pn are algebraically inde-
pendent over the integers, i.e., if there does not exist a non-zero polynomial f
with integer coefficients such that f(p1, . . . , pn) = 0.

Theorem 1 Let (G,P) be a framework of n vertices in generic position in
Rd, d ≤ n − 1. Then (G,P) is universally rigid if and only if there exists a
stress matrix S of (G,P) such that S is positive semidefinite (PSD) and the
rank of S is n− d− 1.

3

The “if” part of this theorem was proved independently in [13] and [4], while
the “only if” part was proved in [15].

One of the major research topics in rigidity is whether a result similar
to Theorem 1 holds if the assumption of a framework in generic position is
replaced by the weaker assumption of a framework in general position. We
say that framework (G,P) is in general position in Rd if no (d + 1) points of
p1, . . . , pn are affinely dependent. For example, points are in general position in
R2 if no 3 of them are collinear. It then easily follows that if framework (G,P)
in Rd is in general position, then every (d+ 1)× (d+ 1) square sub-matrix of
the extended position matrix A, defined in (1), has rank (d + 1). Note that
whether or not n rational points are in general position can be checked in time
polynomial in n for any fixed dimension d, while the generic position condition
is uncheckable. The following theorem, proved in [6] recently, shows that the
“if” part of Theorem 1 still holds true under the general position assumption.

Theorem 2 Let (G,P) be a framework of n vertices in general position in
Rd, d ≤ n−1. Then (G,P) is universally rigid if there exists a stress matrix S
of (G,P) such that S is positive semidefinite and the rank of S equals n−d−1.

However, it remains an open question whether or not the converse of The-
orem 2 holds true. In this paper, we settle this question in the affirmative for
frameworks (G,P) in general position when G is a (d+1)-latertation graph. A
graph of n vertices is called a (d+1)-lateration graph if there is a permutation
π of the vertices, π(1), π(2), . . . , π(n), such that

– the first (d+ 1) vertices, π(1), . . . , π(d+ 1), form a clique, and
– each remaining vertex π(j), for j = (d + 2), . . . n, is adjacent to (d + 1)

vertices in the set {π(1), π(2), . . . , π(j − 1)}.

Such frameworks were shown to be universally rigid in [20] and [23], where
several classes of universally rigid frameworks in general position were identi-
fied.

In particular, we present a constructive proof that a framework (G,P) of
n vertices in general position in Rd, where G is a (d + 1)-lateration graph,
admits a PSD and rank (n−d−1) stress matrix S. We show that such a stress
matrix S can be computed in strongly polynomial time, if the (d+1)-lateration
ordering is known. We also show that, if a graph G contains a (d+1)-lateration
graph as a spanning subgraph, then the framework (G,P) in general position
also admits a PSD stress matrix of rank (n − d − 1). Finally, a similar result
for sensor networks, where the graph consists of m(≥ d + 1) anchors is also
given.

2 The GRP and Semidefinite Programming (SDP)

If the graph realization problem is relaxed to the problem of determining
whether a realization of the given edge-weighted graph G exists in some un-
specified Euclidean space, then this relaxed problem can be modeled as a

4

semidefinite programming problem (SDP). Furthermore, one can find a stress
matrix with the maximum rank for any given framework by solving a pair of
semidefinite programs (see also [21,22,4,10]). In particular, one can formulate
a pair of dual SDPs where ATA is a solution to the primal problem, and the
stress matrix is a solution to the dual problem. Here, A is the extended posi-
tion matrix defined in (1). Next, we present one such formulation (for other
SDP formulations of the same problem, see [1,5,9,21]).

Let the inner product of two matrices R and Q be defined by R · Q =
Trace(RTQ). An SDP for the relaxed graph realization problem attempts to
find a symmetric matrix Y ∈ Rn×n that solves

maximize 0 · Y

subject to (ei − ej)(ei − ej)T · Y = d2ij , ∀ (i < j, j) ∈ E(G)

Y � 0

(4)

where ej ∈ Rn is the vector of all zeros except 1 at the jth position, and Y � 0
constrains Y to be symmetric PSD. ATA and PTP are both feasible solutions
to Problem (4) since

(ei− ej)(ei− ej)T ·ATA = ‖ai− aj‖2 = ‖pi− pj‖2 = d2ij , ∀ (i < j, j) ∈ E(G).

The dual of Problem (4) is:

minimize
∑

(i<j,j)∈E(G) wijd
2
ij

subject to S :=
∑

(i<j,j)∈E(G)

wij(ei − ej)(ei − ej)T � 0 (5)

Note that the dual problem is always feasible, since wij = 0 for all (i, j) ∈ E(G)
is a feasible solution. In fact, this solution is also optimal, since by the weak
duality theorem, 0 is a lower bound on the objective.

From the duality theorem, any optimal solution S of (5) and any feasible
solution Y of (4) will satisfy Y · S = 0. This implies ATA · S = ASAT = 0,
or AS = 0. Moreover, Sij = 0, ∀(i, j) 6∈ E(G), so that any dual optimal
solution is a PSD stress matrix. We say that the SDPs (4) and (5) admit
a strictly complementary solution pair when their respective solutions (Y, S)
satisfy rank(Y) + rank(S) = n.

Thus, the question of determining whether there is a non-trivial PSD stress
matrix is equivalent to determining whether there is a non-trivial dual optimal
solution, given that the primal problem is feasible. In particular, when the
framework is universally rigid in Rd, the primal problem (4) has a solution
Y = ATA with rank (d + 1). Hence, the SDP Problems (4) and (5) admit
a strictly complementary solution pair if and only if there is a dual optimal
solution S for (5) with rank (n− d− 1).

Proposition 1 A universally rigid framework of n vertices in Rd, d ≤ n− 1,
always admits a non-trivial positive semidefinite stress matrix.

5

Proof. This follows simply from Theorem 6 in [1], which states that a frame-
work (G,P) in Rd admits a non-trivial PSD stress matrix if and only if there
does not exist a framework (G,Q) in Rn−1 such that ||qi− qj || = ||pi− pj || for
all (i, j) ∈ E(G).

2

The following result, stated in [21], answers the question of whether we could
find a non-trivial PSD stress matrix, if it exists.

Proposition 2 A primal solution Y of (4) that has the highest possible rank
among all primal feasible solutions, together with a dual solution S of (5) that
has the highest possible rank among all dual optimal solutions, can be computed
approximately by an SDP interior-point algorithm in polynomial time of n, d,
and log(1/ε) with error ε.

Proposition 2 also implies that if a universally rigid framework of n vertices
in Rd, d ≤ n− 1, admits a rank (n− d− 1) and PSD stress matrix, then such
a stress matrix can be computed approximately in polynomial time. However,
we may not be able to compute such a stress matrix exactly using the SDP
algorithm, even when Y is known.

3 Main Result

The following theorem, whose proof is given at the end of this section, is our
main result.

Theorem 3 Let (G,P) be a framework of n vertices in general position in Rd,
d ≤ n−1, where G is a (d+1)-lateration graph. Then (G,P) admits a positive
semidefinite stress matrix with rank (n−d−1). Moreover, such a stress matrix
can be computed exactly in strongly polynomial time, O(n3 + nd3) arithmetic
operations, if the lateration ordering and the position matrix P are known.

An n× n symmetric matrix S that satisfies condition (2), i.e., AS = 0, is
called a pre-stress matrix.1 Our constructive proof of Theorem 3 first generates
a PSD pre-stress matrix with rank (n−d−1), then uses this pre-stress matrix
as a basis to generate a PSD stress matrix with rank (n− d− 1). Recall that
a stress matrix is a pre-stress matrix which also satisfies condition (3), i.e.,
Sij = 0, ∀(i, j) 6∈ E(G).

The following result follows from basic linear algebra.

Proposition 3 For any framework in Rd, there exists a pre-stress matrix
which is positive semidefinite and has rank (n−d−1). Moreover, a universally
rigid framework in Rd on a complete graph has a rank (n − d − 1) positive
semidefinite stress matrix.

1 The term pre-stress has been used by Connelly et al to mean something different, see
[12].

6

For example, the projection matrix

I −AT (AAT)−1A,

where A is the extended position matrix, is a PSD pre-stress matrix with
rank (n − d − 1). Clearly, the projection matrix can be constructed in O(n3)
arithmetic operations.

Under the general position assumption, one can find a matrix L ∈ Rn×(n−d−1)

of the form

L =



∗ ∗ · · · ∗ ∗
...

... · · ·
...

...

∗
...

. . .
...

...
1 ∗ · · · ∗ ∗
0 1 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · 1 ∗
0 0 · · · 0 1


,

that is, for k = 1, ..., (n − d − 1), Lik = 1 for i = d + 1 + k and Lik = 0 for
i > (d+ k + 1), such that

AL = 0,

where A is the extended position matrix. Clearly, L has rank (n− d− 1), thus
S = LLT is a PSD pre-stress matrix with rank (n − d − 1). Such a matrix L
is called a Gale matrix of framework (G,P) since its columns form a basis for
the null space of A [1].

For a (d + 1)-lateration graph G with lateration ordering 1, 2, . . . , n, and
for a vertex k ∈ V (G) , let

N(k) = {i ∈ V (G) : i ≤ k − 1 and (i, k) ∈ E(G)}. (6)

Thus, for such a graph, |N(k)| = d + 1 for each vertex k = d + 2, . . . , n.
Furthermore, one can generate the kth column of L, Lk, for k = 1, ..., (n−d−1),
by solving the system of linear equations∑

i∈N(k)

Likai = −ad+k+1, (7)

where ai is ith column of the extended position matrix A, and assigning Lik =
0 for all i 6∈ N(k). The above d × d linear equation system can be solved in
O(d3) operations and there are n − d − 1 many of them to solve, and the
formation of S takes at most O(n3) operations. Therefore, we have

Lemma 1 The linear system (7) has a unique solution under the general po-
sition condition. Moreover, the matrix

Sn = LLT =

n−d−1∑
k=1

LkL
T
k � 0

7

is a pre-stress matrix with rank (n−d−1), and can be computed in O(n3+nd3)
arithmetic operations.

Next, we present an algorithm which uses Sn of Lemma 1 as a basis to
generate the desired stress matrix.

3.1 A Purification Algorithm

If the pre-stress matrix Sn, as constructed in Lemma 1, satisfies condition (3),
i.e., Sij = 0, ∀(i, j) 6∈ E(G), then it is the desired stress matrix. This is true
if the graph is a (d+ 1)-tree graph, that is, if there is a permutation π of the
vertices such that,

– the first (d+ 1) vertices, π(1), . . . , π(d+ 1), form a clique, and
– each vertex π(j), for j = (d+ 2), . . . , n, is adjacent to the (d+ 1) vertices

of a (d+ 1)-clique in the set {π(1), π(2), · · · , π(j − 1)}.

In this case, any entry in Sn = LLT , for i < j and (i, j) 6∈ E(G), is zero.
However, if Sn is not a stress matrix, we need to zero out the entries

which should be zero but are not, i.e., the entries Sn
ij 6= 0, i < j and (i, j) 6∈

E(G). We do this in reverse order by column; first, we zero out the entries
Sn
in 6= 0, for i < n and (i, n) 6∈ E(G), and then do the same for columns

(n−1), (n−2), . . . , (d+3). This “purification” process will keep the pre-stress
matrix PSD and maintain rank (n− d− 1).

If Sn is constructed from L as in the previous section, there is no need for
purification of the last column (or row), since any entry in LLT for i < n and
(i, n) 6∈ E(G) is zero. But for general pre-stress matrices, this may not be the
case. Therefore, we first show how to purify the last column (or row) of a PSD
pre-stress matrix with rank (n − d − 1). We construct a vector sn ∈ Rn with
the elements,

sni = −Sn
in ,∀(i, n) 6∈ E(G) and snn = 1,

and solve the following system of linear equations for the remaining entries in
sn, ∑

i∈N(n)

sni ai = −
∑

(i,n) 6∈E(G)

sni ai. (8)

The right-hand-side of the equation can be formed in at most O(nd) opera-
tions, and the d× d linear system can be solved in O(d3) operations. Thus, sn

can be computed in at most O(nd+ d3) operations.
The linear system (8) has a unique solution under the general position

condition, and by construction, Asn = 0.

Lemma 2 Let Sn−1 = Sn + sn(sn)T . Then

– ASn−1 = 0.
– Sn−1 � 0 and the rank of Sn−1 remains (n− d− 1).
– Sn−1

in = 0 for all i < n, (i, n) 6∈ E(G).

8

Proof. The first statement holds, since

ASn−1 = ASn +Asn(sn)T = Asn(sn)T = 0,

where the last step follows from the construction of sn, so that Asn = 0.
The second statement follows from Sn−1 = Sn + sn(sn)T � Sn � 0. Thus,

rank(Sn−1) ≥ rank(Sn) = (n − d − 1), but ASn−1 = 0 implies that the rank
of Sn−1 is bounded above by (n− d− 1).

The third statement is also true by construction. In the last column (or
row) of sn(sn)T , the ith entry, where i 6= n and (i, n) 6∈ E(G), is precisely
−Sn

in, i.e., (
sn(sn)T

)
in

= sni s
n
n = sni = −Sn

in,

so that it is canceled out in the last column (or row) of matrix Sn−1 =
Sn + sn(sn)T .

2

Note that update Sn−1 = Sn + sn(sn)T uses O(n2) arithmetic operations.
We continue this purification process for (n− 1), . . . , k, . . . , (d+ 3). Before

the kth purification step, we have Sk � 0, ASk = 0, rank(Sk) = (n− d− 1),
and

Sk
ij = 0, ∀j > k, i < j and (i, j) 6∈ E(G)

We then construct a vector sk ∈ Rn with the elements,

ski = −Sk
ik, ∀(i, k) 6∈ E(G), skk = 1, and ski = 0 ∀i > k,

and solve the system of linear equations for the remaining entries in sk:∑
(i,k)∈E(G)

ski ai = −
∑

(i,k) 6∈E(G)

ski ai. (9)

Again, solving this linear system takes at most O(nd+ d3) operations, and by
construction, we have Ask = 0.

Similarly, the following lemma shows results analogous to those in Lemma
2, for the remaining columns.

Lemma 3 Let Sk−1 = Sk + sk(sk)T . Then

– ASk−1 = 0.
– Sk−1 � 0 and the rank of Sk−1 remains (n− d− 1).
– Sk−1

ij = 0 for all j ≥ k and i < j, (i, j) 6∈ E(G).

Proof. The proof of the first two statements is identical to that in Lemma
2.

The third statement is again true by construction. Note that in the kth
column (or row) of sk(sk)T , the ith entry, i > k and (i, k) 6∈ E(G), is precisely
−Sk

ik, i.e., (
sk(sk)T

)
ik

= ski s
k
k = ski = −Sk

ik,

so that it is canceled out in the kth column (or row) of matrix Sk−1 = Sk +
sk(sk)T . Furthermore, for j = (k+1), . . . , n, the jth column (or row) of sk(sk)T

9

has all zero entries, which means the entries in jth column (or row) of Sk−1

remain unchanged from Sk.
2

Now we are ready to prove our main result.
Proof of Theorem 3.

Assume that the (d+1)-lateration graph has the lateration ordering 1, 2, . . . , n.
The matrix Sd+2, constructed via the process described in Lemmas 2 and 3,
will be a PSD stress matrix with rank (n − d − 1), for the (d + 1)-lateration
graph, since after step k = (d+ 3), we will have a matrix Sd+2 that satisfies,

ASd+2 = 0 and Sd+2
ij = 0, ∀(i, j) 6∈ E(G)

Note that the first (d + 2) vertices form a clique in G, and the principal
(d + 2) × (d + 2) submatrix has no zero entries. This stress matrix is unique
and always exists since the graph is a (d+ 1)-lateration graph, and thus there
is always a unique solution to the linear equation (9). Furthermore, by Lemma
3, Sd+2 � 0 and the rank of Sd+2 remains (n− d− 1).

There are (n− d− 2) purification steps, where each step computes a rank-
one matrix sk(sk)T and forms a new pre-stress matrix Sk + sk(sk)T , taking
at most O(n2 + d3) arithmetic operations. Thus, the computation of the max-
rank PSD stress matrix uses at most O(n3 + nd3) operations.

2

We also have the following corollary:

Corollary 1 Any universally rigid framework (G,P) in general position ad-
mits a positive semidefinite stress matrix with rank (n−d−1), if G contains a
(d+1)-lateration graph as a spanning subgraph. Moreover, such a stress matrix
can be computed exactly in strongly polynomial time, O(n3 + nd3) arithmetic
operations, if the lateration ordering and the position matrix P are known.
Otherwise, such a stress matrix, together with the position matrix P , can be
computed approximately by an SDP interior-point algorithm in time polyno-
mial in n, d, and log(1/ε), with error ε.

This secondary result holds because we can ignore all edges outside of the
(d + 1)-lateration spanning subgraph to prove the existence of a PSD stress
matrix with rank (n − d − 1). Since finding a (d + 1)-lateration spanning
subgraph requires at least O(nd+2) operations, we cannot actually construct
such a stress matrix exactly in O(n3 +nd3) operations, if either the lateration
ordering or the position matrix P is unknown. However, Proposition 2 implies
that such a rank (n−d−1) and PSD stress matrix, together with the position
matrix P , can be computed approximately in polynomial time, although not
strongly polynomial.

4 Strong Localizability of (d + 1)-Lateration Graph with Anchors

In this section we study the stress matrix of a sensor network, or graph local-
ization with anchors. A sensor network consists of m(≥ d + 1) anchor points

10

whose positions, p̄1, . . . , p̄m ∈ Rd, are known, and n sensor points whose loca-
tions, x1, . . . , xn ∈ Rd, are yet to be determined. We are given the Euclidean
distance values d̄kj between p̄k and xj for some (k, j), and dij between xi and
xj for some i < j. Specifically, let

Na = {(k, j) : d̄kj is specified} and Nx = {(i, j) : i < j, dij is specified}.

The problem is to find a realization of x1, . . . , xn ∈ Rd such that

‖p̄k − xj‖2 = d̄2kj ∀ (k, j) ∈ Na

‖xi − xj‖2 = d2ij ∀ (i, j) ∈ Nx.
(10)

The semidefinite programming relaxation model for (10) attempts to find
a (d+ n)× (d+ n) symmetric matrix

Z =

(
Id X
XT Y

)
� 0 (11)

that solves the SDP

maximize 0 · Z

subject to Z1:d,1:d = Id

(0; ei − ej)(0; ei − ej)T · Z = d2ij ∀ (i, j) ∈ Nx

(−p̄k; ej)(−p̄k; ej)
T · Z = d̄2kj ∀ (k, j) ∈ Na

Z � 0,

(12)

where (−p̄k; ej) ∈ Rd+n is the vector of −p̄k vertically concatenated with ej .
Z1:d,1:d is the d×d top-left principal submatrix of Z and Id is the d–dimensional
identity matrix. Z1:d,1:d = Id can be represented as d(d+ 1)/2 linear equality
constraints.

The dual of the SDP relaxation model is given by:

minimize Id · V +
∑

(i,j)∈Nx

wijd
2
ij +

∑
(k,j)∈Na

w̄kj d̄
2
kj

subject to S :=

(
V 0
0 0

)
+

∑
(i,j)∈Nx

wij(0; ei − ej)(0; ei − ej)T

+
∑

(k,j)∈Na

w̄kj(−p̄k; ej)(−p̄k; ej)
T � 0.

(13)

Note that the dual is always feasible, since the symmetric matrix with V =
0 ∈ Rd×d, variables wij = 0 for all (i, j) ∈ Nx and w̄kj = 0 for all (k, j) ∈ Na,
is feasible for the dual. Also, each column j = (d+ 1), . . . , (d+ n) of the dual
matrix S has the structure:

S1:d,j = −
∑

(k,j)∈Na
w̄kj p̄k,

Sij = −wij , (i, j) ∈ Nx,
Sij = 0, (i, j) 6∈ Nx,
Sjj =

∑
(i,j)∈Nx

wij +
∑

(k,j)∈Na
w̄kj .

(14)

11

Let wij and w̄kj be called stress variables, and S be called a variable stress
matrix for the sensor network localization problem.

It is shown in [21] that both SDPs (12) and (13) are feasible and solvable
when there is at least one anchor point, the graph is connected, and there is
no duality gap between the two SDPs. Let P be a position matrix of the n
sensors satisfying constraints in (10). Then, the sensor network is said to be
uniquely localizable if

Z =

(
Id P
PT PTP

)
� 0 (15)

is the only matrix solution to the primal SDP (12); this is similar to the concept
of universal rigidity. The network is said to be strongly localizable if there is
an optimal dual stress matrix S such that

– ZS = 0,
– S � 0 and rank(S) = n.

It has been shown in [21] that strong localizability implies unique localizability.
The standard graph realization problem is equivalent to the sensor network

localization problem without anchors; thus, the two problems are different,
but closely related. For example, unlike in the SDP (4), Z constructed from
A, where A is the extended position matrix, is no longer feasible for (12),
although Z constructed from a position matrix P in (15) is feasible. Hence,
the stresses of the dual on the anchors may not need to be balanced. As another
example, consider a sensor network of two anchors and one sensor in R2, where
the distances from the sensor to the two anchors are known. The network is
not uniquely localizable, but it is universally rigid in graph realization, since
the three points form a clique.

However, if the sensor network has at least (d + 1) anchors in general
position, and the graph realization problem has a (d+ 1)-point clique also in
general position, then unique localizability is equivalent to universal rigidity,
and strong localizability is equivalent to a framework on (n + d + 1) points
having a PSD stress matrix with rank n (see [20,23]). The latter implies that
the SDP pair (12) and (13) admits a strictly complementary solution pair.

Theorem 4 Take a graph G of m(≥ d+1) anchor points and n sensor points
with edges given in Nx and Na, and let G be a (d + 1)-lateration graph with
(P̄ , P) in general positions. Then the sensor network is strongly localizable,
and a rank n optimal dual stress matrix can be computed exactly in strongly
polynomial time, O(n3 +nd3) arithmetic operations, if the lateration ordering
and the sensor position matrix P are known.

Sketch of Proof. (For full proof, see [7].)
We need to show that, in O(n3 + nd3) arithmetic operations, one can

compute a symmetric matrix S ∈ R(d+n)×(d+n) which satisfies ZS = 0, S �
0, rank(S) = n, and meets the structure condition (14). The proof is more
complicated than that of Theorem 3, since anchor positions appear explicitly
in the dual stress matrix.

12

For simplicity and without loss of generality, we assume there are exactly
(d+ 1) anchors which are the first (d+ 1) points in the lateration ordering; all
other points are sensors and ordered 1, · · · , n. Given a position matrix P , the
primal feasible solution matrix Z in (15) can be written as Z = [Id P]T [Id P]
so that the matrix L = [−P ; In] ∈ R(d+n)×n is in the nullspace of Z or matrix
[Id P]. Moreover, the matrix

Sn = LLT =

(
PPT −P
−PT In

)
� 0,

will also be in the nullspace of Z, where rank(Sn) = rank(L) = n. One may
call Sn a pre-stress matrix for the sensor localization problem. Sn may not
be a true optimal stress matrix since it may not meet the structure condition
(14).

Similar to the constructed proof of Theorem 3, while maintaining its rank
n and keeping it PSD, we modify each column of the pre-stress matrix Sn,
starting with the last, (d + n), and continuing to column (d + 1), to make it
a true stress matrix, optimal for the dual. Again, when modify column d+ `,
the (d+ j)th column (or row) of the modified pre-stress matrix is unchanged
for all j > `.

More precisely, when modifying the `th column, we construct a vector
s` ∈ Rd+n such that s`d+` = 1, s`i = 0 for i > (d+ `), and the first (d+ `− 1)
entries are

s`1:(d+`−1) :=

(
−
∑

(k,`)∈Na
w̄k`p̄k

−
∑

(i<`,`)∈Nx
wi`ei

)
− S`

1:(d+`−1),(d+`), (16)

where the (d + 1) stress variables w̄k` and wi` are yet to be determined, and
ei ∈ Rn is the vector of all zeros except 1 at the ith position.

For the updated matrix S`−1 := S` + s`(s`)T , adding s`(s(`))T to S` will
not affect any column (or row) to the right (or below) of column (or row) d+`.
In particular, the (d+ `)th column of S`−1 becomes

S`−1
1:(d+`−1),(d+`)

S`−1
(d+`),(d+`)

S`−1
(d+`+1):(d+n),(d+`)

 =



(
−
∑

(k,`)∈Na
w̄k`p̄k

−
∑

(i<`,`)∈Nx
wi`ei

)
1 + S`

(d+`),(d+`)

S`
(d+`+1):(d+n),(d+`)


By construction, column (d + `) of S`−1 almost meets the the structure con-
ditions of (14).

To ensure S`−1 is orthogonal to Z, or [Id P], we determine the (d + 1)
stress variables w̄k` and wi` in s` such that [Id P]s` = 0, or equivalently,

−
∑

(k,`)∈Na

w̄k`p̄k −
∑

(i<`,`)∈Nx

wi`pi + p` = S`
1:d,(d+`) +

`−1∑
i=1

S`
d+i,(d+`)pi. (17)

13

Finally, to meet the diagonal entry value condition of (14), that is, the sum of
the total edge stresses of sensor ` equals to the value of its diagonal element,
we add∑

(k,`)∈Na

w̄k` +
∑

(i<`,`)∈Nx

wi` = 1 + S`
(d+`),(d+`) +

n∑
i=`+1

S`
d+i,(d+`). (18)

Equations (17) and (18) are exactly (d+ 1) linearly independent equations on
the (d+ 1) stress variables, and thus there is always a unique solution.

Note that ZS`−1 = Z(S` + s`(s`)T) = Zs`(s`)T = 0, S`−1 � S`, and
rank(S`−1) = n. Moreover, every column (or row) j of S`−1, j ≥ `, meets
condition (14). Repeating this process from column (d + n) down to (d + 1)
will result in a modified stress matrix S0 that satisfies

– ZS0 = 0,
– S0 � 0, and rank(S0) = n,
– and all columns of S0 meet condition (14).

That is, S0 is now a true optimal dual stress matrix with rank n. Note that
there are a total of n modification steps, and each modification step takes at
most O(n2 + d3) arithmetic operations.

2

Similar to the secondary result for the standard graph realization problem,
we have the following corollary.

Corollary 2 Take a graph G of m(≥ d+1) anchor points and n sensor points
with edges given in Nx and Na, and let G contain a (d+1)-lateration spanning
subgraph with (P̄ , P) in general positions. Then the sensor localization problem
on G is strongly localizable. Moreover, a rank n optimal dual stress matrix
can be computed exactly in strongly polynomial time, O(n3 + nd3) arithmetic
operations, if the lateration ordering and the position matrix P are known.
Otherwise, such a rank n stress matrix, together with the position matrix P ,
can be computed approximately by an SDP interior-point algorithm in time
polynomial in n, d, and log(1/ε), with error ε.

The argument for Corollary 2 is analogous to that of Corollary 1.

5 Examples

Consider a 3-lateration framework in dimension 2 on n = 7 nodes, with order-
ing 1, 2, . . . , 7, and position matrix

P =

(
−1 1 0 2 1 −1 −2

1 1 0.5 0 −1 −1 0

)
∈ R2×7.

Example 1 Let

N(4) = {1, 2, 3}, N(5) = {1, 3, 4}, N(6) = {1, 2, 4}, N(7) = {3, 4, 5}.

14

For this example,

L =



1.5000 5.0000 −2.0000 0
−0.5000 0 3.0000 0
−2.0000 −8.0000 0 −1.6000
1.0000 2.0000 −2.0000 1.4000

0 1.0000 0 −0.8000
0 0 1.0000 0
0 0 0 1.0000


and we have the pre-stress matrix S7 = LLT ,

S7 =



31.2500 −6.7500 −43.0000 15.5000 5.0000 −2.0000 0
−6.7500 9.2500 1.0000 −6.5000 0 3.0000 0
−43.0000 1.0000 70.5600 −20.2400 −6.7200 0 −1.6000
15.5000 −6.5000 −20.2400 10.9600 0.8800 −2.0000 1.4000
5.0000 0 −6.7200 0.8800 1.6400 0 −0.8000
−2.0000 3.0000 0 −2.0000 0 1.0000 0

0 0 −1.6000 1.4000 −0.8000 0 1.0000


.

Note that S7 is already a stress matrix that meets condition (3), so that no
“purification” algorithm is needed. This example is not interesting, since the
graph is actually a 3-tree graph.

Example 2 Let

N4 = {1, 2, 3}, N5 = {1, 3, 4}, N6 = {2, 4, 5}, N7 = {1, 3, 6}.

In this example,

L =



1.5000 5.0000 0 −1.2500
−0.5000 0 −1.0000 0
−2.0000 −8.0000 0 1.0000
1.0000 2.0000 2.0000 0

0 1.0000 −2.0000 0
0 0 1.0000 −0.7500
0 0 0 1.0000


and we the have the pre-stress matrix S7 = LLT =

S7 =



28.8125 −0.7500 −44.2500 11.5000 5.0000 0.9375 −1.2500
−0.7500 1.2500 1.0000 −2.5000 2.0000 −1.0000 0
−44.2500 1.0000 69.0000 −18.0000 −8.0000 −0.7500 1.0000
11.5000 −2.5000 −18.0000 9.0000 −2.0000 2.0000 0
5.0000 2.0000 −8.0000 −2.0000 5.0000 −2.0000 0
0.9375 −1.0000 −0.7500 2.0000 −2.0000 1.5625 −0.7500
−1.2500 0 1.0000 0 0 −0.7500 1.0000


.

15

While the last column (or row) of S7 meets condition (3), the rest does not
satisfy (3). We start the purification process from k = 6, where S6 = S7. The
column vector s6 is generated by first assigning

s61 = −S6
1,6 = −0.9375, s63 = −S6

3,6 = 0.75, s66 = 1, s67 = 0,

and then solving for (s62, s
6
4, s

6
5) from the linear system (9) to get

s6 =



−0.9375
−0.0625
0.7500
0.8750
−1.6250
1.0000

0


.

and S5 = S6 + s6(s6)T =

S5 =



29.6914 −0.6914 −44.9531 10.6797 6.5234 0 −1.2500
−0.6914 1.2539 0.9531 −2.5547 2.1016 −1.0625 0
−44.9531 0.9531 69.5625 −17.3438 −9.2188 0 1.0000
10.6797 −2.5547 −17.3438 9.7656 −3.4219 2.8750 0
6.5234 2.1016 −9.2188 −3.4219 7.6406 −3.6250 0

0 −1.0625 0 2.8750 −3.6250 2.5625 −0.7500
−1.2500 0 1.0000 0 0 −0.7500 1.0000


.

Next the column vector s5 is generated by first assigning

s52 = −S5
2,5 = −2.1016, s55 = 1, s56 = s57 = 0,

and solving for (s51, s
5
3, s

5
4) from linear system (9),

s5 =



11.3047
−2.1016
−16.4063

6.2031
1.0000

0
0


and S4 = S5 + s5(s5)T ,

S4 =



157.4874 −24.4489 −230.4207 80.8041 17.8281 0 −1.2500
−24.4489 5.6705 35.4319 −15.5909 0 −1.0625 0
−230.4207 35.4319 338.7275 −119.1138 −25.6250 0 1.0000

80.8041 −15.5909 −119.1138 48.2444 2.7813 2.8750 0
17.8281 0 −25.6250 2.7813 8.6406 −3.6250 0

0 −1.0625 0 2.8750 −3.6250 2.5625 −0.7500
−1.2500 0 1.0000 0 0 −0.7500 1.0000


.

One can see that S4 is now a desired stress matrix for Example 2.

16

Acknowledgments

The authors would like to thank two anonymous referees for their helpful
comments and quick response.

References

1. A. Y. Alfakih. On bar frameworks, stress matrices and semidefinite programming. to
appear in Mathematical Programming.

2. A. Y. Alfakih. Graph Rigidity via Euclidean Distance Matrices. Linear Algebra and Its
Applications 310:149–165, 2000.

3. A. Y. Alfakih. On Rigidity and Realizability of Weighted Graphs. Linear Algebra and
Its Applications 325:57–70, 2001.

4. A. Y. Alfakih. On the Universal Rigidity of Generic Bar Frameworks. Contribution to
Discrete Mathematics 5(3):7–17, 2010.

5. A. Y. Alfakih, A. Khandani, H. Wolkowicz. Solving Euclidean Distance Matrix Comple-
tion Problems Via Semidefinite Programming. Comput. Opt. and Appl. 12:13–30, 1999.

6. A. Y. Alfakih and Y. Ye. On Affine Motions of Bar Frameworks in General Position.
arXiv/1009.3318, 2010.

7. A. Y. Alfakih, N. Taheri, Y. Ye. Toward the Universal Rigidity of General Frameworks.
arXiv/1009.1185, 2010.

8. James Aspnes, David Goldenberg, Yang Richard Yang. On the Computational Com-
plexity of Sensor Network Localization. ALGOSENSORS 2004, in LNCS 3121:32–44,
2004.

9. P. Biswas, Y. Ye. Semidefinite Programming for Ad Hoc Wireless Sensor Network Lo-
calization. Proc. 3rd IPSN 46–54, 2004.

10. P. Biswas, K. C Toh and Y. Ye. A Distributed SDP approach for Large-scale Noisy
Anchor-free Graph Realization with Applications to Molecular Conformation. SIAM Jour-
nal on Scientific Computing 30(3): 1251–1277, 2008.

11. T. Eren, D. K. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Moore, B. D. O. Anderson,
P. N. Belhumeur. Rigidity, Computation, and Randomization in Network Localization.
Proc. 23rd INFOCOM, 2004.

12. R. Connelly. Second-Order Rigidity and Pre-Stress Stability for Tensegrity Frameworks.
SIAM J. Discrete Math 9(1):453–491, 1996.

13. R. Connelly. Tensegrity Structures: Why are they stable? In M. F. Thorpe and
P. M. Duxbury editors, Rigidity Theory and Applications, pages 47–54, Kluwer Aca-
demic/Plenum Publishers, 1999.

14. R. Connelly. Generic Global Rigidity. Discrete and Computational Geometry,
33(4):549–563, 2005.

15. S. J. Gortler and D. P. Thurston. Characterizing the universal rigidity of generic
frame-works. arXiv/1001.0172v1, 2009.

16. S. J. Gortler, A. D. Healy, D. P Thurston. Characterizing Generic Global Rigidity.
American Journal of Mathematics, 2010.

17. J. Graver, B. Servatius, H. Servatius. Combinatorial Rigidity. AMS, 1993.
18. B. Hendrickson. Conditions for Unique Graph Realizations. SIAM J. Comput. 21(1):65–

84, 1992.
19. B. Jackson, T. Jordán. Connected Rigidity Matroids and Unique Realizations of Graphs.

Preprint, 2003.
20. A. M.-C. So. A Semidefinite Programming Approach to the Graph Realization Problem:

Theory, Applications and Extensions. Ph.D. Thesis, Stanford University, 2007.
21. A. M.-C. So and Y. Ye. Theory of Semidefinite Programming for Sensor Network Local-

ization. Proceedings of the 17th Annual ACM–SIAM Symposium on Discrete Algorithm
(SODA 2005) 2005, pp. 405–414; and Mathematical Programming, Series B, vol. 109,
no. 2, pp. 367–384, 2007.

17

22. A. M.-C. So and Y. Ye. A Semidefinite Programming Approach to Tensegrity Theory
and Realizability of Graphs. Proceedings of the 18th Annual ACM–SIAM Symposium on
Discrete Algorithm (SODA 2006), 2006, pp. 766–775.

23. Z. Zhu, A. M-C So, Y. Ye. Universal Rigidity: Towards Accurate and Efficient Local-
ization of Wireless Networks. Proc. IEEE INFOCOM, 2010.

